
International Journal of Computer Applications (0975 – 8887)

Volume 28– No.2, August 2011

13

A Smart Algorithm for Dynamic Task Allocation for

Distributed Processing Environment

Dr. Kapil Govil
Teerthanker Mahaveer University,

Moradabad

ABSTRACT

A Distributed Processing Environment (DPE) consists of

multiple autonomous computers that communicate through a

communication media. In DPE a task is divided into many

fractions and each of which is to be get processed. The task

allocation problem can be explained in terms of number of tasks

and number of processors available. In the present method

propose a dynamic model for task allocation in DPE. Present

method describes the allocation of m tasks in the environment of

distributed processing with n processors (m>n) that completes in

k number of phases. This method allocates the tasks to the

processor to increases the performance of the DPE; and based on

the inter task communication cost between executing task and

another tasks. Residing cost and reallocation cost in various

phases has also taken in consideration. On implemented the

suggested algorithm we have obtained the phase wise optimal

allocation and overall optimal cost. The run time complexity has

been computed and compared with existing approaches. It is

found that suggested algorithm is much better as compared to

others.

Keywords

Distributed Processing Environment, Task, Allocation, Residing

Cost, Reallocation Cost.

1. INTRODUCTION
Most distributed environment nowadays are consists of various

nodes having different functions and/or different processing

capabilities and speeds. A heterogeneous distributed

environment consists of a set of nodes (autonomous computers)

with same functionality but different processing capability.

Distributed Processing Environment (DPE) offer the potential

for improved performance and resource sharing. To make the

best use of the computational power available, it is essential to

assign the tasks dynamically to that processor whose

characteristics are most appropriate for the execution of the

tasks in DPE. We have developed a mathematical model for

allocating “M” tasks of distributed program to “N” multiple

processors (M > N) that minimizes the total cost of the program.

One of the major research problems for DPE is the task

allocation problem, in which tasks are assigned to various

processors of the network, in such a way that processing cost is

to be minimized as per the requirement. These problems may be

categorized as static [1, 2, 3, 4, 5, 6, 7, 8, 9] and dynamic [10,

11, 12, 13, 14] types of task allocation. Some of the other related

methods have been reported in the literature, such as, Integer

Programming [15], Load Balancing [16, 17, 18, 19, 20, 21, 22,

23], Divide and Conquer [24], Grid Computing [25] and Branch

and Bound [26, 27]. Tasks are allocated to various processors of

the distributed environment in such a way that overall

processing cost of the network should be minimized. As it is

well known that the tasks are more than the number of

processors of the network.

2. OBJECTIVE
This research is aimed to find out the number of autonomous

computer required to design a Distributed Processing

Environment (DPE) for a specific problem domain. Here we

have presented a mathematical model of a general dynamic task

allocation mechanism. In this problem we have chosen task

allocation mode of is dynamic in nature. Tasks are divided into

phases and while a task is executed in a phase then remaining

tasks are residing in that phase. Task execution cost, residing

cost and inter – task communication cost has considered. As in

this problem the performance is measured in terms of Execution

Cost, so we have to minimize the execution cost and remaining

parameters to obtain the optimal performance of the systems.

3. TECHNIQUE
In order to evaluate the overall optimal execution cost of a

distributed system, we have considered the problem that consist

a set P = {p1, p2, p3, …pn} of ‟n‟ processors and set T = {t1, t2,

t3, t4,…tm} of ‟m‟ tasks divided into k phases. Here it is

assumed that the tasks m are more than the number of

processors n i.e. m > n. The phase wise efficiency of individual

processor is given in the form of Execution Cost Matrix ECM(,,)

of order k x m x n. The Residing Cost for residing the

unprocessed tasks on the processor is mentioned in Residing

Cost Matrix RCM(,,) of order k x m x n. The Inter Task

Communication Cost amongst the tasks is considered and is

mentioned in the Inter Task Communication Cost Matrix

ITCCM(,) of order m x k and when a task is shifted from one

processor to another processor then it incurred some cost i.e.

