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ABSTRACT 

The field of discrete optimization consists of the areas of linear 

and integer programming, cover problems, knapsack problems, 

graph theory, network-flow problems, and scheduling. This 

paper performs an Experiment for discrete Optimization 

problem with the Hybridization of Binary Particle Swarm 

Optimization (BPSO) and Genetic Crossover. There are many 

algorithms Present for solving discrete optimization problem. 

Both BPSO and GA have shown to be very effective results. 

Experiment performed on this paper is for the analysis and 

behavioral study of Hybridized algorithm. We conclude with the 

results obtained by the performed experiment on standard 

benchmark functions, and it is found that proposed algorithm 

gives better results for few standard benchmark functions.  
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1. INTRODUCTION 
In mathematics, computer science and economics, optimization, 

or mathematical programming, refers to choosing the best 

element from some set of available alternatives. There are many 

problems, which require ordering or arranging of discrete 

elements such as: scheduling and routing problems. As any 

problem discrete or continuous this can be expressed in binary 

notation, might be advantageous. This work presents alternative 

of the algorithm to operate on discrete binary optimization 

problems. In 1997, Kennedy and Eberhart introduced a discrete 

binary version of PSO for discrete optimization problems [13]. 

In this paper we performed an experiment on enhanced model of 

binary PSO with crossover operation. There are many literature 

found on the hybridized algorithm in which different types of 

crossover were found to be the better performance [4][5]. 

Therefore this paper shows the various result obtained with 

different types of crossover hybridized on BPSO. 

Five different types of binary coded crossover operators are 

applied to Binary PSO to check whether the hybridized 

algorithm works better on the Benchmark function or not. In this 

work a crossover step is added to the standard BPSO. The 

crossover is performed between each particle’s individual best 

positions. After the crossover, the fitness of the individual best 

position is compared with that of the two off-springs, and the 

best one is taken as the new individual best position. To improve 

the solution diversity in BPSO, a crossover BPSO is introduced. 

Two particles are selected as parents through tournament 

selection. After selecting a crossover point randomly, new 

particles are generated using crossover probability. Both the 

above techniques perform a crossover by swapping the particles 

around the crossover point. The positions themselves are not 

altered. In this paper we perform five crossover operators to 

BPSO [15], some crossover operators alter the position and 

some crossover operators swap the particles around the 

crossover point. 

The rest of the paper is organized as follows: Basic PSO and 

Binary PSO algorithm is explained in second section. Crossover 

operator in genetic algorithm is described in third section. In this 

paper 5 different types of binary coded crossover operators are 

considered for experiments with BPSO presented in forth 

section. BPSO with crossover procedure is described in section 

five. In Section six, the benchmarks and experimental settings 

are described [14]. Results are presented in Section seven 

followed by conclusions in Section eight.  

2. PARTICLE SWARM OPTIMIZATION  
Particle Swarm Optimization (PSO) is an evolutionary 

computation technique developed by R.Eberhart and J.Kennedy 

in 1995 [1], inspired by swarm intelligence, such as birds 

flocking, fish schooling. The particle swarm concept originated 

from a simulation of a simplified social system. Initial 

simulations were modified to incorporate a nearest-neighbor 

velocity matching, eliminate ancillary variables, and incorporate 

multidimensional search and acceleration by distance. Here we 

give the short description of PSO and Binary PSO. 

2.1 Continuous PSO 
Particle Swarm Optimization (PSO) was originally designed and 

introduced by Eberhart and Kennedy in 1995. The PSO 

algorithm is an adaptive algorithm, which involves simulating 

the social behavior of a group of bees, birds or a school of fish. 

Previous versions of the particle swarm have operated in 

continuous space, where trajectories are defined as changes in 

position on some number of dimensions. 

