
International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

15

Binary Particle Swarm Optimization with Crossover

Operation for Discrete Optimization

Deepak Singh
Raipur Institute of

Technology
Raipur, India

Vikas Singh
ABV- Indian Institute of

Information Technology and
management, Gwalior, India

Uzma Ansari
Raipur Institute of

Technology
Raipur, India

ABSTRACT

The field of discrete optimization consists of the areas of linear

and integer programming, cover problems, knapsack problems,

graph theory, network-flow problems, and scheduling. This

paper performs an Experiment for discrete Optimization

problem with the Hybridization of Binary Particle Swarm

Optimization (BPSO) and Genetic Crossover. There are many

algorithms Present for solving discrete optimization problem.

Both BPSO and GA have shown to be very effective results.

Experiment performed on this paper is for the analysis and

behavioral study of Hybridized algorithm. We conclude with the

results obtained by the performed experiment on standard

benchmark functions, and it is found that proposed algorithm

gives better results for few standard benchmark functions.

General Terms

Discrete Optimization, Algorithm.

Keywords

Binary Particle Swarm Optimization; BPSO; Genetic Algorithm;

GA; Hybrid Binary Particle Swarm Optimization; HBPSO;

Crossover.

1. INTRODUCTION
In mathematics, computer science and economics, optimization,

or mathematical programming, refers to choosing the best

element from some set of available alternatives. There are many

problems, which require ordering or arranging of discrete

elements such as: scheduling and routing problems. As any

problem discrete or continuous this can be expressed in binary

notation, might be advantageous. This work presents alternative

of the algorithm to operate on discrete binary optimization

problems. In 1997, Kennedy and Eberhart introduced a discrete

binary version of PSO for discrete optimization problems [13].

In this paper we performed an experiment on enhanced model of

binary PSO with crossover operation. There are many literature

found on the hybridized algorithm in which different types of

crossover were found to be the better performance [4][5].

Therefore this paper shows the various result obtained with

different types of crossover hybridized on BPSO.

Five different types of binary coded crossover operators are

applied to Binary PSO to check whether the hybridized

algorithm works better on the Benchmark function or not. In this

work a crossover step is added to the standard BPSO. The

crossover is performed between each particle’s individual best

positions. After the crossover, the fitness of the individual best

position is compared with that of the two off-springs, and the

best one is taken as the new individual best position. To improve

the solution diversity in BPSO, a crossover BPSO is introduced.

Two particles are selected as parents through tournament

selection. After selecting a crossover point randomly, new

particles are generated using crossover probability. Both the

above techniques perform a crossover by swapping the particles

around the crossover point. The positions themselves are not

altered. In this paper we perform five crossover operators to

BPSO [15], some crossover operators alter the position and

some crossover operators swap the particles around the

crossover point.

The rest of the paper is organized as follows: Basic PSO and

Binary PSO algorithm is explained in second section. Crossover

operator in genetic algorithm is described in third section. In this

paper 5 different types of binary coded crossover operators are

considered for experiments with BPSO presented in forth

section. BPSO with crossover procedure is described in section

five. In Section six, the benchmarks and experimental settings

are described [14]. Results are presented in Section seven

followed by conclusions in Section eight.

2. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) is an evolutionary

computation technique developed by R.Eberhart and J.Kennedy

in 1995 [1], inspired by swarm intelligence, such as birds

flocking, fish schooling. The particle swarm concept originated

from a simulation of a simplified social system. Initial

simulations were modified to incorporate a nearest-neighbor

velocity matching, eliminate ancillary variables, and incorporate

multidimensional search and acceleration by distance. Here we

give the short description of PSO and Binary PSO.

2.1 Continuous PSO
Particle Swarm Optimization (PSO) was originally designed and

introduced by Eberhart and Kennedy in 1995. The PSO

algorithm is an adaptive algorithm, which involves simulating

the social behavior of a group of bees, birds or a school of fish.

Previous versions of the particle swarm have operated in

continuous space, where trajectories are defined as changes in

position on some number of dimensions.

The technique is its fairly simple computations and sharing of

information within the algorithm as it derives its internal

communications from the social behavior of individuals. The

individuals, called particles hence forth, are flown through the

multi-dimensional search space with each particle representing a

possible solution to the multi-dimensional optimization problem.

