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ABSTRACT 

In this paper, a new architecture combining dynamic neural units 

and fuzzy logic approaches is proposed for a complex chemical 

process modeling. Such processes need a particular care where 

the designer constructs the neural network, the fuzzy and the 

fuzzy neural network models which are very useful in black box 

modeling. The proposed architecture is specified to the pH 

chemical reactor due to its large existence in the real industrial 

life and it is a realistic dynamic nonlinear system to demonstrate 

the feasibility and the performance of the founding results using 

the fuzzy dynamic neural units. A comparison was made 

between four strategies, the fuzzy modeling, the recurrent neural 

networks, the dynamic recurrent neural networks and the fuzzy 

dynamic neural units. 
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1. INTRODUCTION 
The identification of system models is an important and integral 

part of control design methodology [1]. Several identification 

algorithms and approaches were proposed to overcome these 

problems. For example, in [2] the neural network proves to be 

an excellent mathematical tool for dealing with nonlinear 

problems. It can approximate any continuous nonlinear relation 

with arbitrary accuracy with a suitable architecture and weight 

parameters [3]. Fuzzy modeling is a useful technique for the 

description of nonlinear systems [4], in where nonlinear process 

behavior is approximated by multiple linear models with fuzzy 

transitions. It can be seen as logical models which use “if-then” 

rules to establish qualitative relationships among the variables in 

the model [5]. Combining the fuzzy logic and neural networks 

has been proposed in various works [6-12]. Integrate the fuzzy 

logic formalism with the learning ability of neural networks 

produce one promising approaches for modeling nonlinear 

systems [6]. 

Therefore, neural network and fuzzy neural network modelling 

should take into account the dynamics of processes. Two main 

methods exist to provide a static neural network with dynamic 

properties [3]: the insertion of an external memory to the 

network or the use of feedback or so-called Dynamic Neural 

Units (DNUs). The DNUs have been shown to possess good 

dynamic function approximation capabilities and have been 

applied successfully by [3, 13, 14 and 15] in identification of the 

nonlinear dynamic systems.  

The pH process is widely used in various areas such as the 

neutralization of industrial waste water, the treatment of boiler 

feed water and cooling water in the cooling tower, and the 

maintenance of the desired pH level at various chemical 

reactions, coagulation and precipitation processes [16, 17]. Its 

high nonlinearity and dynamic reaction give it the propriety to 

be a challenging problem for modeling. However and due to the 

importance of the pH chemical reactor in the industrial life, we 

can find several researchers in the literature considering the pH 

process not just as an example to prove the performance of their 

results in the modeling and in the control (e.g. [18-24]), but also 

they specified it by a special model such as Wiener model [25-

27]. 

In this paper, a new architecture combining the dynamic neural 

units and the fuzzy logic techniques to model the pH chemical 

reactor is proposed. The pH mathematical model contains two 

parts, the first one is dynamic which will be modeled using 

DNUs, and the second is static in which the fuzzy modeling 

approach is a good tool to represent it. This architecture groups 

the advantages of all the previous techniques and it takes into 

account the nonlinearity, the dynamics of the system and 

introduces the human thinking to produce a powerful model to 

the pH process.       

After a small description of the pH process, an introduction of 

the dynamic neural units and the fuzzy modeling approaches, the 

pH modeling using the combined methods is presented. Several 

details and comparisons between the developed method, the 

fuzzy modeling, the recurrent neural networks and the dynamic 

recurrent neural networks are given. The paper concludes with 

few final remarks.  

2. THE pH PROCESS DESCRIPTION 
The model of the pH neutralization process studied in this work 

is a Continuous Stirred Tank Reactor (CSTR) proposed by 

McAvoy et al. (1972) [28], and used in our previous work [29], 

when the full global neural network is implemented in an 

inexpensive microcontroller, contains two main parts, the first 

one is dynamic reaction between two inlet streams.  The CSTR 

model is given by the following nonlinear dynamic equations:  



International Journal of Computer Applications (0975 – 8887) 

Volume 28– No.4, August 2011 

23 

dt

d
V)FF(CF 2111


                                                        (1) 

dt

d
V)FF(CF 2122


                                                       (2) 

Where C1 represents the concentration of the acid inlet stream, 

C2 represents the concentration of base used in the 

neutralization; ζ and ξ are the concentration of acid ion and base 

ion in the reactor, respectively. F1 denotes the flow rate of acid 

inlet stream, F2 represents the flow rate of base used in the 

neutralization and V is the volume of the reactor. 

The second part represents a static function. It can be found by 

writing material balances on Na+(ζ) and total acetate (HAC + 

AC
-
)(ξ) and assuming that acid-base equilibrium and 

electroneutrality relationships hold on, one gets: 

HAC equilibrium: 

aK
]HAC[
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                                                 (3) 

Water equilibrium: 

wK]OH][H[                                                                   (4) 

Electroneutrality: 

]AC[]OH[]H[                                                 (5) 

where Ka  and  Kw  are  the  dissociation  constants  of  the  

acetic  acid  and  water. 