The technique is its fairly simple computations and sharing of 

information within the algorithm as it derives its internal 

communications from the social behavior of individuals. The 

individuals, called particles hence forth, are flown through the 

multi-dimensional search space with each particle representing a 

possible solution to the multi-dimensional optimization problem. 

Each solution fitness is based on a performance function related 
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to the optimization problem being solved. The movement of the 

particles is influenced by two factors using information from 

iteration-to-iteration as well as particle-to-particle. As a result of 

iteration-to-iteration information, the particle stores in its 

memory the best solution visited so far, called pbest, and 

experiences an attraction towards this solution as it traverses 

through the solution search space. As a result of the particle-to-

particle information, the particle stores in its memory the best 

solution visited by any particle, and experiences an attraction 

towards this solution, called gbest, as well. The first and second 

factors are called cognitive and social components, respectively. 

After each iteration, the pbest and gbest are updated for each 

particle if a better or more dominating solution (in terms of 

fitness) is found. This process continues, iteratively, until either 

the desired result is converged upon, or it's determined that an 

acceptable solution cannot be found within computational limits. 

For an n-dimensional search space, the ith particle of the swarm 

is represented by an n-dimensional vector, Xi = (xi1, xi2,……. 

xin) .The velocity of this particle is represented by another n-

dimensional vector Vi = (vi1, vi2, ……. vin). The previously best 

visited position of the ith particle is denoted as Pi = (pi1, pi2, 

……, pin) . The velocity of the ith particle is updated using the 

velocity update equation given by 

 

                      

                      

                       

ω is inertia factor; c1, c2 is the learning factor, or accelerated 

variable; rand () is the random number between (0, 1); pid(k) is 

the individual(pbest) Extreme of number i;  pgd(k) is the global 

(gbest)optimal solution.vid (k) id stands for speed, Xid(k) is for 

position of the particle. 

2.2 Discrete PSO 
Standard PSO is mainly applied in the area of continuous space 

and rarely in that of discrete space. In order to be used in 

discrete space, J.Kenney and R.Eberhart developed a binary 

Particle Swarm Optimization in 1997 to make PSO capable to 

optimize the combination problem The binary PSO extended 

particle swarm optimization and is used to optimize the discrete 

binary space problem, for example, knapsack problem, schedule 

problem, data mining, biologic information, and graphics and so 

on, Although it has been proposed for just ten years and has 

been used in many combination optimizing problems. 

Kennedy and Eberhart presented a first binary version of PSO, 

called Binary PSO. As in classical PSO, velocities are used to 

determine the next position of a particle. However, as each bit 

may only obtain discrete values 0 and 1, velocities are used in a 

stochastic solution construction process. More precise, the 

velocity value of a bit determines the probability to set this bit to 

1 in the next solution construction. The binary PSO is an 

extended particle swarm optimization and is used to optimize 

the discrete binary space problem. The parameter vid(k) 

(predisposition for each particle) is calculated similarly to the 

classical PSO based given in Equation (1) and it will function as 

a probability threshold to make one of the two decisions (0 or 

1).Such a threshold needs to stay in the range of [0, 1]. The 

sigmoidal function shown in Equation (3), maps the interval of 

vid(k) i to a range of [0, 1]. 

 

Final binary decision making is based on the following rule: 

 

The entire PSO algorithm of the binary version is almost the 

same as that of the basic continuous version in Section, except 

that it uses the above decision rule. 

3. CROSSOVER OPERATOR 
Genetic algorithms belong to the larger class of evolutionary 

algorithms (EA), which generate solutions to optimization 

problems using techniques inspired by natural evolution, such as 

inheritance, mutation, selection, and crossover. In genetic 

algorithms, crossover is a genetic operator used to vary the 

programming of a chromosome or chromosomes from one 

generation to the next. It is analogous to reproduction and 

biological crossover, upon which genetic algorithms are based. 

