
International Journal of Computer Applications (0975 – 8887)

Volume 28– No.5, August 2011

18

Implementation of Agent-based Simulation for

Database Security

ABSTRACT
This paper presents an implementation of secure database

access using agent-based simulation. Database and

Database System are an essential component of everyday

life in modern society. Daily, most of users encounter

several activities that involve some interaction with a

Database. In multiuser Database there is no restriction on

data access, which meant everybody could access anyone

else‟s data because of which malicious destruction or

alternation of data can be done. The data stored in the

Database need to be protected from unauthorized access

and malicious destruction or alternation. In this paper a

Agent-Based Simulation program is introduced that

includes permission rules for accessing the data and it also

includes finding the total number of corrupted data files

obtained by applying permission rule to data access so that

reliability of the database can be determined using the

corrupted data files. This paper aim is to finding the

reliability of the database with different types of

permission rules.

Keywords
Database, Agent-Based simulation, security, permission

rules, reliability of the database.

1. INTRODUCTION
Agent Based Simulation is successfully applied to

enterprise modeling and social sciences. Many previous

works have not tried simulating scenarios in more

technical domains, i.e. simulations of technical systems

that are distributed and involve complex interactions

between human and machines. Some notable examples

were [1] that described an operative framework for a

generic database to simulate the security rules applied to it,

and verify the various effects the rules have on efficiency,

time and data corruption of the database.

In this paper, the aim is to develop a agent-based model for

a generic database to simulate the security rules

(permission rules) applied to it in order to maintain the

reliability of the database. This paper also finds the

unreliability of the database system by appropriately

setting permission rule parameter for data file access.

When agents of the database simultaneously access the

several data files according to the permission rule

parameter (Read=85% Write=50% delete=10% or

Read=30% Write=45% delete=10%) then there is a

possibility that data in the data files get corrupted. An

index exists to measure, how many times an agent

corrupted the data file. Every time agent damages a data

file, index of that agent increases for a particular data file.

When index crosses a certain limit then DBA (DataBase

Administrator) does not provide further privileges for that

agent to access data file. So by setting permission rule

parameters and varying the number of data files or agents

the following can be determined.

1. The possible data corruption using the parameters like

permission rules, data files and agents.

2. Reliability of the system.

The rest of this paper is organized as follows:

Section 2 highlights some related works. Section 3 defines

the concept of agent. Following which, section 4

introduces the database security policies adopted in this

paper. Agent-Based implementation for simulation is then

described in section 5, and the experimental findings and

analysis of the unreliability values are presented in Section

6. Finally, section 7 discusses the conclusion of the work

carried out.

2. RELATED WORK
Database security has been the focus of many database

researchers for a long time. In this section some of the

relevant work carried out by the researchers in the field of

database [2, 3, 4, 5] has been highlighted. Yi Mu [2]

proposed the SPM (Schematic Protection model) which is

composed of subjects (i.e. users or processes), objects (i.e.

files) and ticket. Subject has privileges on objects and can

grant privileges to other subjects. A ticket that allows a

given privileges to be granted to a subject. Yi Mu also

introduced the concept of groups. Group is special abstract

object which holds a collection of active (a user) and

passive (file) objects. An object can be a member of a

group or groups.

Robert [3] explained the securing of DBMS (DataBase

Management System) by allowing the grouping and

naming of privileges to form Named Protection Domains

(NPDs).

Access Control Mechanism such as DAC (Discretionary

Access Control) policies and Centralized, Ownership-

based and decentralized authorization administration

policies for granting and revoking user authorization on

database tables and related authorization models such as

System R, distributed DBMS System R* authorization

models were discussed in reference [4].

Zhu Yangquing et. al. [5] discussed about twice login,

audit, program control modules.

In [1] a comprehensive agent-based model for database

security was described. Its implementation nevertheless,

imposed no restriction on data access, which meant

everybody could access anyone else‟s data. The damaged

data were not repaired too. Based on [1], Raymond and

Sandeep [6] developed a database security simulation

Rashmi M Jogdand
HOD & Asst.Prof of MCA

Gogte Institute of Technology
Belgaum-590008

Swapna S Banasode
Dept of CSE

Gogte Institute of Technology
Belgaum-590008

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.5, August 2011

19

program that includes permission rules and immediate

fixing of corrupted data when they are found.

3. AGENT DEFINED
Many people hearing the word “agent” picture a person or

a business entity which is formally authorized to act on

another‟s behalf. Agent in ABS, however, is a totally

different story from the agent that we perceive in our daily

life.