reallocation cost and it is given in the Reallocation Cost Matrix

RECM(,) of order m x k. For each phase sum up ECM(,,) and

RCM(,,) to obtain ERCM(,). Obtain the sum of each row of

ERCM(,) and arrange them in ascending order and store in

sum_row_asc(). Now, select first n tasks from ERCM(,,) to store

in sum_row() and store them in ERCMI(,). Repeat the process

for next n or less than n tasks. Made the allocation in all sub

matrices of ERCM(,,) by using Kumar et al [4]. Evaluate the

Execution Cost, Communication Cost and Reallocation Cost.

Repeat the process for all phases; and finally summing up the

value of Execution Cost, Communication Cost and Reallocation

Cost to get the phase wise optimal cost. Obtain the sum of

optimal cost of each phase to evaluate the overall optimal cost.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.2, August 2011

14

4. ALGORITHM
Start Algo

 Read the number of tasks in m

 Read the number of processors in n

 Read the number of phases in k

Read the Execution Cost Matrix ECM(,,) of order k x

m x n

Read the Residing Cost Matrix RCM(,,) of order k x m

x n

Read the Inter Task Communication Cost Matrix

ITCCM(,,) of order k x m x n

Read the Reallocation Cost Matrix RECM(,,) of order

m x k

 For I = 1 to m

 Phase I:

Sum up ECM(,,) and RCM(,,) and store the

results in ERCM(,,)

Store the sum of each row of ERCM(,,) and

store it in sum_row()

sort sum_row() and store the results in

sum_row_asc()

While (all tasks of sumrow_asc() !=

SELECTED)

 {

Make partition of ERCM(,,) for n

tasks, store it in ERCMI(,,)

Apply algorithm of Kumar et al

[4] on ERCMI(,,)

 }

Compute Execution Cost (EC),

Communication Cost (CC) and Reallocation

Cost (RC)

 Total Cost = EC + CC + RC

 I = I + 1

 Optimal Cost = (Total Cost)

 Endfor

End Algo

5. IMPLEMENTATION
In the present problem, let us consider a distributed processing

environment which is made up of four tasks {t1, t2, t3, t4} to be

allocated on two processors {p1, p2} in five phases. The phase

wise efficiency of individual processor is given in the form of

Execution Cost Matrix ECM(,,) of order k x m x n where k is the

number of phases, m is the number of tasks and n is the number

of processors. The ECM(,,) is as given below.

ECM(,,)=

Phase Task
Execution Cost

p1 p2

1

t1 4 3

t2 - -

t3 - -

t4 - -

2

t1 - -

t2 6 5

t3 - -

t4 - -

3

t1 - -

t2 - -

t3 2 4

t4 - -

4

t1 - -

t2 - -

t3 - -

t4 3

5

t1 4 5

t2 - -

t3 - -

t4 - -

The Residing Cost for those tasks that reside on the processor is

mentioned in Residing Cost Matrix RCM(,,) of order k x m x n.

The RCM(,,) is as,

RCM(,,)=

Phase Task
Residing Cost

p1 p2

1

t1 - -

t2 1 2

t3 2 1

t4 3 2

2

t1 1 2

t2 - -

t3 2 3

t4 1 4

3

t1 3 1

t2 2 3

t3 - -

t4 3 1

4

t1 1 3

t2 2 1

t3 1 2

t4 - -

5

t1 - -

t2 2 1

t3 1 2

t4 1 3

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.2, August 2011

15

Inter Task Communication Cost between executing task and

another tasks is taken in the form of matrix Inter Task

Communication Cost Matrix ITCCM(,) of order m x k. The

ITCCM(,) is given as follow,

ITCCM(,)=

Phase
1 2 3 4 5

Task

t1 - 3 4 2 -

t2 1 - 3 4 1

t3 4 2 - 5 2

t4 1 2 3 - 0

When an allocated task is shifted from one processor to another

processor during the next phase then reallocation cost is

mentioned at the end of each phase. The reallocation cost is

mentioned below in the reallocation cost matrix RECM(,) of

order m x k.

