
International Journal of Computer Applications (0975 – 8887) 

Volume 28– No.3, August 2011 

22 

An Application of Statistical indexing for 

Searching and Ranking of documents – A Case 

Study on Telugu Script 

N.V. Ganapathi Raju 
Associate Professor, Dept of CSE 

GRIET, Hyderabad 

 

Bhavya Sukavasi 
PG Student, Dept of MCA 

GRIET, Hyderabad 

Sai Rama Krishna Chava 
PG Student, Dept of MCA 

GRIET, Hyderabad 

 

Vidya Rani Vadisala 
PG Student, Dept of MCA 

GRIET, Hyderabad 

 

ABSTRACT 

The lack of proper indexing and ranking techniques for Telugu 

documents motivated us for implementation of this work. The 

results provide a way to analyze efficiency of algorithms used for 

indexing and ranking. This paper summarizes the Automatic Term 

Weighting and Inverted File Structure approaches for Telugu 

documents and provides baseline of single term indexing to develop 

more elaborate techniques like content based analysis. 

General Terms 

Term Weighting, Cosine similarity, Stop words, Corpus  

Keywords 

Statistical indexing, Ranking, Inverted File Structure, Stemming, 

Telugu Documents, Term weighting. 

 

1. INTRODUCTION 
Information retrieval (IR) corresponds to representation, storage, 

organization, and access to information items. Information can be 

composed of text images, audio, video and other multi-media 

objects. Usually information retrieval is viewed upon as a circular 

procedure, where the user makes a request for information to a 

system and recursively evaluates the response until the information 

need is fulfilled. The user’s request is compared with a description 

of stored items in the system. Here description of stored data means 

index file. Usually the system makes some automatic relevance 

assessment of the documents retrieve and presents to the user in 

descending order of estimated relevance. 

The general objective of an Information Retrieval System is to 

minimize the overhead of a user locating needed information. 

Overhead can be expressed as the time a user spends in all of the 

steps  leading to reading an item containing the needed  information  

(e.g.,  query  generation, query  execution,  scanning  results of 

query to  select  items to read,  reading  non-relevant items). 

Many researchers have been worked in the area of I.R. Among them 

Gerald Salton, Ted Nelson are the main contributors in this area. 

Gerald Salton was father of modern search technology. His teams 

developed SMART information retrieval systems. Salton introduced 

concepts like vector space model, Inverse Document Frequency 

(IDF), Term Frequency (TF), term discrimination values, and 

relevancy feedback mechanisms. Ted Nelson created Project 

Xanadu in 1960 and coined the term hypertext in 1963. His goal 

with Project Xanadu was to create a computer network with a simple 

user interface that solved many social problems like attribution. [4] 

2. AUTOMATIC INDEXING  

Indexing is the act of extraction of terms from a document to 

indicate what the document is about or to summarize its content. 

Indexing is very important in the context of information retrieval as 

it decrease the time of searching and is basis for ranking the 

retrieved documents. Automatic indexing is the process of analyzing 

an item to extract the information to be permanently kept in an 

index. Figure-1 shows the overall indexing process including 

Identify Processing Tokens, Apply Stop Lists, Characterize tokens, 

Apply Stemming and Create Searchable Data Structure is all part of 

the indexing process. From many approaches of automatic indexing 

this paper discuss about inverted file structure, statistical indexing 

by using term weights which are used for searching and ranking of 

Telugu Documents. [4] 

 
Fig 1. Indexing Process 



International Journal of Computer Applications (0975 – 8887) 

Volume 28– No.3, August 2011 

23 

2.1 Inverted File Structure 
An Inverted File Structure contains, for each term in the lexicon, an 

inverted list that stores a list of pointers to all occurrences of that 

term in the main text, where each pointer is, in effect, the number of 

a document in which that term appears. The concept of the inverted 

file type of index is as follows. Assume a set of documents. Each 

document is assigned a list of keywords or attributes, with optional 

relevance weights associated with each keyword (attribute). An 

inverted file is then the sorted list (or index) of keywords 

(attributes), with each keyword having links to the documents 

containing that keyword index found in most commercial library 

systems. The use of an inverted file improves search efficiency by 

several orders of magnitude, a necessity for very large text files. The 

penalty paid for this efficiency is the need to store a data structure 

that ranges from 10 percent to 100 percent or more of the size of the 

text itself, and a need to update that index as the data set changes [4] 

Example for building Inverted File Structure  

 

Table 1. Document Sets 

Documents Text 

1  

2  

3  

4  

Then we build the corresponding index. 

