
International Journal of Computer Applications (0975 – 8887)

Volume 28– No.4, August 2011

30

 An Optimal Task Allocation Model for System Cost

Analysis in Heterogeneous Distributed Computing

Systems: A Heuristic Approach

P. K. Yadav

Central Building Research
Institute, Roorkee- 247667,

Uttarakhand (INDIA)

M. P. Singh
Gurukul Kangri University,

Haridwar- 249404,
Uttarakhand (INDIA)

Kuldeep Sharma*
Krishna Institute of engg. and
Technology, Ghaziabad-
201206, U.P(INDIA)

ABSTRACT
In Distributed computing systems (DCSs), task allocation
strategy is an essential phase to minimize the system cost (i.e.
the sum of execution and communication costs). To utilize the
capabilities of distributed computing system (DCS) for an
effective parallelism, the tasks of a parallel program must be
properly allocated to the available processors in the system.
Inherently, task allocation problem is NP-hard in complexity. To
overcome this problem, it is necessary to introduce heuristics for
generating near optimal solution to the given problem. This
paper deals with the problem of task allocation in DCS such that
the system cost is minimized. This can be done by minimizing
the inter-processor communication cost (IPCC). Therefore, in
this paper we have proposed an algorithm that tries to allocate
the tasks to the processors, one by one on the basis of
communication link sum (CLS). This type of allocation policy
will reduce the inter-processor communication (IPC) and thus
minimize the system cost. For an allocation purposes, execution
cost of the tasks on each processor and communication cost
between the tasks has been taken in the form of matrices.

Keywords
Distributed computing system, task allocation, execution cost,
communication cost, communication link sum.

1. INTRODUCTION
To meet the requirement of faster computation, one approach is
to use distributed computing systems (DCSs).Distributed
computing system (DCS) not only provide the facility for
utilizing remote computer resources or data not existing in local
computer systems but also minimize the system cost by
providing the facilities for parallel processing.[1, 8, 24].

A distributed computing system (DCS) consists of a set of
multiple processors (which are geographically distributed)
interconnected by communication links. A very common
interesting problem in DCS is the task allocation. This problem
deals with finding an optimal allocation of tasks to the
processors so that the system cost (i.e. the sum of execution cost
and communication cost) is minimized without violating any of
the system constraints [3]. In DCS, an allocation policy may be
either static or dynamic, depending upon the time at which the
allocation decisions are made. In a static task allocation, the
information regarding the tasks and processor attributes is
assumed to be known in advance, before the execution of the
tasks [1]. We shall be considering static task allocation policy in
this paper.

Task allocation problem is known to be NP- hard problem in
complexity, when we required an optimal solution to this
problem. The easiest way to finding an optimal solution to this
problem is an exhaustive enumerative approach. But it is
impractical, because there are nm ways for allocating m- tasks to
n- processors [3].

Much research efforts on the task allocation problem have been
identified in the past with the main concern on the performance
measures such as minimizing the total sum of execution and
communication costs [1-4,6,7,11] or minimizing the program
turnaround time [8, 10, 22], the maximization of the system
reliability [12- 19] and safety [16].

A large number of techniques to task allocation in DCSs have
been reported in [1-4, 5-8, 10-19, 21- 24]. They can be broadly
classified into three categories: graph theoretic technique [8, 9],
integer programming technique [6- 8] and heuristic technique
[1-3, 23, 24]. Graph theoretic and integer programming
techniques yields an optimal solution at all the times. But these
techniques are restricted to the small size problems. If the
problem size is very large, it is necessary to use the heuristic
technique to get near optimal solutions. The choice of a
particular technique depends on the structure of the problem
[14].

In this paper, we have developed a task allocation model and
have proposed a heuristic algorithm for task allocation that will
find a near optimal solution to the problem. The proposed
algorithm try to minimize the inter processor communication
cost (IPCC) by assigning those task first, which has the heaviest
communication link sum (CLS). Using this approach it has been
seen that the system cost will minimize more than other
heuristic.

The rest of this paper is organized as follows: section-2
formulates the task allocation problem for minimizing the
overall system cost; section-3 discusses in detail the proposed
allocation technique and algorithm; section-4 gives an
implementation of the proposed algorithm. In the last section-5
concludes the paper.