Crossover is genetic operator used in creation of one or more 

offspring’s from the selected parents. Numbers of elements take 

part in crossover are called parents and crossover results are 

called offspring’s or children. The number of new offspring’s 

generated from crossover operation is equal to the number of 

members in parent population. The idea behind crossover is that 

the new chromosome may be better than both of the parents if it 

takes the best characteristics from each of the parents. Crossover 

probability is a term associated with crossover operation which 

decides whether crossover happens or not. The crossover 

operator combines parts of good solution to form new potential 

solution. Information contained in one solution combine with 

information contained in another solution and the resulting 

solution will either have good fitness or survive to exchange this 

information again. Crossover operators exist for both real coded 

and binary coded GA. Since this paper explores the application 

of crossover operators to BPSO for discrete optimization 

problem therefore for this paper we discuss only real coded 

crossover operators. A number of real coded crossovers have 

been introduced for GA and other heuristic technique. Five 

different binary coded crossovers we used listed in next section. 

3.1 One Point Crossover 
When performing crossover, both parental chromosomes are 

split at a randomly determined crossover point. Subsequently, a 

new child genotype is created by appending the first part of the 

first parent with the second part of the second parent. 

Consider the following 2 parents which have been selected for 

crossover. The “|” symbol indicates the randomly chosen 

crossover point. 

Parent 1: 10001|110 

Parent 2: 00100|011 
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After interchanging the parent chromosomes at the crossover 

point, the following offspring are produced: 

Offspring1: 10001|011 

Offspring2: 00100|110 

3.2 Two Point Crossover 
In two-point crossover, both parental genotypes are split at two 

points, constructing a new offspring by using parts number one 

and three from the first, and the middle part from the second 

ancestor. Using two point crossovers will enable searching 

problem space more thoroughly. Using single-point and two-

point crossover operator prevents schema to be disrupted, but 

when population becomes homogeneous, search space becomes 

smaller. 

Consider the following 2 parents which have been selected for 

crossover. The “|” symbols indicate the randomly chosen 

crossover points. 

Parent 1: 101|010|01 

Parent 2: 001|001|11 

After interchanging the parent chromosomes between the 

crossover points, the following offspring are produced: 

Offspring1: 101|001|01 

Offspring2: 001|010|11 

3.3 Uniform Crossover 
A crossover operator that decides (with some probability – 

known as the mingling ratio) which parent will donate each of 

the gene values in the offspring chromosomes. This allows the 

parent chromosomes to be mixed at the gene level rather than 

the segment level (as with one and two point crossover). 

Uniform crossover disrupts schema with great probability but 

searches larger problem space. For uniform crossover, the 

number of effective crossing points is not fixed, but will average 

to l/2 where l represents string length. 

Consider the following 2 parents which have been selected for 

crossover: 

Parent 1: 11001010 

Parent 2: 00100111 

If the mixing ratio is 0.5, approximately half of the genes in the 

offspring will come from parent 1 and the other half will come 

from parent 2. Below is a possible set of offspring after uniform 

crossover: 

Offspring1:    1102120102011112 

Offspring2:    0211010211121201 

Note: The subscripts indicate which parent the gene came from 

3.4 Half-Uniform Crossover 
Half-Uniform crossover is similar to uniform crossover. Only 

difference is that only half of differing bits between parents will 

be swapped. In the half uniform crossover scheme (HUX), 

exactly half of the nonmatching bits are swapped. Thus first the 

Hamming distance (the number of differing bits) is calculated. 

This number is divided by two. The resulting number is how 

many of the bits that do not match between the two parents will 

be swapped.  

3.5 Shuffle Crossover  
Shuffle crossover is similar to one-point crossover. First, a 

single crossover position is selected. Before the variables are 

exchanged, they are randomly shuffled in both parents. After 

recombination, the variables in the offspring are unshuffled in 

reverse. This removes positional bias as the variables are 

randomly reassigned each time crossover is performed. In a 

way, shuffle crossover is similar to uniform crossover. 