Each solution fitness is based on a performance function related

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

16

to the optimization problem being solved. The movement of the

particles is influenced by two factors using information from

iteration-to-iteration as well as particle-to-particle. As a result of

iteration-to-iteration information, the particle stores in its

memory the best solution visited so far, called pbest, and

experiences an attraction towards this solution as it traverses

through the solution search space. As a result of the particle-to-

particle information, the particle stores in its memory the best

solution visited by any particle, and experiences an attraction

towards this solution, called gbest, as well. The first and second

factors are called cognitive and social components, respectively.

After each iteration, the pbest and gbest are updated for each

particle if a better or more dominating solution (in terms of

fitness) is found. This process continues, iteratively, until either

the desired result is converged upon, or it's determined that an

acceptable solution cannot be found within computational limits.

For an n-dimensional search space, the ith particle of the swarm

is represented by an n-dimensional vector, Xi = (xi1, xi2,…….

xin) .The velocity of this particle is represented by another n-

dimensional vector Vi = (vi1, vi2, ……. vin). The previously best

visited position of the ith particle is denoted as Pi = (pi1, pi2,

……, pin) . The velocity of the ith particle is updated using the

velocity update equation given by

ω is inertia factor; c1, c2 is the learning factor, or accelerated

variable; rand () is the random number between (0, 1); pid(k) is

the individual(pbest) Extreme of number i; pgd(k) is the global

(gbest)optimal solution.vid (k) id stands for speed, Xid(k) is for

position of the particle.

2.2 Discrete PSO
Standard PSO is mainly applied in the area of continuous space

and rarely in that of discrete space. In order to be used in

discrete space, J.Kenney and R.Eberhart developed a binary

Particle Swarm Optimization in 1997 to make PSO capable to

optimize the combination problem The binary PSO extended

particle swarm optimization and is used to optimize the discrete

binary space problem, for example, knapsack problem, schedule

problem, data mining, biologic information, and graphics and so

on, Although it has been proposed for just ten years and has

been used in many combination optimizing problems.

Kennedy and Eberhart presented a first binary version of PSO,

called Binary PSO. As in classical PSO, velocities are used to

determine the next position of a particle. However, as each bit

may only obtain discrete values 0 and 1, velocities are used in a

stochastic solution construction process. More precise, the

velocity value of a bit determines the probability to set this bit to

1 in the next solution construction. The binary PSO is an

extended particle swarm optimization and is used to optimize

the discrete binary space problem. The parameter vid(k)

(predisposition for each particle) is calculated similarly to the

classical PSO based given in Equation (1) and it will function as

a probability threshold to make one of the two decisions (0 or

1).Such a threshold needs to stay in the range of [0, 1]. The

sigmoidal function shown in Equation (3), maps the interval of

vid(k) i to a range of [0, 1].

Final binary decision making is based on the following rule:

The entire PSO algorithm of the binary version is almost the

same as that of the basic continuous version in Section, except

that it uses the above decision rule.

3. CROSSOVER OPERATOR
Genetic algorithms belong to the larger class of evolutionary

algorithms (EA), which generate solutions to optimization

problems using techniques inspired by natural evolution, such as

inheritance, mutation, selection, and crossover. In genetic

algorithms, crossover is a genetic operator used to vary the

programming of a chromosome or chromosomes from one

generation to the next. It is analogous to reproduction and

biological crossover, upon which genetic algorithms are based.

Crossover is genetic operator used in creation of one or more

offspring’s from the selected parents. Numbers of elements take

part in crossover are called parents and crossover results are

called offspring’s or children. The number of new offspring’s

generated from crossover operation is equal to the number of

members in parent population. The idea behind crossover is that

the new chromosome may be better than both of the parents if it

takes the best characteristics from each of the parents. Crossover

probability is a term associated with crossover operation which

decides whether crossover happens or not. The crossover

operator combines parts of good solution to form new potential

solution. Information contained in one solution combine with

information contained in another solution and the resulting

solution will either have good fitness or survive to exchange this

information again. Crossover operators exist for both real coded

and binary coded GA. Since this paper explores the application

of crossover operators to BPSO for discrete optimization

problem therefore for this paper we discuss only real coded

crossover operators. A number of real coded crossovers have

been introduced for GA and other heuristic technique. Five

different binary coded crossovers we used listed in next section.