2. PROBLEM FORMULATION
In the past, different task allocation models and techniques for
minimizing the overall system cost have been widely
investigated in the literature. In this paper, we follow (1- 4, 6, 7,
10) to formulate the task allocation problem.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.4, August 2011

31

2.1 Problem statement
The problem being addressed in this paper is concerned with an
optimal allocation of the tasks of a parallel application on to the
processors in DCS. An optimal allocation is one that minimizes
the system cost function subject to the system constraints. In this
paper, we have considered a distributed computing system made
up by two sets, P= {P1, P2,……..,Pn}of heterogeneous
processors , interconnected by communication links and T = {t1,
t2,…….,tm} of program tasks, which collectively form a
common goal[1].

The execution costs of a task running on different processors are
different and it is given in the form of a matrix of order m × n,
named as execution cost matrix ECM (,). Similarly, the inter
task communication cost between two tasks is given in the form
of a symmetric matrix named as inter task communication cost
matrix ITCCM (,) of order m × m.

Now, an allocation of tasks to processors can be defined by a
function X as follows:

 X: T→P, such that X(i)= k; if ith task is allocated to
kth processor.

The purpose of defining the above function is to allocate each of
the m- tasks to one of the n- processors such that the overall
system cost is minimized.

2.2 Notations

T : the set of tasks of a parallel program to be executed.

P : the set of processors in DCS.

n : the number of processors.

m : the number of tasks forming a program.

it :
thi task of the given program.

kP :
thk processor in P.

ikx : the decision variable such that ikx =1, if
thi task is

allocated to
thk processor, ikx =0, otherwise.

ikec : incurred execution cost (EC), if
thi task is executed on

thk processor.

ijcc : incurred inter task communication cost between task

it and jt , if they are executed on separate processors.

)(,ECM : execution cost matrix.

)(,ITCCM : inter task communication cost.

{}assT : a linear array to hold assigned tasks.

{}_ assnonT : a linear array to hold non assigned tasks.

{}CLST : a linear array to hold the task according to their

communication link sum.

2.3 Definitions

2.3.1 Execution cost (EC)

The execution cost ikec of a task it , running on a processor

kP is the amount of the total cost needed for the execution of

it on that processor during the execution process. If a task is not

executable on a particular processor, the corresponding

execution cost is taken to be infinite (∞).

2.3.2 Communication cost (CC)

 The communication cost (ijcc); incurred due to the inter task

communication is the amount of total cost needed for

exchanging data between it and jt residing at separate

processor during the execution process. If two tasks executed on

the same processor then ijcc = 0.

2.3.3 Communication link Sum (CLS)

 It is an important characteristic of)(,ITCCM , denoted by

CLS, which measures how communication intensive a task is.

The CLS of a task it : 1≤ i ≤m, can be easily determined by

finding the sum of communication costs of all the tasks which

are interacting with it in)(,ITCCM . Therefore, in inter task

communication cost matrix, the communication link sum of a

task it can be computed as:

 ∑ =
=

m

j iji cctCLS
1

)(for i = 1, 2, ………,m . (1)

2.4 Assumptions

To allocate the tasks of a parallel program to processors in DCS,
we have been made the following assumptions:

2.4.1 The processors involved in the DCS are heterogeneous

and do not have any particular interconnection structure.

2.4.2 The parallel program is assumed to be the collection of

m- tasks that are free in general, which are to be executed on a
set of n- processors having different processor attributes.

2.4.3 Once the tasks are allocated to the processors they reside

on those processors until the execution of the program is
completed. Whenever a group of tasks is assigned to the
processor, the inter task communication cost (ITCC) between
them is zero.

2.4.4 It is also assumed that the number of tasks to be allocated

is more than the number of processors (m>>n) as in real life
situation.

2.5 Task allocation model for system cost

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.4, August 2011

32

In this section, we have developed a task allocation model to get
an optimal system cost. We can achieve this objective by
making task allocation properly. Therefore, an efficient task
allocation of the program tasks to processor is imperative.
However, obtaining an optimal allocation of tasks of a random
program to any arbitrary number of processors interconnected
with non-uniform links is a very difficult problem [1].
Henceforth, in order to allocate the tasks of such program to
processors in DCS, we should know the information about the
input such as tasks attributes [e.g execution cost, inter task
communication cost etc] and processor attributes [e.g. processor
topology, inter processor distance etc] etc. since obtaining such
information is beyond the scope of this paper therefore, a
deterministic model that the required information is available
before the execution of the program is assumed [20].