Difference is that uniform crossover exchanges bits and not 

segments like shuffle crossover. Further, in uniform crossover 

bits exchanged follow a binary distribution and in shuffle 

crossover bits follow uniform distribution, as in single-point 

crossover. 

4. HYBRID BINARY PARTICLE SWARM 

OPTIMIZATION WITH GA CROSSOVER  
It was pointed out that PSO usually suffers from premature 

convergence, tending to get stuck in local optima, low solution 

precision and so on. In order to overcome these shortcomings 

and get better results, numerous improvements to PSO have 

been proposed. One of the novel versions of PSO with crossover 

operator is proposed by adding a crossover step to the standard 

PSO. PSO uses iterative process to search the global optima in 

solution space. Crossover operator with PSO has a property of 

better exploration so by using crossover search area is explored 

in a relatively better manner. PSO has a higher convergence rate, 

by using crossover with PSO premature convergence is also 

reduced and PSO does not get trapped in local optima. 

Crossover can help the particles to jump out of the local optima 

by sharing the others’ information. To improve the solution 

diversity in PSO, a crossover BPSO is introduced. 

In this paper BPSO with five different types of crossover applied 

to the five benchmark functions for testing which crossover 

gives the optimum result at what probability.  Particles 

generated by BPSO are randomly selected for crossover 

operation and two new offspring’s are formed. The best 

offspring (in terms of fitness) selected from the new offspring’s. 

This new best offspring replaces the worst parent particle which 

is selected for crossover. The replacement is done if the new 

best offspring has the good fitness value than the parent particle. 

In this paper we analyze different types of crossover operators 

used with BPSO, all the crossover discussed in previous section 

applied to the BPSO one by one according to the algorithm 

shown in below algorithm. 

Algorithm of proposed method is as follows:  

for i = 0 to the maximum bound of the number of function 

evaluation do  

 for s = 0 to the swarm size do  

  for d = 0 to the problem dimension do  

   Update velocity by BPSO method  

   Update position by BPSO method  

  end for d  

  Compute fitness of updated position  
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  If needed, update historical information for    

                                    Pi and Pg  

 end for s  

 for all current generated swarm  

  if Crossover criteria met then  

Select two random particles as parent 

particles from the current swarm for 

crossover operation.  

          Apply crossover operation.  

  New offsprings generated from parents as 

a result of crossover. Replace the parent          

particle with the new offspring.  

If Pg meets problem requirement 

then  

    Terminate  

        end if  

 end if  

end for i 

Figure 1 

5. PARAMETER SETUP for BPSO, 

HYBRID BPSO and BENCHMARK 

FUNCTIONS 
From the standard set of Benchmark problems available in the 

literature, five important functions are chosen to test and 

compare the performance of both BPSO and Hybrid PSO. All 

the benchmark problems chosen have discrete variables and 

have different degree of complexity. In our experiment the 

problem size for all the problems is set to 30. The problems are 

listed in below. 

5.1 Benchmark Functions 

5.1.1 Goldberg's order-3 

The fitness f of a bit-string is the sum of the result of separately 

applying the following function to consecutive groups of three 

components each: 

f1 (y) = (5) 

 

5.1.2 Bipolar Order 3 
The fitness is the sum of the result of applying the following 

function to consecutive groups of six components each: 

f1(y) =                      (6) 

5.1.3 Muhlenbein's order-5 
The fitness is the sum of the results of applying the following 

function to consecutive groups of five components each: 

f1(y) =                                (7) 

5.1.4 Clerc's Zebra3 
The fitness f of a bit-string is the sum of the result of separately 

applying the following function to consecutive groups of three 

components each. If the rank of the group is even (first rank=0) 

f1(y) =                                       (8) 

5.1.5 Whitney DF2 
The fitness is the sum of the results of applying the following 

function to consecutive groups of sixteen components each: 

f1(y) =                                   (9) 

5.2 Parameter Setup for Experiment 
In this paper the parameter setting are as swarm size = 40. The 

inertia weight w is set to 0.73. c1 and c2 both are set to 2. Global 

variants of BPSO are considered. Xmax and Xmin are the upper 

and lower bounds of the decision variables. Whenever the 

calculated position of particle exceeds the Xmax or lowers than 

the Xmin, particle position is set to Xmax or Xmin respectively. 