After inserting the equations (3) and (4) into (5), we have finally 

the titration function given by the equation (6), which gives the 

static relationship between ζ , ξ  and the pH: 
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The pH is given by the equation (7): 

][Hlog-=pH 10

                                                                   (7) 

In what follow, the dynamic neural units are used to model the 

dynamic CSTR model (equations 1 and 2). However, the fuzzy 

technique is used to identify the static titration function 

(equations 6 and 7). 

3. DYNAMIC NEURAL UNITS 
A biological neural cell not only contains a nonlinear mapping 

operation on the weighted sum of its inputs but it also has some 

dynamic properties such as state feedbacks, time delays 

hysteresis or limit cycles [3]. In the same reference we find a 

powerful description of the dynamic neural networks evolution. 

The dynamic neural units are proposed by Ayoubi [14] which is 

used in this paper to model a single input multi output of the 

CSTR model described above.  

The neuron transfer function is described by (8), where y(k) is 

the neuron output at time instant k. γ is a nonlinear activity 

function of the neuron with a threshold w0.  

)w),k(y~()k(y 0                                                          (8) 
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U is the data input given by: 

T
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Where n is the number of the inputs.     

)k(  is the data vector of the dimension [5x1]: 
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  is the filter coefficients vector of the dimension [5x1]: 

T

21210 ]bbaaa[                                                      (13) 

x(k) is the filter input at time instant k, and w is the weights of 

the neuron input. 

The algorithm proposed by Widrow and  Heft [30] is used to 

calculate the optimal parameters. The objective of this algorithm 

is to adjust the neuron parameters (both the weights and filter 

coefficients), based on a given set of input-output pairs and to 

determine the optimal parameters set which minimizes the 

performance index: 
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where N is the size of the training set. The error signal defined 

as e(k) is the difference between the desired response yd(k) and 

the actual neuron response y(k).  

The optimal parameters which minimize J are iteratively 

approximated by moving in the direction of steepest descent on 

the cost function surface: 
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Where   denotes the network parameters to be adapted and η is 

the learning rate.  

4. FUZZY MODELING 
Fuzzy modeling and identification from measured data are 

effective tools for the approximation of nonlinear systems [31]. 

It is based on the clustering technique, in which several methods 

can be used [32]. Gustafson–Kessel clustering algorithm [33] 

promises a good approximation of the membership functions. 

Based on this last one Babuska et al. [34] identify MIMO 

processes and they prove that such systems can be approximated 

by  a collection of  coupled MISO  discrete time  fuzzy models,  

a good detail of the fuzzy modeling can be found in [4,5 and 

35]. 

The static MISO models used for the black box input-output are 

given:  

))k(u()1k(y n                                                           (16) 

where  un(k)  is the nth input vector.  
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The process can be approximated by a MISO static fuzzy model 

with rules of the following structure:  
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Ai is a matrix with fuzzy sets.   

The overall degree of membership of the premise of rule Rj can 

be calculated as: 

 n21j AAAmin                                               (18) 

The model output is calculated according to equation (17): 
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5. IDENTIFICATION METHOD 
To identify the pH process, sequence of input and output data is 

generated. The input signal is composed of a low-pass filtered 

Generalized Multiple-level Noise (GMN) signal [36] to which 

white noise with a small amplitude is added.  The low-frequency 

component signal drives the nonlinear system through the entire 

operating range, while the high-frequency component takes care 

for persistent local excitation [34]. The unmeasured states are ζ , 

ξ  and the measured output is the pH response in the output of 

the tank. The number of samples available for identification is 

30000 and the sample time is 24 sec [37]. The pairs input output 

are shown in Figure 1. 

The dynamic nonlinear identification consists to map the 

relationship between the flow rate and the states ζ, ξ on one hand 

by using the DNUs approach, the states ζ, ξ and output of the pH 

response using the fuzzy modeling on the other hand. In this 

research and because the DNUs take the dynamics inside them, 

they need just the control input, two dynamic neurons in the 

hidden layer and the two outputs which estimate the states ζ , ξ. 

At the beginning of the training procedure, all filter coefficients 

except b0 are initialized to zero. b0 is set to one, the weights are 

initialized randomly smaller. The delta rule which is a Least 

Mean Squared Error (LMSE) was used as a learning method. A 

number of 18000 samples are used for the identification and the 

rest of the signal is used for validation purpose. After 

convergence the dynamic neural units give excellent predictions 

where the validation step gives an excellent approximation of 

the states ζ, ξ using the optimal founding network parameters 

given in the table 1. The results of the training and the validation 

parts are shown in Figure 2, we note that these results are 

obtained by using the value η=0.005 as learning rate and the 

estimated network output is ∆ŷ rather than ŷ [38]. This 

correction is used to regulate the problem of the overshoot error.  