RECM(,)=

Phase
1 2 3 4 5

Task

t1 1 1 4 3 -

t2 2 2 3 3 -

t3 3 2 2 2 -

t4 1 3 1 1 -

In phase 1 task t1 shall have to execute while t2, t3 & t4 shall be

residing. Sum up the ECM(,,) and RCM(,,) and store the results

in ERCM(,) we get

 21 pp

23

12

21

34

t

t

t

t

)(, ERCM

4

3

2

1

Obtain the sum of each row of ERCM(,) and store it in a linear

array sum_row().

sum_row()=
5337

tttt 4321

Arrange the sum_row() in ascending order and we get the

following:

sum_row_asc()=
7533

tttt 1432

Now partition the ERCM(,) by selecting the first two tasks; store

it in ERCM1(,), we get the first subproblem:

 21 pp

12

21

t

t
)ERCM1(,

3

2

Select next two tasks and get the second subproblem:

 21 pp

34

23

t

t
)ERCM1(,

1

4

On applying the algorithm developed by Kumar et al [4] we get

the following allocation and their corresponding costs during the

phase - 1,

Phase
Executing

Task
Processor

Assigned

Task

Execution

Cost

Communication

Cost

Reallocation

Cost

Total

(EC+CC+RC)

1 t1
p1 t2 * t4 4

2 0 10
p2 t3 * t1 4

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.2, August 2011

16

On repeating the above process for all phases i.e. 2 to 5 we get the following results:

Phase
Executing

Task
Processor

Assigned

Task

Execution

Cost

Communication

Cost

Reallocation

Cost

Phasewise

Optimal Cost

(EC+CC+RC)

1 t1
p1 t2 * t4 4

2 0 10
p2 t3 * t1 4

2 t2
p1 t1 * t4 2

5 3 18
p2 t3 * t2 8

3 t3
p1 t1 * t3 5

5 5 19
p2 t4 * t2 4

4 t4
p1 t3 * t4 4

5 3 16
p2 t2 * t1 4

5 t1
p1 t3 * t4 2

2 5 15
p2 t2 * t1 6

Overall Optimal Cost 78

6. CONCLUSION
In this problem we have presented an efficient solution to the

dynamic allocation problem. Starting with the definition of the

phase of a modular program, a model based on dynamic

programming approach is suggested. Earlier the researchers

advised that the dynamic allocation strategy is the best

allocation technique as it facilitates the user to take decision for

allocating the during run time. The suggested algorithm is

implemented on the several sets of input data and it is recorded

that algorithm is workable in all the case. Here we have

considered the phases and each phase has the tasks are to be

processed by the processors. In each phase only one task shall be

executing on these processors. During the next phase an

executing task may remain on the same processor for execution

or may shift to another processor, in case of shifting the task to

another processor, it added the reallocation cost. The impact of

inter task communication cost is to be considered. Thus phase

wise optimal costs are obtained. In this model, there are five

phases and each phase has the equal numbers of tasks. Optimal

allocation has been obtained along with phase wise optimal

costs. The overall optimal cost is found to be 78. The detailed

optimal results are mentioned in the table 1,

Table 1. Optimal Results

Phase Task Processor
Phasewise

Optimal Cost

1
t2 * t4 p1

10
t3 * t1 p2

2
t1 * t4 p1

18
t3 * t2 p2

3
t1 * t3 p1

19
t4 * t2 p2

4
t3 * t4 p1

16
t2 * t1 p2

5
t3 * t4 p1

15
t2 * t1 p2

The overall optimal cost is thus calculated to be 215 units for

this example. It also recorded that the suggested algorithm

provides the better results and complexity as compared to earlier

suggested algorithms of similar types. The time complexity of

the present algorithm is observed to be O(kmn) which is much

less as compared to [11] and [14] algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.2, August 2011