In 1990s Brustoloni [7] stated that “Autonomous agents

are systems capable of autonomous, purposeful actions in

the real world”. From his brief definition, we see that

agents are able to perform actions without human

intervention. Brustoloni has confined his agents to live and

act in the “real world”.

 In 1994, Smith, Cypher and Spohrer [7], stated that agent

as a persistent software entity dedicated to a specific

purpose. „Persistent‟ distinguishes agents from

subroutines; agents have their own ideas about how to

accomplish tasks, their own agends, „Special Purpose‟

distinguishes them from entire multifunction applications;

agents are typically much smaller”.

 In 1995, Maes [7] defined autonomous agents are

computational systems that inhabit some complex dynamic

environment, sense and act autonomously in this

environment, and by doing so realize a set of goals or tasks

for which they are designed.

In 1995, Wooldridge and Jennings [7], stated that the term

agent is used to represent a hardware or software–based

computer system that enjoys the following features:

Autonomy: agents operate without the direct intervention

of humans or others, and some kind of control over their

actions and internal state; Social ability: agents interact

with other agents (and possibly humans) via some kind of

agent-communication language; Reactivity: agents

perceive their environment, (which may be physical world,

a user via a graphical user interface, a collection of other

agents, the INTERNET, or perhaps all of these combined),

and respond in a timely fashion to changes that occur in it;

Pro-activeness: agents do not simply act in response to

their environment, they are able to exhibit goal-directed

behavior by taking the initiative.

From the discussion above, it can be concur that an agent

must exhibit following features that can be applied to

simulation:

 Situatedness: That is ability to perform actions

according to particular input received from outside.

 Reactivity: Agents perceive the context in which they

operate and react to it appropriately.

4. DATABASE SECURITY POLICIES
Database security can be defined as a system or process by

which the “Confidentiality, Integrity, and Availability

(CIA),” of the database can be protected [8]. Unauthorized

entry or access to a database server signifies a loss of

confidentiality; unauthorized alteration to the available

data signifies loss of integrity; and lack of access to

database service signifies loss of availability. Loss of one

or more of these basic facets will have a significant impact

on the security of the database.

A Database Management System (DBMS) is a complex

collection of software programs designed for the

management of data in a database [1]. To achieve the CIA

properties mentioned earlier, several security mechanisms

available at DBMS level one of them is DAC mechanism

[9]. DAC is based on the concept of access rights or

privileges for objects (i.e. tables and views), and

mechanisms for giving and revoking users privileges; in

this model, the creator of a table or a view automatically

gets all privileges on it. The DBMS keeps track of who

subsequently gains and losses privileges, and ensures that

only requests from users who have the necessary

privileges, at the time the request is issued, are allowed [1].

DAC uses the concept of ownership of data. The owner of

a data object automatically gets all the permissions on the

data, and only the owner can entertain access requests for

data he/she owns. Any user who does not have the

necessary privileges to the data he/she needs to access

must ask the owner for the privileges. The privileges

granted by an owner may either be permanent or

temporary. When a owner‟s privileges are revoked, all the

users whom he/she has granted permissions to access

his/her data will lose their privileges too.

5.AGENT-BASED IMPLEMENTATION
The simulation program is based on an agent-based model

for database security described in [6]. This model is

extended by adding different types of permission rules and

techniques to repair the corrupted data when they are

found. The implementation is written fully in C++.

The most important elements of simulation program are

1.The agents (i.e .the users) 2.The data 3.The privileges the

agents have on the data. 4. The privileges that the owners

of data have granted to other agents. These four crucial

elements are implemented as simple objects.

The data objects are the simplest among the four. Each

data object is identified by its unique dataId. It also stores

the agentId of its creator.

As for the agent objects, each agent is identified uniquely

by it‟s ID. It contains information about the data it owns

and information about the agents it has granted privileges

to. This is represented with three

lists„priv_grant‟,„priv_write‟,„priv_delete‟. Where each of

these 3 lists contains

1. DataId of the data for which the privileges have been

granted, and

2. The agents who have been granted privileges on the data

one of, the read stored in „priv_grant‟ list or write stored

in „priv_write‟ list or delete stored in „priv_delete‟ list.

Similarly,information about the data, which an agent

accesses is stored in „Privileges‟ objects.

6. EXPERIMENTAL FINDINGS AND

ANALYSIS
Before the simulation starts, the agents and data need to be

created. For every data created, the creator or the owner of

the data file is automatically granted all the possible

privileges on the data. In this implementation, the number

of data files created is 49 and agents are equal to 39.