Table 2. Inverted File Structure 

Documents Term Times; Documents 

1  <1; 1> 

2  <1; 1> 

3  <1; 1> 

4  <2; 2,3> 

5  <2; 2,3> 

6  <3; 2,3,4> 

7  <1; 3> 

8  <1; 3> 

10  <1; 3> 

2.2 Term Weighting 
In  the  late  195Os,  Luhn  first  suggested  that  automatic  text  

retrieval  systems  could  be designed  based  on  a  comparison  of  

content  identifiers  attached  both  to  the  stored  texts  and to  the  

users’  information  queries.  In  either  case, the  documents or user 

queries would  be  represented  by  term  vectors  of  the  form  

A formal  representation  of  the  term  vectors  is obtained  by 

including  in  each  vector  all  possible  content  terms  allowed  in  

the  system  and  adding  term weight  assignments  to  provide  

distinctions  among  the  terms.  Thus,  if  Wk  represents  the  

weight  of  term  tk  in  document  D  (or  query  Q),  and  t  terms  in  

all  are  available for  content  representation,  the  term  vectors  for  

document  D  and  query  Q  can  be  written  as  

D =  (t0, w0;  tl,  w1;  .  .  .  ; tn,, Wn) 

and  

Q = (q0, w0; ql, w1;.  .  .; qr,wr).  

Here wt represents is TF-IDF of the term t. TF term frequency refers 

to the number of times the word present in that particular document. 

IDF is ratio of total number of documents to the number of 

documents in which the word is present. TF-IDF is the product of 

TF and IDF [1] 

2.3 Ranking 
A by-product of use of similarity measures for selecting Hit items is 

a value that can be used in ranking the output. Ranking the output 

implies ordering the output from most likely items that satisfy the 

query to least likely items. This reduces the user overhead by 

allowing the user to display the most likely relevant terms first. The 

original Boolean systems returned items ordered by date of entry 

into the system versus by likelihood of relevance to the user’s search 

statement. With the inclusion of statistical similarity techniques into 

commercial systems and the large number of hits that originate from 

searching diverse corpora, such as the Internet, ranking has become 

a common feature of modern systems. To rank a document retrieved 

by a query similarity between them has to be calculated. The below 

formula is used to measure similarity between query and item. 

t

k
dk

t

k
qk

dk

t

k
qk

ww

ww
DQsimilarity

1

2

1

2

1

)(.)(

.

),(   

 

3.   IMPLEMENTATION 
We used Python and Java programming languages for 

implementation of this work. Python is an interpreter, interactive, 

object-oriented, extensible programming language. There are two 

types of strings in Python: byte strings and Unicode strings. Python 

handles Unicode strings same as that of byte strings. Unicode strings 

are encoded in UTF-8 format. Python has codecs module which 

convert UTF-8 encoded byte strings to Unicode strings. We used 

Java (JDBC) to make database operations using MS Access. 

The system can be divided into following modules: 

 Collection of data from the web 

 Preprocessing and extraction of the words from the corpus 

 Applying stop word removal 

 Applying N-gram based Stemming process 

 Constructing of Inversed File System based on sorted 

array 

 Developing the Index Tables 

 Creating searching process  

 Creating ranking process  

3.1 Collection of data from the web 
We collected the Unicode Telugu data from Telugu daily news 

articles like www.unimedhas.org.  The collected Telugu data is 

classified manually into various categories like literature, politics, 

science, sports, business, rivers, and editorial. 



International Journal of Computer Applications (0975 – 8887) 

Volume 28– No.3, August 2011 

24 

3.2 Preprocessing and Extraction of Words 

from the Corpus 
In preprocessing we removed or ignored the characters which are 

other than the Telugu language. All the numbers, special characters, 

and any unwanted letters except “spaces” will be removed. From the 

preprocessed file we will extract the words using a space identifier 

which separates each word. 

3.3 Applying Stop Word Removal 
It has been recognized since the earliest days of information retrieval 

that many of the most frequently occurring words in any language 

are worthless as index terms. A search using one of these terms is 

likely to retrieve almost every item in a database regardless of its 

relevance, so their discrimination value is low. Furthermore, these 

words make up a large fraction of the text of most documents: the 

ten most frequently occurring words in any language typically 

account for 20 to 30 percent of the tokens in a document. 

Eliminating such words from consideration early in automatic 

indexing speeds processing, saves huge amounts of space in indexes, 

and does not damage retrieval effectiveness. A list of words filtered 

out during automatic indexing because they make poor index terms 

is called a stop list or a negative dictionary. [5] 

Stop words are words which have very little informational content. 

These are words such as: , , , , , ,  

etc. Here we remove the words such as articles, Prepositions, 

conjunctions etc. from the documents. For this we collected 450 

Telugu stop words and kept in a stop list file. 

 3.4 Applying N-gram based Stemming Process: 
Stemming is common form of language processing in most, “A 

failure to process morphological variants results in retrieving only 

2% - 10% of the documents retrieved with such processing”.  
 In this step we develop three dictionaries having key as stem 

bigram/trigram/quadgram) and value as words for those 

corresponding N-grams. 
 Here we will give priority order as quadgram to bigram 

 Starting with quadict if a key is quadict having two or 

more words as value then we will consider the key as stem 

and push into a stemmed dictionary. 