17

Table 2. Time Complexity

Processors

n

Tasks

m

Phases

k

Time Complexity

[11] algorithm O[k(5mn-n2)] [14] algorithm O(m2n2k) Present algorithm O(kmn)

3 4 3 153 432 36

3 5 4 264 900 60

3 6 5 405 1620 90

3 7 6 576 2646 126

3 8 7 777 4032 168

4 5 3 252 1200 60

4 6 4 416 2304 96

4 7 5 620 3920 140

4 8 6 864 6144 192

4 9 7 1148 9072 252

5 6 3 375 2700 90

5 7 4 600 4900 140

5 8 5 875 8000 200

5 9 6 1200 12150 270

5 10 7 1575 17500 350

From the above table 2, it is clear that present algorithm is much

better for optimal allocation of tasks that upgrade the

performance of distributed network. Following fig 1, 2 & 3 also

shows the, time complexity comparison for the different values

of n (i.e. 3, 4, 5) with the algorithms [11], [14] and present

algorithm.

Fig 1: Comparison Graph for n=3

Fig 2: Comparison Graph for n=4

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.2, August 2011

18

Fig 3: Comparison Graph for n=5

7. REFERENCES

[1] Dr. Kapil Govil and Dr. Avanish Kumar. 2011. A modified

and efficient algorithm for Static task assignment in

Distributed Processing Environment. International Journal

of Computer Applications, Vol. 23, Number 8, Article 1, 1

– 5, ISBN: 978-93-80752-82-3, ISSN: 0975 – 8887.

[2] Kok Fu Ng, Norhashidah Hj. Mohd Ali. 2008. Performance

analysis of explicit group parallel algorithms for distributed

memory multicomputer. Elsevier Inc. Vol. 34, Issue 6,7,8.

427 – 440.

[3] Kumar, V. Singh, M. P. and Yadav, P.K. 1995. An

Efficient Algorithm for Allocating Tasks to Processors in a

Distributed System, In proceedings of the 19th National

system conference, SSI, Coimbatore, 82 – 87.

[4] Kumar, V. Singh, M.P. and Yadav, P.K. 1995. A Fast

Algorithm for Allocating Tasks in Distributed Processing

System, In proceedings of the 30th Annual Convention of

CSI, Hyderabad, 347 – 358.

[5] Richard R. Y., Lee, E. Y. S. and Tsuchiya, M. 1982. A

Task Allocation Model for Distributed Computer System,

IEEE Transactions on Computer, Vol. 31, 41 – 47.

[6] J. Sum, J. Wu, and C. S. Leung. 2007. On profit density

based greedy algorithm for a resource allocation problem in

web services. International Journal of Computers and

Applications.

[7] Suresh Behara, Sanjay Mittal. 2009. Parallel finite element

computation of incompressible flows. Elsevier Inc. Vol. 35,

Issue 4, 195 – 212.

[8] Ucar, Bora, Aykanat, Cevdet, Kaya, Kamer and Ikinci,

Murat. 2005. Task assignment in heterogeneous computing

systems. Journal of Parallel and Distributed Computing,

Elsevier Inc., Vol. 66, Issue 1, 32 – 46.

[9] Wei – Ming Lin. 2008. Performance modeling and analysis

of correlated parallel computations. Elsevier Inc. Vol. 34,

Issue 9, 521 – 538.

[10] N. Beaumont. 2009. Using dynamic programming to

determine an optimal strategy in a contract bridge

tournament. Journal of the Operational Research Society.

[11] Kumar, Avanish, 1999. Optimizing for the Dynamic Task

Allocation, in proceedings of the „III Conference of the

International Academy of Physical Sciences, 1999

Allahabad, 281 – 294.

[12] Palmer, J. and Mitrani, I. 2005. Optimal and heuristic

policies for dynamic server allocation. Journal of Parallel

and Distributed Computing, Vol. 65, Issue 10, 1204 – 1211.