In the present task allocation model, there are two types of costs
to be considered for this system.

2.5.1 Processor execution cost (PEC)

For given a task allocation, X: T→P, X(i) = k, the execution cost

ikec represent to execute task it on processor kP and used to

control the corresponding processor allocation. Therefore, under
a task allocation X, the processor execution cost, needed to
execute all the tasks assigned to kth processor can be computed
as:

 kXPEC)(=∑ =

m

i ikik xec
1

 (2)

2.5.2-Inter- processor communication cost (IPCC)

Inter processor communication cost is incurred when the data is
transmitted from task to task if they are residing on separate
processors, due to the inter task communication. Therefore, inter
processor communication cost (IPCC) is proportional to inter

task communication cost ijcc [6, 24].

Therefore, under a task allocation X, the inter processor
communication cost for kth processor can be computed as:

jbik

m

i

m

ij ijk xxccXIPCC ∑ ∑=
=

1
)()(

f
 (3)

In this model, both the costs are application dependent and takes
play an important role in task allocation. Now, the total cost on
kth processor is the sum of the processor execution cost (PEC)
and IPCC for kth processor, under a given task allocation X

kkkCost XIPCCXPECXT)()()(+= (4)

and the total cost of the system is computed by:

∑ =
=

n

k kCostCost XTXS
1

)()((5)

2.5.3 System cost model

 With system resources constraints taken into account, the task
allocation model for system cost may be formulated as follows:

)(.min XSCost

 s.t. 1
1

=∑ =

n

k ikx ∀ i= 1, 2, 3, ………….,m. (6)

 { }1,0∈ikx ∀ i,k. (7)

In this model, constraint-6, states that each task should be
assigned to exactly one processor. Constraint-7, guarantees

that, ikx is being decision variable. The above model defines an

integer programming problem and is known to be NP- hard
problem [2-4, 7, 12-19]. An optimal solution to this problem can
be found by enumerating all possible allocations. But this
technique requires O(nm) time computations. This is prohibitive
even for small size problems. Hence, in this paper, we present a
heuristic algorithm to find quickly the solution of high quality,
by ordering the tasks according to their CLS and made
allocation of these tasks to processors in that order. The
proposed technique has been given in next section that will find
near optimal solution to the mentioned problem at all the times.

3. PROPOSED TASK ALLOCATION

TECHNIQUE AND ALGORITHM

The technique by which the tasks comprising the program are
allocated to the available processors in DCS are essential, to
minimize the system cost. To achieve this objective, the order in
which the tasks in a program are considered for allocation is a
critical factor affecting the optimality of the resulting allocations
[21].

We have selected all the tasks for allocation according to their
CLS. The CLS of each task can be computed by using

 ∑ =
=

m

j iji cctCLS
1

)(for i = 1, 2, ………,m.

Now, all the tasks are sorted in the monotonically decreasing

order of their CLS in a linear array { }CLST and they are

considered for allocation in that order. Tie breaking is done
randomly i.e. one of the tasks with equal CLS is selected
randomly.

If the CLS of a task it is very high than other task i.e. the inter

task communication of it becomes more intensive as compared

to other tasks. In this case, system cost derived could be lower
due to involvement of more communication links. Therefore,
first we have to allocate such tasks to the processors, to
minimize the IPC [1, 2]. Thus, the result will decrease in system
cost.

Initially, we assume that the linear array {}assT ←Φ and

{}CLST ← {}_ assnonT .Now, for an optimal allocation of tasks

to processors in DCS, we have defined two rules.

Rule-1

This rule is incorporated to the selection of suitable processors,
whose capabilities is most appropriate for the task. We apply
this rule as:

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.4, August 2011

33

Pick up the task it from {}_ assnonT and assign it to processor

kP {k= 1,2, 3,……..,n} for which ikec is minimum. Suppose

that processor is rP . Therefore, we have assigned it to the rth

processor.

Rule-2

It is another rule incorporated to IPC caused by the inter task

communication (ITC). Task it , which has been assigned to the

rth processor (say) using rule-1 in DCS, rule-2 is used to add the

effect of communication cost of the executing task it → rP ,

with other tasks residing on P1, P2, P3,……..,Pn-1 except the rth
processor as:

Select the ith column of ITCCM (,) and add this column to all the
columns of ECM (,) except the rth column. Now, we have
modified both the matrices ECM (,) and ITCTM (,) by deleting

the ith row and column. Thus, we store the task it in a linear

array {}assT and the linear array {}_ assnonT is modified by

deleting ith task from {}_ assnonT .