This paper presents an experiment on BPSO and (Hybrid) BPSO 

with Crossover operator. For Crossover, all five crossover which 

is explained previously in chosen. For experiments, crossovers 

probabilities are taken in the range of 0.1 to 0.9. Two criteria are 

applied to terminate the simulation of the algorithms. The first is 

the maximum number of function evaluations, set as 10000 and 

the second is minimum error which is set to be 0.9. 
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Table 1 BPSO with one point crossover  

 

Table 2 BPSO with two point crossover 

        

Table 3 BPSO with uniform crossover 

 

Table 4 BPSO with shuffle crossover 

 

Table 5 BPSO with half uniform crossover   

 

Benchmark Functions Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr <  .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.049393 0.049533 0.04944 0.0493 0.049393 0.049393 0.049393 0.04944 0.0493

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.07268 0.102633 0.0893 0.102633 0.142633 0.149393 0.159347 0.175967 0.1693

Best Fit 1.3493 0.8493 0.8493 1.3493 1.3493 0.8493 0.8493 0.8493 1.3493 1.3493

Mean Fit 2.315967 2.1493 2.2493 2.2493 2.182633 2.1493 2.06596 2.115967 2.165967 2.032633

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.182633 0.155967 0.1493 0.1493 0.162633 0.152633 0.145967 0.152633 0.163947

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 2.206387 2.73972 2.863 2.673 2.673053 3.119627 4.22282 4.263007 3.586293

Goldberg's

Bipolar

Muhlenbein's

Whitney DF2

Clerc's order 3 (Zebra3)

Benchmark Functions Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr <  .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.0493 0.056247 0.04944 0.049393 0.049347 0.04944 0.04944 0.049393 0.049347

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.0893 0.086013 0.102633 0.126013 0.1693 0.1293 0.155967 0.15268 0.1093

Best Fit 1.3493 0.3493 0.3493 0.3493 1.3493 1.3493 0.8493 0.8493 1.3493 0.8493

Mean Fit 2.315967 2.482633 2.065967 1.982633 2.132633 2.182633 2.215967 1.969567 1.965967 1.915967

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.165967 0.165967 0.155967 0.182633 0.1593 0.152633 0.175967 0.1593 0.1593

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 1.949767 2.329673 1.979907 2.293147 2.53972 3.65296 3.693147 4.149767 5.232867

Goldberg's

Bipolar

Muhlenbein's

Clerc's order 3 (Zebra3)

Whitney DF2

Benchmark Function Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr <  .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.04944 0.04944 0.052773 0.056153 0.04944 0.049347 0.049533 0.049627 0.04944

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.075967 0.0893 0.13268 0.102633 0.0893 0.122633 0.155967 0.15268 0.142633

Best Fit 1.3493 1.3493 1.8493 0.8493 0.3493 1.3493 1.3493 1.3493 0.8493 0.3493

Mean Fit 2.315967 2.2993 2.415967 2.1993 2.165967 2.1993 2.1493 2.215967 2.282633 2.132633

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.162633 0.155967 0.182633 0.1693 0.1593 0.155967 0.1693 0.1493 0.155967

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 1.82648 2.493147 2.406387 2.786293 2.956153 2.586293 3.33972 3.33972 4.146107

Goldberg's

Bipolar

Muhlenbein's

Whitney DF2

Clerc's order 3 (Zebra3)

Benchmark Functions Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr <  .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.049487 0.049347 0.049487 0.49487 0.49487 0.04944 0.04944 0.052867 0.049487