3.1 One Point Crossover
When performing crossover, both parental chromosomes are

split at a randomly determined crossover point. Subsequently, a

new child genotype is created by appending the first part of the

first parent with the second part of the second parent.

Consider the following 2 parents which have been selected for

crossover. The “|” symbol indicates the randomly chosen

crossover point.

Parent 1: 10001|110

Parent 2: 00100|011

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

17

After interchanging the parent chromosomes at the crossover

point, the following offspring are produced:

Offspring1: 10001|011

Offspring2: 00100|110

3.2 Two Point Crossover
In two-point crossover, both parental genotypes are split at two

points, constructing a new offspring by using parts number one

and three from the first, and the middle part from the second

ancestor. Using two point crossovers will enable searching

problem space more thoroughly. Using single-point and two-

point crossover operator prevents schema to be disrupted, but

when population becomes homogeneous, search space becomes

smaller.

Consider the following 2 parents which have been selected for

crossover. The “|” symbols indicate the randomly chosen

crossover points.

Parent 1: 101|010|01

Parent 2: 001|001|11

After interchanging the parent chromosomes between the

crossover points, the following offspring are produced:

Offspring1: 101|001|01

Offspring2: 001|010|11

3.3 Uniform Crossover
A crossover operator that decides (with some probability –

known as the mingling ratio) which parent will donate each of

the gene values in the offspring chromosomes. This allows the

parent chromosomes to be mixed at the gene level rather than

the segment level (as with one and two point crossover).

Uniform crossover disrupts schema with great probability but

searches larger problem space. For uniform crossover, the

number of effective crossing points is not fixed, but will average

to l/2 where l represents string length.

Consider the following 2 parents which have been selected for

crossover:

Parent 1: 11001010

Parent 2: 00100111

If the mixing ratio is 0.5, approximately half of the genes in the

offspring will come from parent 1 and the other half will come

from parent 2. Below is a possible set of offspring after uniform

crossover:

Offspring1: 1102120102011112

Offspring2: 0211010211121201

Note: The subscripts indicate which parent the gene came from

3.4 Half-Uniform Crossover
Half-Uniform crossover is similar to uniform crossover. Only

difference is that only half of differing bits between parents will

be swapped. In the half uniform crossover scheme (HUX),

exactly half of the nonmatching bits are swapped. Thus first the

Hamming distance (the number of differing bits) is calculated.

This number is divided by two. The resulting number is how

many of the bits that do not match between the two parents will

be swapped.

3.5 Shuffle Crossover
Shuffle crossover is similar to one-point crossover. First, a

single crossover position is selected. Before the variables are

exchanged, they are randomly shuffled in both parents. After

recombination, the variables in the offspring are unshuffled in

reverse. This removes positional bias as the variables are

randomly reassigned each time crossover is performed. In a

way, shuffle crossover is similar to uniform crossover.

Difference is that uniform crossover exchanges bits and not

segments like shuffle crossover. Further, in uniform crossover

bits exchanged follow a binary distribution and in shuffle

crossover bits follow uniform distribution, as in single-point

crossover.

4. HYBRID BINARY PARTICLE SWARM

OPTIMIZATION WITH GA CROSSOVER
It was pointed out that PSO usually suffers from premature

convergence, tending to get stuck in local optima, low solution

precision and so on. In order to overcome these shortcomings

and get better results, numerous improvements to PSO have

been proposed. One of the novel versions of PSO with crossover

operator is proposed by adding a crossover step to the standard

PSO. PSO uses iterative process to search the global optima in

solution space. Crossover operator with PSO has a property of

better exploration so by using crossover search area is explored

in a relatively better manner. PSO has a higher convergence rate,

by using crossover with PSO premature convergence is also

reduced and PSO does not get trapped in local optima.

Crossover can help the particles to jump out of the local optima

by sharing the others’ information. To improve the solution

diversity in PSO, a crossover BPSO is introduced.

In this paper BPSO with five different types of crossover applied

to the five benchmark functions for testing which crossover

gives the optimum result at what probability. Particles

generated by BPSO are randomly selected for crossover

operation and two new offspring’s are formed. The best

offspring (in terms of fitness) selected from the new offspring’s.