Hence, in the above manner, both the rules will be repeated for

each task of {}_ assnonT , until and unless {}_ assnonT ← Φ

and {}CLST ← {t1, t2,…….,tn}= {}assT . The detailed process

of allocating the tasks to the processors is given below in the
form of algorithm.

3.1 Proposed algorithm

Our algorithm consists of the following steps.

Step-0: input: m, n, ECM (,), ITCCM (,).

Step-1: compute the communication link sum (CLS) of each
task using

 ∑ =
=

m

j iji cctCLS
1

)(for i = 1, 2, ………,m.

Step-2: sort all the tasks in {}CLST according to decreasing

order of their CLS.

Step-3: initialize: {}CLST ← {}_ assnonT

 {}assT ←Φ

Step-4: pick up the ith task (say it) from {}_ assnonT and and

then

 4.1: assign it to the appropriate processor by using

Rule-1 and Rule-2.

 4.2:
{ }

{ }i
assnon

assnon t

T
T _

_ {} ←

 {}assT ← Φ∪ { it }= { it }.

Step-5: for all tasks from {}_ assnonT , repeat step-4 until and

unless we get

 ←{}_ assnonT Φ and {}CLST ← {}assT

Step-6: compute:

 kkkCost XIPCCXPECXT)()()(+=

 and ∑ =
=

n

k kCostCost XTXS
1

)()(.

Step-7: End.

3.2 Algorithm complexity

Using the method suggested by H. Ellis et al [25], the run time
complexity of the proposed algorithm can be analyzed as
follows: step-1, executed in O(m) time operations. Step-2, has a
worst case time complexity of O(m log m). In step-4, a single
task requires O(1(n)) time operations. Therefore, for m- tasks
step-5 requires O(m(n)) time operations. Thus, the overall time
complexity of the proposed algorithm is O(m + m log m + mn).

Since m ≥ ≥ n, therefore, the run time complexity of the
proposed algorithm is O(mn).

4. IMPLEMENTATION OF THE MODEL
In this section, we give two numerical examples to illustrate the
formulation and solution procedure of the proposed task
allocation model. To show the performance of our allocation
technique for better allocation, we have tested the proposed
algorithm on these examples.

4.1 Example-1

In this example, we have considered a typical program made up
by 9- executable tasks {t1, t2, t3, t4, t5, t6, t7, t8, t9} to be executed
on the DCS having three processors {P1, P2, P3}. We have taken
the execution cost of each task on different processors and ITCC
between the tasks in the form of matrices ECM (,) and ITCCM
(,) respectively. Both the matrices have been given in Table-1
and Table-2 respectively.

We have applied the proposed algorithm on this example in the
following manner:

Step-0: Input: m = 9, n = 3, ECM (,), ITCCM (,).

Using these inputs, the proposed algorithm traces the following
output.

Step-1: first of all, we have to calculate the communication link
sum (CLS) of each task using

 ∑ =
=

m

j iji cctCLS
1

)(for i = 1, 2, ………,m.

Thus, we get CLS (it) = 29, 18, 18, 19, 18, 15, 17, 31, 27

corresponding to i= 1, 2, 3,…, 9.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.4, August 2011

34

Step-2 and 3: sort all the tasks in {}CLST , according to

decreasing order of their CLS (it)

},,,,,,,,{{} 675324918 tttttttttTCLS =

and initially we

assume, {}CLST ← {}_ assnonT

},,,,,,,,{ 675324918 ttttttttt=

 {}assT ←Φ

Step-4: Now, pick up the first task 8t from {}_ assnonT . Apply

Rule-1 for 8t .Since execution cost for 8t is minimum on

processor 2P . Therefore, assign 28 Pt → and add the effect of

communication to processor 2P by using Rule-2. Thereafter,

modify ECM (,) and ITCCM (,) by removing 8t from ECM (,)

and ITCCM (,).Thus, modified ECM (,) and ITCCM (,) have
been given in table-3 and table-4, respectively. Thus,

{}_ assnonT ← { }8_ /{} tT assnon

},,,,,,,{ 67532491 tttttttt=

 {}assT ←Φ ∪{ 8t }

Step-5: For all tasks of {}_ assnonT , repeat step-4, until and

unless we get ←{}_ assnonT Φ.