The founding optimal parameters will be used to generate the 

inputs of the static fuzzy model and also static neural network 

model for the comparison. 

In the fuzzy modeling part, the same data used for the 

identification with the DNUs is used here, but in this case the 

fuzzy model inputs are the states ζ , ξ and the output is the pH. 

The membership functions found using Gustafson–Kessel 

clustering algorithm are given in figure 3, and the optimal three 

rules (if-then rules) to estimate the pH output are given as 

follow:  

R1:    If ζ  is A1 and  ξ  is B1 then 

15.6+)k(15.9-)k(-12.8=)1k(Ĥp     

R2:    If ζ  is A2 and  ξ  is B2 then 
-2-2-2 10x60.4-)k(10x66.4)k(10x3.77= )1k(Ĥp  

 R3:    If ζ  is A3 and  ξ  is B3 then 
-2-2-2 x102.65+)k(x102.25-)k( x10 -2.32= )1k(Ĥp    

 

It can be noticed that the estimated output is the )k(Ĥp  rather 

than )k(Ĥp which gives better results, and in the objective to 

not move away the aim of this paper, we will describe the 

feasibility and the performance of this method in another paper. 

In this case the estimated resulting )k(Ĥp  is 

)k(Ĥp)k(Ĥp)1k(Ĥp   . 

The rest of the data (12000 samples) is used to validate the 

whole model. In other words, introducing new command signal 

to the DNUs model will generate the states ζ , ξ  using the 

optimal parameters of the table 1, the resulting estimated states 

will be entered into the fuzzy model which will predict in its part 

the pH difference and in which we add the past pH 

value )k(Ĥp  to find the final estimated )1k(Ĥp  . All these 

operations are called the model generalization results presented 

in the Figure 4.  

Again, the response of the validated Dynamic Neural Units-

Fuzzy (so-called DNU-Fuzzy) is presented versus the modeled 

pH response as desired system output. Based on these results 

and for the fact that these errors hardly differ from the training 

mean square errors, the number of parameters in the different 

architectures and the training times except the fuzzy modeling, 

gives better training time but it is the worst case in the MSE 

results (Table 2). Hence, the proposed architecture proves good 

identification quality. 
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Fig 1: The flow rate, the states ζ, ξ and pH response used for the identification and for the validation. 
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Fig 2: Identification and validation the states ζ, ξ using the DNUs. 
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Table 1. The optimal parameters of the DNUs 

 

6. CONCLUSIONS  
In this paper a new architecture based on dynamic neural units 

and fuzzy logic approaches is proposed to model the dynamic 

response of pH process in a CSTR. The obtained results using 

the DNU-Fuzzy were compared to those obtained using the 

combined dynamic neural units and static neural networks, the 

recurrent neural networks and the fuzzy modeling.  

According to the obtained results, it is clear that the use of the 

DNU-Fuzzy to model the pH process model is more suitable, in 

the sense that the application of this architecture to identify the 

nonlinear dynamic pH model. Many difficulties such as the 

problem to find an appropriate regressor, the long training times, 

the large network sizes, etc. could be overcome using this 

approach.  

 

Fig 3: The founding membership functions  

 

 

Table 2. Comparison results between the recurrent neural networks, the fuzzy modeling, the dynamic neural units-static neural 

network and dynamic neural units-fuzzy  

 Training Time in second Last mean square 

error 

Structure 

Recurrent Neural Network for SISO Model 

 [F2, pH] with delay inputs and outputs 

190.180 

For 100 iterations 

1.95110 

 

36 parameters 

5 inputs, one output 

Fuzzy modeling for SISO Model 

 [F2, pH] without delay inputs and outputs 

 

3.084 

 

6.77100 

 

3 clusters  

Dynamic Neural Units-Static Neural Network 

SIMO-MISO model  

[(F2, ζ  ξ ); ( ζ  ξ, pH)] without delay inputs and 

outputs 

160.35 + 15.005= 175.355 

For 30 iterations in the 

DNU part and 10 iterations 

for the static part 

 

0.25142 + 0.74829 = 

0.99971 

 

14 parameter DNU and 

21 parameter for the static 

neural network 

 

Dynamic Neural Units-Fuzzy (DNU-Fuzzy) 

SIMO-MISO model  

[(F2, ζ  ξ ); ( ζ  ξ, pH)] without delay inputs and 

outputs 

160.35 + 2.853= 163.200 

For 30 iterations in the 

DNU part 

 

0.25142 + 0.25235= 

0.50377 

 

14 parameter DNU  

3 clusters 
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Fig 4: The fuzzy modeling of the static titration function 
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