This new best offspring replaces the worst parent particle which

is selected for crossover. The replacement is done if the new

best offspring has the good fitness value than the parent particle.

In this paper we analyze different types of crossover operators

used with BPSO, all the crossover discussed in previous section

applied to the BPSO one by one according to the algorithm

shown in below algorithm.

Algorithm of proposed method is as follows:

for i = 0 to the maximum bound of the number of function

evaluation do

 for s = 0 to the swarm size do

 for d = 0 to the problem dimension do

 Update velocity by BPSO method

 Update position by BPSO method

 end for d

 Compute fitness of updated position

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

18

 If needed, update historical information for

 Pi and Pg

 end for s

 for all current generated swarm

 if Crossover criteria met then

Select two random particles as parent

particles from the current swarm for

crossover operation.

 Apply crossover operation.

 New offsprings generated from parents as

a result of crossover. Replace the parent

particle with the new offspring.

If Pg meets problem requirement

then

 Terminate

 end if

 end if

end for i

Figure 1

5. PARAMETER SETUP for BPSO,

HYBRID BPSO and BENCHMARK

FUNCTIONS
From the standard set of Benchmark problems available in the

literature, five important functions are chosen to test and

compare the performance of both BPSO and Hybrid PSO. All

the benchmark problems chosen have discrete variables and

have different degree of complexity. In our experiment the

problem size for all the problems is set to 30. The problems are

listed in below.

5.1 Benchmark Functions

5.1.1 Goldberg's order-3

The fitness f of a bit-string is the sum of the result of separately

applying the following function to consecutive groups of three

components each:

f1 (y) = (5)

5.1.2 Bipolar Order 3
The fitness is the sum of the result of applying the following

function to consecutive groups of six components each:

f1(y) = (6)

5.1.3 Muhlenbein's order-5
The fitness is the sum of the results of applying the following

function to consecutive groups of five components each:

f1(y) = (7)

5.1.4 Clerc's Zebra3
The fitness f of a bit-string is the sum of the result of separately

applying the following function to consecutive groups of three

components each. If the rank of the group is even (first rank=0)

f1(y) = (8)

5.1.5 Whitney DF2
The fitness is the sum of the results of applying the following

function to consecutive groups of sixteen components each:

f1(y) = (9)

5.2 Parameter Setup for Experiment
In this paper the parameter setting are as swarm size = 40. The

inertia weight w is set to 0.73. c1 and c2 both are set to 2. Global

variants of BPSO are considered. Xmax and Xmin are the upper

and lower bounds of the decision variables. Whenever the

calculated position of particle exceeds the Xmax or lowers than

the Xmin, particle position is set to Xmax or Xmin respectively.

This paper presents an experiment on BPSO and (Hybrid) BPSO

with Crossover operator. For Crossover, all five crossover which

is explained previously in chosen. For experiments, crossovers

probabilities are taken in the range of 0.1 to 0.9. Two criteria are

applied to terminate the simulation of the algorithms. The first is

the maximum number of function evaluations, set as 10000 and

the second is minimum error which is set to be 0.9.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

19

Table 1 BPSO with one point crossover

Table 2 BPSO with two point crossover

Table 3 BPSO with uniform crossover

Table 4 BPSO with shuffle crossover

Table 5 BPSO with half uniform crossover

Benchmark Functions Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr < .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.049393 0.049533 0.04944 0.0493 0.049393 0.049393 0.049393 0.04944 0.0493

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.07268 0.102633 0.0893 0.102633 0.142633 0.149393 0.159347 0.175967 0.1693

Best Fit 1.3493 0.8493 0.8493 1.3493 1.3493 0.8493 0.8493 0.8493 1.3493 1.3493

Mean Fit 2.315967 2.1493 2.2493 2.2493 2.182633 2.1493 2.06596 2.115967 2.165967 2.032633

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.182633 0.155967 0.1493 0.1493 0.162633 0.152633 0.145967 0.152633 0.163947

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 2.206387 2.73972 2.863 2.673 2.673053 3.119627 4.22282 4.263007 3.586293

Goldberg's

Bipolar

Muhlenbein's

Whitney DF2

Clerc's order 3 (Zebra3)

Benchmark Functions Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr < .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.0493 0.056247 0.04944 0.049393 0.049347 0.04944 0.04944 0.049393 0.049347