 The above step is repeated for tridict and bidict. 

 Now stemmed dictionary containing some key value pairs 

by giving higher priority to quadgram we will remove if 

any other values in the dictionary contains same words 

which under come in the values of quadgram. 

 If a word is exactly of length 2 or 3 or 4 and doesn’t have 

any morphological variants then that word itself is 

considered as root. 

3.5 Constructing Inverted File Structure Based 

on Sorted Array 
Based on the sorted array technique the inverted file structure with 

unique words as well as stemmed words was built. 
 All the unique words from all documents are collected in 

sorted order. 

 For each word all the documents are compared to find the 

same word. 

 All documents containing that word are putted on the 

sorted list and written to invert file. 

3.6 Developing the Index Tables:  
Ranking algorithms are based on Statistics like weights. For the 

maintenance of these statistics we should maintain a table for each 

document and calculation of TF-IDF values are necessary.    
 For the insertion of values into a table corresponding to 

file we process count file associated with it. 

 These values are then inserted into the file by 

systematically processing count file. 

 Once all the training documents have its associated initial 

tables we can calculate Inverse Document Frequency 

(IDF) and Term Frequency Inverse Document Frequency 

(TF-IDF). 

3.7 Creating Searching Process 
Searching is the important in the system, we retrieve information 

based on the search process. This technique gives results based on 

the query what we given. Finally the related documents should be 

displayed on the Search Process window. 
 

 Tokenize the given query. 

 Then store those words in the list. 

 Applying searching process based on the given query and 

finding related documents to those words in the inverted 

file system. 

 Finding all related documents and write to result file. 

3.8 Creating Ranking Process  
Ranking is the final module of the system. This module sorts the 

retrieved documents based on their relevance to the query. 

 Ranking is done in two phases called coarse grain ranking 

and fine grain ranking. 

 In the coarse grain ranking the documents are sorted 

depending on the frequency in result file 

 In the fine grain ranking each set of documents same 

number of frequencies are again sorted depending on the 

similarity measure. We use cosine similarity here  

t

k
dk

t

k
qk

dk

t

k
qk

ww

ww
DQsimilarity

1

2

1

2

1

)(.)(

.

),(  

 

4. ALGORITHMS USED 
4.1. Algorithm for Inverse File Structure. 

4.2. Algorithm for Term Weighting. 

4.3. Algorithm for Search Process. 

4.4. Algorithm for Ranking Process 

 

4.1 Algorithm for Inverse File Structure: 
         Read all the files from a category 

 Preprocess all the files 

Eliminate redundant words and sort unique words   write 

them to sort file 

Applying Stemming Process and finding Stemmed words 

 For each word in sort file 



International Journal of Computer Applications (0975 – 8887) 

Volume 28– No.3, August 2011 

25 

          For each document in corpus 

  If word exists in the document 

Write document name to Inverted file            

system 

Create inverted file system to all categories 

 

4.2 Algorithm for Term Weighting: 
         For each category 

 Preprocess all file and generate words.txt file 

 Eliminate stop words from words.txt file 

 Stem all words by using N-gram based Stemming 

Create a count file showing frequency of each      stem 

word for each file 

 Insert count file into database 

 Calculate inverse document frequency 

 Calculate TF/IDF and insert into data base 

 

4.3 Algorithm for Search Process: 

       Read the given query 

       Tokenize the given query into words save it on a list 

       For word in the list 

              If word not a special character   

       Open invert index file 

    If word exist in the file 

  Retrieve the sorted document list for the word 

                  Close the indexed file 

 

4.4 Algorithm for Ranking Process: 

       Read the result file 

       For each line in the file 

Tokenize the line and insert into the array of strings 

Collect the string containing document name as its value 

Find frequency of each document in that collection into 

another array 

Sort the Document String array depending on their 

associated frequency array 

 For each value in Document string array  

Calculate similarity using Cosine Similarity      and 

store them. 

                      For each document having same frequency  

        Sort the document based upon similarity value 

Write the sorted array to the HTML file for browsing. 

 

 

 

 

 

 

 

 

 

 

5. SCREENS: 

 

Fig 2. A sample invert index file 

 

Fig 2 shows the Inverted File index created in which each word is 

having a list of file names in which it is present. This structure is 

very much useful in retrieving the relevant documents. The file is 

sorted in the alphabetical order. 

 

 

Fig 3. A sample index file 

 

Fig 3 shows the index file generated in MS – Access in which for 

each word TF-IDF values are calculated and are inserted into the 

file. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 28– No.3, August 2011 

26 

  

 

Fig 4. Displaying Results 

Fig 4 shows the query in text box and results associated with the 

query which are result of search process. The lists of files shown 

have redundant file names which are to be eliminated in ranking 

process. 