 It is necessary to mention that if the data file access

involves only reading the data then there is no corruption.

If it involves writing, there is possibility that the data

might get corrupted. If the data gets corrupted while

agent1 is writing the data file, then DBA immediately

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.5, August 2011

20

repairs the data file for next agent to access and it will

increase the reliability index of agent1. If the agent1‟s

reliability index crosses a certain limit -10 in this

implementation, then agent1 will not be provided any

further privileges as a punishment.

In this paper 6 different cases have been implemented by

varying the parameters like the permission rules, data files

and agents to find out how many data files get corrupted.

So that unreliability of the database system in each case

can be determined using the corrupted data files. The

unreliability of the database is measured as follows:

Unreliability = Instances of data corruption till

time „t‟ ⁄ Data pieces available at time „t‟

6.1 Case 1
 Keeping both “Read” permission rule and “Data Files”

constant, and increasing both total number of “Agents” and

“Write” permission rules.

In this case permission rules used are:

1. Read=100% Write=50% Delete=10%

2. Read=100% Write=75% Delete=10%

6.1.1 For Agents 1 to 39

Figure 1 shows the unreliability of the system over 41

iterations. When privileges were granted in a strict manner

with the first permission rule (Read:100% Write:50%

Delete:10%), the unreliability was around 0.37 at the end.

Note that graph is showing the number of corrupted data

found over time.

Figure 1: Results of unreliability of the system over 41

iterations

Figure 1 also shows the unreliability of the system over 41

iterations when privileges were granted slightly less

strictly with the second permission rule (Read:100%

Write:75% Delete:10%). When t=41, the unreliability was

about 0.54, this indicates that when rule for granting

privileges is not strict enough, the chance of data

corruption becomes greater.

Figure 2: The number of damaged data over 41

iterations for Write=50%

Figure 3: The number of damaged data over 41

iterations for Write=75%

Figure 2 and 3 shows the number of damaged data over 41

iterations. Figure 2 indicates that at any point, there were

very few corrupted data. When the permission rule was

strict (Read:100% Write:50% Delete:10%), the highest

number of corrupted data was 2 when t=12. When the

permission rule was less strict (Read:100% Write:75%

Delete:10%), the highest number of corrupted data found

was 3 when t=16.

6.1.2 For Agents 1 to 53

Figure 4: Results of unreliability of the system over 41

iterations

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.5, August 2011

21

Figure 5: The number of damaged data over 41

iterations for Write=50%

Figure 6: The number of damaged data over 41

iterations for Write=75%

Similarly simulation is carried out by adding 68 agents.

And also simulation is carried out for case 2 where by

keeping both Write permission rule and Data Files

constant and increasing total number of agents and varying

read permission rule.

Result table of unreliability values got from case 1 and

case 2 with different permission rules is as shown in Table

1.

6.2 Case 3

 Keeping both Write permission rule and Agents constant,

and increasing total number of data files and varying read

permission rule.

In this case permission rules used are:

 1.Read=45% Write=50% Delete=10%

 2.Read=55% Write=50% Delete=10%

6.2.1 0 to 54 Data files

Figure 7: Results of unreliability of the system over 41

iterations

Figure 8: The number of damaged data over 41

iterations for Read=45%

Figure 9: The number of damaged data over 41

iterations for Read=55%

Table 1. Unreliability values got from case 1 and case 2

Data Files Agents R=100%

W=50%

R=100%

W=75%

R=50%

W=50%

R=30%

W=50%

0 to 49

1 to 39 0.37 0.54 0.35 0.27

1 to 53 0.30 0.51 0.34 0.32

1 to 68 0.47 0.61 0.29 0.38

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.5, August 2011

22

Similarly simulation is carried out for data 0 to 59. And

also simulation is carried out for case 4 where by keeping

both Read permission rule and Agents constant and

increasing total number of data files and varying write

permission rule.

Result table of unreliability values got from case 3 and

case 4 with different permission rules is as shown in Table

2.

6.3 Case 5

 Keeping Write permission rule constant and varying the

total number of agents, data files, read permission rule. In

this case the permission rules from case 3 and case 4 were

used for simulation.

6.3.1 0 to 54 datas And 1 to 53 agents

Figure 10: Results of unreliability of the system over 41

iterations

Figure 11: The number of damaged data over 41

iterations for Read=45%

Figure 12: The number of damaged data

over 41 iterations for Read=55%

Similarly simulation is carried out for data 0 to 59. And

also simulation is carried out for case 6 where by keeping

read permission rule constant and varying the total number

of agents, data files, write permission rule.