{ } { }=← assCLS TT },,,,,,,,{ 675324918 ttttttttt

Step-6: Processor wise total costs are:

 () 911 =XTCOST {i.e. Total cost of processor 1P }

 () 1372 =XTCOST {i.e. Total cost of processor 2P }

 () 3003 =XTCOST {i.e. Total cost of processor 3P }

and total system cost

i.e.

() () () ()321 XTXTXTXS COSTCOSTCOSTCOST ++=

 = 91 + 137+ 300 = 528.

Step-7: End.

Table-5 shows an optimal allocation of tasks to processors in
DCS, for the present task allocation model. For this example,

175 , Ptt → ; 23298 ,,, Ptttt → and 3641 ,, Pttt → .

Thus, the optimal processor cost of P1, P2, and P3 are 91, 137
and 300 respectively and the optimal value of system cost 528
with the proposed algorithm.

4.2 Example-2

The efficacy of the proposed algorithm has been shown by
solving the same running example as in [26]. In this example,
we have consider a DCS consists of three processors P = {P1, P2,
P3} and a typical program made up by 4- executable tasks T =
{t1, t2, t3, t4}. Table – 6 and table- 7 shows, the execution cost of
each task on processors and ITCC respectively. The results
obtained with the proposed algorithm and the algorithm
presented in [26], for this example has been given below in
table-8.

In table -8, our algorithm shows that the proposed algorithm
tries to minimize IPCC much more than the algorithm of H.
Kumar et al [26]. Thus, the proposed algorithm produces lower
system cost in comparison to the algorithm presented in [26]. As
we can observe from table-8, the system cost is minimized by
11.11% than that of [26] for this example. Hence, the proposed
algorithm produces near optimal allocation at all the times.

5. CONCLUSION
In this paper, we have looked at the problem of task allocation in
DCS. But, task allocation problem is known to be NP- hard
problem in complexity, when we required an optimal solution to
this problem. Therefore, we have proposed an efficient
algorithm, which finds near optimal system cost for the DCS,
having arbitrary structure of processors. We have used static
task allocation policy to achieve this objective. One of the best
options to minimize the system cost, is the minimization of IPC.
Therefore, the proposed algorithm tries to allocate the tasks to
the processors on the basis of CLS and found that, it is a good
heuristic to minimize the system cost. The performance of the
proposed algorithm is compared with [26]. Also, the run time
complexity of the proposed algorithm is O (mn), which is very
time saving as compared to the complexities of the algorithms
presented in [5,7,26]. Whose complexities are O (nm), O (nm)
and O (m2+ mn), respectively. For several sets of input data (m,
n), a comparison between the complexities of the proposed
algorithm and the complexities of the algorithms presented in [5,
7, 26], has been given in table-9 and figure-1and it is found that
the proposed algorithm is suitable for a DCS having arbitrary
inter connection of processors with random program structure
and workable in all the cases.

 Table1. Execution cost matrix (,)

↓Tasks

→
t1 t2 t3 t4 t5 t6 t7 t8 t9

t1 0 8 10 4 0 3 4 0 0

t2 8 0 7 0 0 0 0 3 0

t3 10 7 0 1 0 0 0 0 0

t4 4 0 1 0 6 0 0 8 0

t5 0 0 0 6 0 0 0 12 0

t6 3 0 0 0 0 0 0 0 12

t7 4 0 0 0 0 0 0 3 10

t8 0 3 0 8 12 0 3 0 5

t9 0 0 0 0 0 12 10 5 0

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.4, August 2011

35

Table.3 Modified execution cost matrix

Table.5 An optimal allocation of tasks

Optimal allocation

T
o
ta
l
o
p
ti
m
a
l

p
ro
ce
ss
o
r’
s
co
st

T
o
ta
l
o
p
ti
m
a
l

sy
st
em
 c
o
st

T
a
sk
s

P
ro
ce
ss
o
rs

t5, t7 P1 91

528
t8, t9, t2,

t3
P2 137

t1, t4, t6 P3 300

Table 2. Inter task communication cost matrix

Table.4 Modified inter task communication cost matrix

 Table.6 Execution cost matrix

Table.7 Inter task communication cost matrix

→→→→ΤΤΤΤasks↓↓↓↓ t1 t2 t3 t4

t1 0 1 4 6

t2 1 0 2 0

t3 4 2 0 8

t4 6 0 8 0

Table.8 Comparison between the proposed algorithm

and the algorithm of H. Kumar et al [26]