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.0893 0.086013 0.102633 0.126013 0.1693 0.1293 0.155967 0.15268 0.1093

Best Fit 1.3493 0.3493 0.3493 0.3493 1.3493 1.3493 0.8493 0.8493 1.3493 0.8493

Mean Fit 2.315967 2.482633 2.065967 1.982633 2.132633 2.182633 2.215967 1.969567 1.965967 1.915967

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.165967 0.165967 0.155967 0.182633 0.1593 0.152633 0.175967 0.1593 0.1593

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 1.949767 2.329673 1.979907 2.293147 2.53972 3.65296 3.693147 4.149767 5.232867

Goldberg's

Bipolar

Muhlenbein's

Clerc's order 3 (Zebra3)

Whitney DF2

Benchmark Function Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr < .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.04944 0.04944 0.052773 0.056153 0.04944 0.049347 0.049533 0.049627 0.04944

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.075967 0.0893 0.13268 0.102633 0.0893 0.122633 0.155967 0.15268 0.142633

Best Fit 1.3493 1.3493 1.8493 0.8493 0.3493 1.3493 1.3493 1.3493 0.8493 0.3493

Mean Fit 2.315967 2.2993 2.415967 2.1993 2.165967 2.1993 2.1493 2.215967 2.282633 2.132633

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.162633 0.155967 0.182633 0.1693 0.1593 0.155967 0.1693 0.1493 0.155967

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 1.82648 2.493147 2.406387 2.786293 2.956153 2.586293 3.33972 3.33972 4.146107

Goldberg's

Bipolar

Muhlenbein's

Whitney DF2

Clerc's order 3 (Zebra3)

Benchmark Functions Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr < .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.049487 0.049347 0.049487 0.49487 0.49487 0.04944 0.04944 0.052867 0.049487

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.082727 0.0693 0.1493 0.122633 0.1693 0.1893 0.2093 0.2293 0.222633

Best Fit 1.3493 0.3493 1.3493 0.8493 1.3493 0.8493 1.3493 1.3493 1.3493 0.8493

Mean Fit 2.315967 2.082633 2.282633 1.982633 2.265967 2.082633 2.232633 2.0493 2.315967 2.132633

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.172633 0.19268 0.195967 0.182633 0.1793 0.206013 0.202633 0.1893 0.162633

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 2.663 3.612773 5.402727 5.146107 5.956153 6.469393 7.73606 8.52613 8.27944

Goldberg's

Bipolar

Muhlenbein's

Clerc's order 3 (Zebra3)

Whitney DF2

Benchmark Functions Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr < .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.049487 0.04944 0.04944 0.049393 0.0493 0.04944 0.049347 0.049347 0.0493

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.0893 0.0693 0.075967 0.1093 0.122633 0.162633 0.135967 0.195967 0.1693

Best Fit 1.3493 0.8493 1.3493 0.8493 1.3493 0.8493 0.8493 1.3493 0.8493 0.8493

Mean Fit 2.315967 2.282633 2.132633 2.015967 2.0993 2.0493 2.065967 2.032633 1.865967 1.965967

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.199347 0.162633 0.1793 0.1593 0.172633 0.172633 0.1393 0.1593 0.155967

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 2.616433 1.563473 2.436527 2.05662 1.97352 2.836527 3 3.246573 3.179907

Goldberg's

Bipolar

Muhlenbein's

Clerc's order 3 (Zebra3)

Whitney DF2

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

20

6. EXPERIMENTAL RESULT
This section focuses on the efficiency of BPSO and Hybrid

BPSO with five different crossover operators tested on 5

benchmark functions with 30 dimensions, given in Table

1,2,3,4,5. To avoid the choice of a particular initial population

and to conduct fair comparisons between crossovers, 30 runs are

considered starting from various randomly selected points in the

multidimensional search space. The BPSO and Hybrid BPSO

with crossovers are implemented in C++. Recorded simulated

results are presented in Tables 1, 2, 3, 4, 5. for each benchmark

function. For each crossover mean fitness objective function

value (Mean OBJ) and the best fitness objective function

evaluations (Average evaluations) of 30 runs were calculated

and compared. In the tables the bold readings are improved

result over the BPSO. Obtained results indicated in tables that

BPSO with crossover and suitable crossover probability may

provide better results than original BPSO. However there is no

general value of crossover probability for which any crossover

can improve the results obtained by hybrid BPSO.