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.082727 0.0693 0.1493 0.122633 0.1693 0.1893 0.2093 0.2293 0.222633

Best Fit 1.3493 0.3493 1.3493 0.8493 1.3493 0.8493 1.3493 1.3493 1.3493 0.8493

Mean Fit 2.315967 2.082633 2.282633 1.982633 2.265967 2.082633 2.232633 2.0493 2.315967 2.132633

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.172633 0.19268 0.195967 0.182633 0.1793 0.206013 0.202633 0.1893 0.162633

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 2.663 3.612773 5.402727 5.146107 5.956153 6.469393 7.73606 8.52613 8.27944

Goldberg's

Bipolar

Muhlenbein's

Clerc's order 3 (Zebra3)

Whitney DF2

Benchmark Functions Fitness without pr < .1 pr < .2 pr < .3 pr < .4 pr <  .5 pr < .6 pr< .7 pr< .8 pr <.9

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.049673 0.049487 0.04944 0.04944 0.049393 0.0493 0.04944 0.049347 0.049347 0.0493

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.055967 0.0893 0.0693 0.075967 0.1093 0.122633 0.162633 0.135967 0.195967 0.1693

Best Fit 1.3493 0.8493 1.3493 0.8493 1.3493 0.8493 0.8493 1.3493 0.8493 0.8493

Mean Fit 2.315967 2.282633 2.132633 2.015967 2.0993 2.0493 2.065967 2.032633 1.865967 1.965967

Best Fit 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

Mean Fit 0.172633 0.199347 0.162633 0.1793 0.1593 0.172633 0.172633 0.1393 0.1593 0.155967

Best Fit 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507 0.1507

Mean Fit 2.7662 2.616433 1.563473 2.436527 2.05662 1.97352 2.836527 3 3.246573 3.179907

Goldberg's

Bipolar

Muhlenbein's

Clerc's order 3 (Zebra3)

Whitney DF2
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6. EXPERIMENTAL RESULT 
This section focuses on the efficiency of BPSO and Hybrid 

BPSO with five different crossover operators tested on 5 

benchmark functions with 30 dimensions, given in Table 

1,2,3,4,5. To avoid the choice of a particular initial population 

and to conduct fair comparisons between crossovers, 30 runs are 

considered starting from various randomly selected points in the 

multidimensional search space. The BPSO and Hybrid BPSO 

with crossovers are implemented in C++. Recorded simulated 

results are presented in Tables 1, 2, 3, 4, 5. for each benchmark 

function. For each crossover mean fitness objective function 

value (Mean OBJ) and the best fitness objective function 

evaluations (Average evaluations) of 30 runs were calculated 

and compared. In the tables the bold readings are improved 

result over the BPSO. Obtained results indicated in tables that 

BPSO with crossover and suitable crossover probability may 

provide better results than original BPSO. However there is no 

general value of crossover probability for which any crossover 

can improve the results obtained by hybrid BPSO. 

7. CONCLUSION  
In this paper, Hybrid version of BPSO is compared with BPSO. 

Hybrid BPSO is obtained by an additional step added to BPSO 

that is a crossover technique of GA. Code of BPSO and Hybrid 

BPSO (fig. 1) is developed in c++ and results are shown in 

Table 1, 2, 3, 4, 5. The experiments are performed on a set of 5 

benchmark problems available in the literature. The crossover 

probability range is set to 0.1 - 0.9. For each benchmark function 

results are tabulated for crossover probability 0 to 0.9 in terms of 

mean objective function value (Mean OBJ) and best function 

evaluation (Best fitness Evaluations) which describes the 

efficiency and accuracy are depicted in bold. From the result 

obtained it is concluded that Hybrid BPSO has been found to 

have successful performance on Goldberg’s order-3, 

Muhlenbein’s order-5, Clerc’s Zebra 3 and Whitney DF2 

benchmark problems.  
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