[13] M. Vanneschi, L. Veraldi. 2007. Dynamicity in distributed

applications: issues, problems and the ASSIST approach.

Elsevier Inc. Vol. 33, Issue 12, 822 – 845.

[14] Pradeep Kumar Yadav, M. P. Singh and Harendra Kumar.

2008. Scheduling Algorithm: Tasks scheduling Algorithm

for Multiple Processors with Dynamic Reassignment.

Journal of Computer Systems, Networks and

Communications, Vol. 2008, Article ID 578180, 9 pages.

[15] C Alves and J M Valerio de Carvalho. 2008. New integer

programming formulations and an exact algorithm for the

ordered cutting stock problem. Journal of the Operational

Research Society. Vol. 59, 1520 – 1531.

[16] Baz D. El, and Elkihel M. 2005. Load balancing methods

and parallel dynamic programming algorithm using

dominance technique applied to the 0 – 1 knapsack

problem, Elsevier Inc., Vol. 65, Issue 1, 74 – 84.

[17] Iqbal, Saeed and Carey, Graham F. 2005. Performance

analysis of dynamic load balancing algorithms with

variable number of processors. Journal of Parallel and

Distributed Computing, Elsevier Inc., Vol. 65, Issue 8, 934

– 948.

[18] Bahi, Jacques, Couturier, Raphael and Vernier, Flavien.

2005. Synchronous distributed load balancing on dynamic

networks, Journal of Parallel and Distributed Computing,

Elsevier Inc., Vol. 65, Issue 11, 1397 – 1405.

[19] Jan, Gene Eu and Lin, Ming – Bo. 2005. Concentration,

load balancing, partial permutation routing, and super

concentration on cube – connected cycles parallel

computers. Journal of Parallel and Distributed Computing,

Elsevier Inc., Vol. 65, Issue 12, 1471 – 1482.

[20] C. Muller, M. Strengert, T. Ertl. 2007. Adaptive load

balancing for raycasting of non-uniformly bricked volumes.

Elsevier Inc. Vol. 33, Issue 6, 406 – 419.

[21] Wong, Han Min, Bharadwaj, Veeravalli and Gerassimos,

Barlas. 2005. Design and performance evaluation of load

distribution strategies for multiple divisible loads on

heterogeneous linear daisy chain networks, Elsevier Inc.,

Vol.65, No.12, 1558-1577.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.2, August 2011

19

[22] Zeng, Zeng and Bharadwaj, Veeravalli. 2006. Distributed

scheduling strategy for divisible loads on arbitrarily

configured distributed networks using load balancing via

virtual routing. Journal of Parallel and Distributed

Computing, Elsevier Inc. Vol. 66, Issue 11, 1404 – 1418.

[23] Grosu, Daniel and Chronopoulos, Anthony T. 2005.

Noncooperative load balancing in distributed

systems. Journal of Parallel and Distributed Computing,

Elsevier Inc., Vol. 65, Issue 9, 1022 – 1034.

[24] Yeon – Koo Che, Kathryn E. Spier. 2007. Exploiting

Plaintiffs Through Settlement: Divide and Conquer. Journal

of Institutional and Theoretical Economics (JITE), Vol.

164, Issue I, 4 – 23.

[25] Yi – mu Ji and Ru – chuan Wang. 2006. A Solution of Grid

Computing Flow Using MDA Methodology. The Journal of

China Universities of Posts and Telecommunications. Vol.

13, Issue 1, 29 – 33.

[26] Giovanni Righini. 2008. A branch – and – bound algorithm

for the linear ordering problem with cumulative costs.

European Journal of Operational Research Vol. 186, Issue

3, 965 – 971.

[27] Yanai Shuzo, Fujie Tetsuya. 2005. An Improved Branch –

and – Bound Algorithm for a Two-machine Flowshop

Problem with Minimum Makespan. Journal of Japan

Industrial Management Association. Vol. 56, Issue 4, 284 –

293.