 

Fig 5.   Browser window displaying documents 

Fig 5 shows the HTML file generated as a result of ranking process 

opened through a web browser which contains ranked documents to 

the given query. The documents listed by using anchor tags through 

which we can see the document retrieved. 

 

Fig 6. Displaying Telugu document in a browser 

Fig 11 shows the Telugu document opened via anchor tag. The 

browser displays corresponding document to that tag.  

6. Results: 

For the random queries results are collected and are tabulated in the 

ascending order of number of documents retrieved. Here we 

considered Number of Possible Relevant as 50 because we have 50 

documents in each category and they can be only possible relevant 

documents for any query related that category. And for all queries 

The Number of Retrieved Documents and The Number of Retrieved 

Relevant documents are calculated manually. The table obtained is 

as follows:  

Table 3. Precision and Recall 

S.No Number of 

documents 

retrieved 

Number of 

documents 

Relevant 

Number of 

Retrieved 

Relevant 

precisionon  Recall 

1 3 50 3  1 0.06 

2 5 50 4  0.8 0.08 

3 10 50 6  0.6 0.12 

4 20 50 10  0.5 0.2 

5 65 50 25  0.38 0.5 

6 100 50 35  0.35 0.7 

               Graph is drawn for obtained values of precision and recall 

which is as follows:                     

 

 

 

Precisi

on or 

recall 

 

 

 

 

 

 

Number of Documents Retrieved 

Fig 7. Graph of Precision and Recall 

The X – axis shows Number of Documents Retrieved and the Y–

axis shows precision or recall values. We can clearly observe from 

the graph that the at less number of documents retrieved the 

precision is high and at more number of documents retrieved recall 

high. So we can conclude that as the number of documents retrieved 

increases precision decreases and recall increase.The ideal behavior 

of precision and recall. 

 

The overhead can be reduced by the implementation of ranking. 

Ranking is done in two steps and the overhead is calculated without 

ranking and at each step of ranking implementation and the results 

are tabulated as below. 

           

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150

Precision

Recall



International Journal of Computer Applications (0975 – 8887) 

Volume 28– No.3, August 2011 

27 

Table 4. Table of overhead values 

Number of 

documents 

retrieved 

Over head in seconds in average 

Without ranking With coarse 

grain ranking 

With fine grain 

ranking 

5 30 15 10 

10 40 18 10 

15 45 22 10 

20 55 25 10 

25 63 28 10 

 

In Coarse grain ranking depends upon completeness of the 

document i.e. the document containing all query terms will be 

ranked first. The fine grain ranking comes into picture when two 

or more documents ranked to a single position in first step i.e. 

coarse grain ranking. The fine grain ranking depends upon 

weights of terms (TFIDF). In this phase actual similarity 

function is calculated between document and query. 

The above results correspond to each of these steps i.e. without 

ranking, after coarse grain ranking, after fine grain ranking.  

The results are converted into a graph for easy analysis. The 

graph is shown below 

 

 

 

 

Overh

ead in 

Secon

ds 

 

 

 

 

 

 

 

Number of documents retrieved 

Fig 8 Graph for overheads at different steps of ranking 

The graph with number of documents retrieved as X – axis and 

overhead as Y – axis.  

7. CONCLUSION 
This system covers major part of search engine implementation like 

stop word removal, stemming, Automatic Indexing, searching. To 

make this system a complete search engine we could add other parts 

of it like clustering, thesaurus expansion. We could implement this 

system for any Indian Language whose canonical structure 

resembles Telugu. This system takes a lot of time for updating a new 

document by changing few implementation strategies to make this 

faster. 

8. ACKNOWLEDGMENTS 
We would like to express our gratitude to Dr.B.Vishnu Vardhan for 

his valuable suggestions. 

9. REFERENCES 
[1] Gerald Salton and Christopher Buckley “Term-Weighting 

approaches in automatic text retrieval”. 

[2] Ma, W., Zhang, H. and Hon, H. (2004). “Towards Next 

Generation Web Information Retrieval”.  

[3] Wall, A. (2004). “History of search engines & web history” 

[4] Gerald J.Kowalski, Mark T. Maybury. “Information 

Storage and Retrieval Systems Theory and 

Implementation” 

[5] Williams B. Frakes and Ricardo Baeza- Yates, “ 

Information Retrieval: Data Structures & Algorithms” 

[6] Glenda Browne, Jon Jermey. “The indexing companion.” 

[7] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. “Modern 

Information   Retrieval”  

 

 

 

 

 

 

0

10

20

30

40

50

60

70

0 20 40

Over head 
in seconds 
in average 
Without 
ranking