 Proposed algorithm

H. Kumar et al.

algorithm [26]

T
a
sk
s

P
ro
ce
ss
o
rs

O
p
ti
m
a
l

sy
st
em
 c
o
st

T
a
sk
s

P
ro
ce
ss
o
rs

O
p
ti
m
a
l

sy
st
em
 c
o
st

t2
P1

 t2 P1

Nil
P2

24
t1, t4 P2 27

t3,t4, t1
P3

 t3 P3

Processors→

P1 P2 P3

 Tasks↓

 t1 174 176 110
 t2 95 15 134
t3 196 79 156
t4 148 215 143
t5 44 234 122
t6 241 225 27
t7 12 28 192
t8 215 13 122
t9 211 11 208

Processors

→
P1 P2 P3

 Tasks↓

 t1 173 176 110
 t2 98 15 137
t3 196 79 156
t4 156 215 151
t5 56 234 134
t6 241 225 27
t7 15 28 195
t9 216 11 213

Processors→→→→
P1 P2 P3

 Tasks↓↓↓↓

t1 9 2 6

t2 3 8 7

t3 7 10 3

t4 3 4 9

↓Τasks→ t1 t2 t3 t4 t5 t6 t7 t9

t1 0 8 10 4 0 3 4 0

t2 8 0 7 0 0 0 0 0

t3 10 7 0 1 0 0 0 0

t4 4 0 1 0 6 0 0 0

t5 0 0 0 6 0 0 0 0

t6 3 0 0 0 0 0 0 12

t7 4 0 0 0 0 0 0 10

t9 0 0 0 0 0 12 10 0

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.4, August 2011

36

Table. 9 Results of run time complexity of the algorithms
S
.N
o
.

In
p
u
t
co
m
b
in
a
ti
o
n

(T
a
sk
s,
 P
ro
ce
ss
o
rs
)

Run time complexity of the algorithms

R
ic
h
a
rd
 e
t

a
l.
[7
],
 P
en
g
 e
t

a
l.
 [
5
]O
(n
m
)

H
.
K
u
m
a
r
et

a
l.
 [
2
6
]

O
(m

2
+
m
n
)

P
ro
p
o
se
d

a
lg
o
ri
th
m

O
(m
n
)

1 (4, 3)
81 28

12

2 (5, 3)
243 40

15

3 (6, 4)
4096 60

24

4 (7, 4)
16384 77

28

5 (8,5)
390625 104

40

6 (9, 5)
1953125 126

45

7 (10, 6)
60466176 160

60

8 (11, 6)
362797056 187

66

9 (12,7)
13841287201 228

84

10 (13,7)
96889010407 260

91

Figure 1.Comparision between the complexities of the

algorithms

6. REFERENCES
[1] G. Sagar and A.K. Sarje, “Task Allocation Model for

Distributed System,” Int. J. Systems Sci. Vol. 22, 9(1991).
pp. 1671- 1678.

[2] A.K.Sarje and G.Sagar, “Heuristic Model for Task
Allocation in Distributed Computer Systems,” IEE

Proceedings-E, Vol.138, 5(1991).

[3] Ajith Tom P. and C. Siva Ram Murthy, “An Improved
Algorithm For Module Allocation in Distributed
Computing Systems,” Journal of Parallel and Distributed
Computing Systems,” 42 (1997),pp. 82-90.

[4] M. Kafil and I. Ahmad, “Optimal Task Assignment in
Heterogeneous Computing Systems,” 0-8186- 7879-8/97$

10.00  1997 IEEE.

[5] Peng, Dar- Tezen, Shin, K.G. and Abdel, Zoher,T.F.,
“Assignment Scheduling Communication periodic Tasks in
Distributed Real Time System,” IEEE Transactions on
Software Engineering, SE-13, (1997), pp. 745- 757.

[6] W.W.Chu, Leslie J.Holloway, Min-Tsung Lan, and Kemal
Kfe, “Task Allocation in Distributed Data Processing,”
IEEE Concurrency, November 1980.pp.57-69.