Result table of unreliability values got from case 5 and

case 6 with different permission rules is as shown in Table

3.

Analysis of Table 1 shows that with the stricter write

permission rule (Read:100% Write:50% Delete:10%), the

unreliability of the database system reduced to 0.30 for 53

agents compared to the unreliability of the database for 39

agents and 68 agents. And it also shows that by increasing

agents upto 68, the unreliability of the database becomes

greater.

Analysis of Table 2 shows that for write permission rule

(Read:100% Write:60% Delete:10%), the unreliability of

the database increases by increasing number of datas from

49 to 54 upto 59 for 39 agents. And also unreliability of

the database increases in each permission rules

(Write:70%, Read:45%, Read:55%) by increasing number

of datas from 49 to 54 upto 59.

Analysis of Table 3 shows that varying both agents and

datas with different permission rules the unreliability of

the database is reduced for 53 agents compared to 68

agents.

Table 2. Unreliability values got from case 3 and case 4

Data Files Agents
R=100%

W=60%

R=100%

W=70%

R=45%

W=50%

R=55%

W=50%

0 to 54

 1 to 39

0.35 0.35 0.37 0.38

0 to 59 0.37 0.45 0.47 0.45

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.5, August 2011

23

By comparing Table 1 with Table 2 shows that increasing

the number of agents upto 53, the reliability of the

database is better compared to increasing the number of

datas.

By comparing Table 2 with Table 3 shows that reliability

of the database is reduced by increasing the number of

agents to 53 with varying data files. And also it can be

seen that unreliability of the database is reduced for 68

agents compared to keeping only 39 agents with increasing

number of data files upto 59.

7. CONCLUSION AND FUTURE

DIRECTIONS
In this paper, Agent-Based model for database security is

implemented using permission rules. The database security

can be maintained better with stricter access to data

through the manipulation of the permission rules. By

comparison of result tables it can be concluded that by

keeping the agents upto 53, the unreliability of the system

can be reduced. As the number of the agents increases to

63, the unreliability of the system also increases with both

strict permission rule as well as for less strict permission

rule because of which the number of corrupted data

becomes greater. As the number of data corrupted

increases with the increase in number of agents, then there

is a possibility of the database being collapsed.

The Future plan of action will be: 1)Improving the

reliability of database system by increasing number of

agents minimum upto 70 and maximum 120 for 49 data

files.

2) Exploring the Agent-Based simulation program for

large database.

3) Creating a more complex hierarchical structure for data

access. In this paper, the DBA granted privileges to access

data by all agents. In Future plan the owners of data files

will grant privileges to access data by other agents from

any host.

4) Encrypting the data files using Encryption algorithm.

8. REFERENCES
[1] Macro Remondino.2004. Multi-Agent Based

Simulation For Database Security: A framework In

Proceedings of 18th Europen Simualtion

Multiconference.

[2] Yi Mu and Vijay Varadharajan. Towards a Protection

Model for supporting Multiple Access Control

Policies.

[3] Robert W. Baldwin.1990. Naming and Grouping

Privileges to simplify security management in Large

Databases.

[4] Elisa Bertino and Elena Ferrari. Data Security. 22nd

International Computer Software and Applications

Conference, IEEE Computer Society, Vienna.

[5] Zhu Yangqing.et al. 2009. Design of A New Web

Database Security Model. 2nd International

Symposium on Electronic Commerce and Security.

[6] Raymond Chiong and Sandeep Dhakal. 2008.

Modelling Database Security through Agent-Based

Simulation. 2nd Asia International Conference on

Modelling and Simulation.

[7] Stan Franklin and Art Graesser.1996. Is it an Agent, or

just a Program?: A Taxonomy for Autonomous

Agents. In Proceedings of the 3rd international

workshop on Agent Theories, Architectures, and

Languages,Springer-Verlag.

[8] Macro Vieria and Henrique Madeira. 2005. Towards a

Security Benchmark for Database Management

Systems. In Proceedings of the International

Conference on Dependable Systems and Networks.

[9] Ramez Elmasri and Shamkant B. Navathe.

Fundamentals of Database Systems.4th Edition

book.

Table 3. Unreliability values got from case 5 and case 6

Data Files Agents
R=100%

W=60%

R=100%

W=70%

R=45%

W=50%

R=55%

W=50%

0 to 54

 1 to 53

0.27 0.25 0.23 0.25

0 to 59 0.29 0.28 0.24 0.22

0 to 54

 1 to 68

0.29 0.35 0.35 0.31

0 to 59 0.36 0.40 0.39 0.37