7. CONCLUSION
In this paper, Hybrid version of BPSO is compared with BPSO.

Hybrid BPSO is obtained by an additional step added to BPSO

that is a crossover technique of GA. Code of BPSO and Hybrid

BPSO (fig. 1) is developed in c++ and results are shown in

Table 1, 2, 3, 4, 5. The experiments are performed on a set of 5

benchmark problems available in the literature. The crossover

probability range is set to 0.1 - 0.9. For each benchmark function

results are tabulated for crossover probability 0 to 0.9 in terms of

mean objective function value (Mean OBJ) and best function

evaluation (Best fitness Evaluations) which describes the

efficiency and accuracy are depicted in bold. From the result

obtained it is concluded that Hybrid BPSO has been found to

have successful performance on Goldberg’s order-3,

Muhlenbein’s order-5, Clerc’s Zebra 3 and Whitney DF2

benchmark problems.

8. REFERENCES
[1] J. Kennedy and R. Eberhart, Particle swarm optimization,

in Proc. IEEE International Conference Neural Networks,

vol. 4, 1995, pp. 1942 - 1948..

[2] Y. Shi and R. C. Eberhart, A modified particle swarm

optimizer, in Proc. IEEE International Conference on

Evolutionary Computation, Piscataway,NJ, 1998, IEEE

Press, pp. 69-73.

[3] R. C. Eberhart and Y. Shi, Comparing inertia weights and

constriction factors in particle swarm optimization, 2000

Congress on Evolutionary Computing, vol. 1, 2000, pp. 84-

88.

[4] Zhi-Feng Hao, Zhi-Gang Wang and Han Huang, A Particle

swarm optimization algorithm with crossover operator, in

Proc. of the Sixth International Conference on Machine

Learning and Cybernetics, HongKong, 19-22 August

2007.Tavel, P. 2007 Modeling and Simulation Design. AK

Peters Ltd.

[5] Dongyong Yang, Jinyin Chen and Matsumoto Naofumi,

Self-adaptive Crossover Particle Swarm Optimizer for

Multi-dimension Functions Optimization,ICNC 2007.

[6] J.H. Holland, Adaptation in Natural and Artificial System,

The University of Michigan Press, Ann Arbor,1975.

[7] Goldberg D E, Genetic Algorithms in search, optimization,

and machine learning. Addison-Wesley Publishing

Corporation, Inc, 1989.

[8] Jianhua Liu and Xiaoping Fan, The Analysis and

Improvement of Binary Particle Swarm Optimization,

International Conference on Computational Intelligence

and Security2009.

[9] Xu Jun and Huiyou Chang, The Discrete Binary Version Of

The Improved Particle Swarm Optimization Algorithm,

IEEE 2009.

[10] Javad Sadri and Ching Y. Suen, A Genetic Binary Particle

Swarm Optimization Model, IEEE Congress on

Evolutionary Computation2006.

[11] Zhang Li-ping, YU Huan-jun and HU Shang-xu, ”Optimal

choice of parameters for particle swarm optimization”,

Journal of Zhejiang University SCIENCE 2005, vol. 6A(6),

pp. 528-534.

[12] Jaco F. Schutte and Albert A. Groenwold,”A Study of

Global Optimization Using Particle Swarms”, Journal of

Global Optimization (2005) vol. 31, pp. 93-108.

[13] J. Kennedy and R. Eberhart, A discrete binary version of

the particle swarm optimization A. Proceeding of the

conference on System, Man, and Cybernetics [C], NJ,

USA: IEEE Service Center, 1997, 4 104 - 4 109.

[14] M. Clerc, “Binary Particle Swarm Optimisers: Toolbox,

Derivations, and Mathematical Insights,” 2005. [Online].

Available: http://clerc.maurice.free.fr/pso/.

[15] Eiben, A. E. et al (1994). "Genetic algorithms with multi-

parent recombination". PPSN III: Proceedings of the

International Conference on Evolutionary Computation.

The Third Conference on Parallel Problem Solving from

Nature: 78–87. ISBN 3-540-58484-6.