[7] P-Y. Richard MA, Edward Y.S. Lee and Masahiro
Tsuchiya, “A Task Allocation Model for Distributed
Computing Systems,’’ IEEE Transactions on Computers,
Vol.C-31,1(1982), pp.41- 46.

[8] C. C. Shen and W.H. Tasi, “A Graph Matching Approach
to Optimal Task Assignment in Distributed Computing
Systems Using a Minimax Criterion,” IEEE Transactions
on Computers, Vol. C- 34, 3(1985).

[9] Stone, H.S., “Critical Load Factors in Two- Processor
Distributed System,” IEEE Transactions on Software
Engrg. 4(May 1978),pp. 254- 258.

[10] Imtiaz Ahmad Muhammad K.Dhodhi and Arif Ghafoor,
“Task Assignment in Distributed Computing Systems,”
IEEE Concurrency (1995), pp.49-53.

[11] Cheol-Hoon Lee, Dongmyun Lee and Myunghwan Kim,
“Optimal Task Assignment in Linear Array Networks,’’
IEEE Transactions on Computers, Vol.41, 7(1997).

[12] Sol M.Shatz, Jia-Ping Wang, and Masanori Goto, “Task
Allocation For Maximizing Reliability of Distributed
Computer Systems,” IEEE Transactions on Computers,
vol.41.9(1992).

[13] S.Kartik and C.Siva Ram Murthy, “Task Allocation
Algorithms for Maximizing Reliability of Distributed
Computing System,” IEEE Transactions on computers,
Vol.46,6 (1997).

[14] D.J. Chen et al., “A Heuristic Algorithm for the Reliability-
Oriented File Assignment in a Distributed Computing
System,” Computers Math. Applic. Vol. 29.10(1995), pp.
85- 104,

[15] Peng-Yeng Yin, Shiuh-Sheng Yu, Pei-Pei Wang, Yi-Te
Wang, “Task Allocation for Maximizing Reliability of a
Distributed System using Hybrid Particle Swarm
Optimization,” The Journal of Systems and Software,
80(2007).pp. 724-735.

[16] Santhanam Srinivasan and Niraj K.Jha, “Safety and
Reliability Drivan Task Allocation in Distributed Systems,”
IEEE transactions on Parallel and Distributed Systems,
Vol.10. 3(1999).

[17] D.P.Vidayarthi and A.K.Tripathi, “Maximizing reliability
of Distributed Computing System with Task allocation
using Simple Genetic Algorithm,” Journal of System
Architecture, 47(2001), pp.549-559.

[18] Pradeep Kumar Yadav, M.P. Singh and Kuldeep Sharma,
“Task Allocation Model for Reliability and Cost
optimization in Distributed Computing System,”
International Journal of modeling, simulation and scientific
computations, vol-2, 2(2011), pp. 1-19.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.4, August 2011

37

[19] Qin-Ma Kng, Hong He, Hui- Min Song, Rong Deng, “
Task allocation for maximizing Reliability of distributed
Computing System using Honeybee mating Optimization,”
The Journal of Systems and software, Vol.83, 2(2010).

[20] Sung- Ho Woo, Sung- Bang Yang, Shen- Dug Kim and
Tack- Don Han, “Task scheduling in Distributed computing
systems with a genetic algorithm,” 0- 8186- 7901- 8/97 $
10.000© 1997 IEEE p.p. 301-305.

[21] Hongjun Lu, “load Balanced Task Allocation in locally
Distributed Computer Sciences,” Technical report# 633,
feb- 1996.

[22] A.A. Elsadek & B. E. Wells, “A heuristic model for task
allocation in heterogeneous distributed computing
systems,” International journal of computers and there
applications, Vol.6, No.1, March 1999. Pp. 0-35.

[23] V.M. Lo, “Heuristic Algorithms for Task assignment in
distributed systems,” IEEE Transactions on computers,
Vol.37. No. 11, pp. 1384- 1397, November 1988.

[24] K. Kfe, “Heuristic Models of Task Assignment Scheduling
in Distributed Systems,” Computer, Vol. 15, pp. 50- 56,
June 1982.

[25] H. Ellis, Sahni S and S. Rajsekaram, “Fundamentals of
computers algorithm,” Galgotiya publication Pvt Ltd.,
(2005).

[26] H. Kumar et al., “A Task Allocation Model for Distributed
Data Network,” Journal of Mathematical Sciences, Vol.1,
4(2006),pp.379-392.

