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ABSTRACT

This paper deals with the unsteady free convection and mass
transfer flow of micropolar fluid embedded in a porous media.
The governing equations involve the fluid and micropolar
velocities respectively, temperature and concentration fields.
The effects of material parameters on the velocities,
temperature and concentration are discussed. Perturbation
method is used to obtain the solutions to the governing
equations. Results show that the velocity increases with an
increase in Grashof and modified Grashof numbers G and Gm
respectively. While an increase in the Prandtl number Pr and
Schmidt number Sc lead to a decrease in the temperature and
the concentration respectively.

Keywords: Micropolar fluid, Grashof number, Modified
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1. INTRODUCTION

The study of flow and mass transfer for an electrically
conducting micropolar fluid past a porous plate under the
influence of a magnetic field has attracted the interest of many
investigators in view of its applications in many engineering
problems such as MagnetoHydroDynamic (MHD) generator,
Oil exploration, Plasma studies, and Geothermal energy
extractions. Soundalgekar and Takhar (1977). Micropolar
fluids are fluids with micro structure belonging to a class of
fluids with non-symmetrical stress tensor. Physically, they
represent fluids consisting of randomly oriented particles
suspended in viscous medium Aero et al (1965), Dep (1968)
and Lukaszewicz (1999). Takhar and Agarwal (1998) studied
the mixed convective flow of a steady, incompressible
micropolar fluid over a stretching sheet. Kim (2001) studied
the unsteady two-dimensional laminar flow of a viscous
incompressible micropolar fluid past a semi-infinite porous
plate embedded in a porous medium. Uwanta (2002) studied
micropolar fluid flow in a channel with Poiseuille effects.
Kim (2003) investigated transient mixed radiative convection
flow of a micropolar fluid past a moving, semi infinite vertical
porous plate. Hassanien and Essawy (2004) studied the
natural convection flow of micropolar fluid from a permeable
uniform heat flux surface in porous media. Makinde and
Mhone (2005) have investigated heat transfer to MHD
oscillatory flow in a channel filled with porous medium. Lok
et al (2006) investigated unsteady mixed convection flow of a
micropolar fluid near the stagnation point on a vertical
surface. Uwanta (2008) studied the effects of mass transfer
on laminar convective hydromagnetic flow of radiating gas in
a vertical infinite channel. Mostafa (2009) studied thermal
radiation effect on unsteady MHD free convection flow past a
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vertical plate with temperature dependent viscosity. Ahmad
(2010) has studied the effects of thermophoresis on natural
convection boundary layer flow of a micropolar fluid.

2. GOVERNING EQUATIONS

In Cartesian coordinate system, we consider the two-
dimensional unsteady flow of a laminar incompressible
micropolar fluid with heat and mass transfer in the presence of
chemical reaction past a vertical porous moving plate
embedded in a porous medium and subjected to a transverse
magnetic field in the presence of a pressure gradient. The
analysis is based on the assumption that the viscous and Darcy
resistance terms are taken into account with constant
permeability porous medium. Under these conditions, the
governing equations for the problem are

Continuity equation:

P,

v @1
Linear momentum equation:

aUr Lk 1g¢,  FUF
o +V—*:—p§k+{v+lﬁ)$+gﬁ/(r_rm)_

. 22)
vt ,-&*’gﬂc (c-¢)

Angular momentum equation:

pj*[alw' ow j:yL L 23)

ot o' oy”
Energy equation:
or T  &T
—HVr—=a——;
ax " ax oy
Diffusion equation:
oc*  ,oC* o’C*
i -
ar ot ay®

(2.4)

_K'C* 2.5)

where x" and y* are the dimensional distances along and
perpendicular to the plate respectively, U *V" are the
components of dimensional velocities along x and
y* respectively, pis the fluid density, v is the fluid
kinematic viscosity, ¥, is the fluid kinematic rotational
viscosity, g is the acceleration due to gravity, Srand S, are
the coefficients of volume expansions for temperature and
concentration, K is an empirical constant called permeability

of the porous medium, ; is the micro-inertia density, w is

the component of the angular velocity, y is the spin-gradient



viscosity, 7 is the temperature, C'is the component of
dimensional concentration, « is the fluid thermal diffusivity,
D is the coefficient of mass diffusivity. The first term on the
RHS of (2.2) is the pressure term, the second term is the
viscous term, the third term is the buoyancy due to
temperature difference , the fourth term is the Darcy or porous
term, the fifth term is the micropolar term while the last is the
mass term.

The boundary conditions for the velocities, temperature and
concentration are
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Where n" is the dimensionless exponential index, Uw*is the

free streamvelocity, U, is a scale of free stream velocity, 4 is

a real positive constant of suction velocity parameter, ¢ and

£A are small less than unity, i.e. €4<<1 V, is a scale of
>

suction velocity normal to the plate and is assumed as a

function of time only.

Outside the boundary layer, the pressure term in (2.2) gives
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We now introduce the following dimensionless variables as
follows:
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Where v is the spin-gradient viscosity, £ is the dimensionless
viscosity ratio and A is the coefficient of gyro-viscosity or
vortex viscosity.

In view of equation (2.9), the governing equations (2.2) —
(2.6) reduce to the following non-dimensional form:
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Where S = % , n= L , Pr is the Prandtl number, G is the
Y

Grashof number, Gm is the modified Grashof number and

Sc is the Schmidt number.

The boundary conditions (2.6) are given by the following

dimensionless form:

International Journal of Computer Applications (0975 — 8887)
Volume 28— No.6, August 2011

U:O,H:lﬁ—se"’,w:—la—U,C:l on y=0
2 oy (2.14)

U—-U,,0>0,w—0,C—>0asy—>x

In order to reduce the above system of partial differential
equations to a system of ordinary differential equations in

dimensionless form, we represent the linear, angular
velocities, temperature and mass as:

U(31)=U, (v)+&e"U,(v)+0(&) (2.15)
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Substituting equations (2.15) - (2.18) into equations (2.10) -
(2.14) and neglecting the coefficient of higher order terms
reduce to the zeroth and first orders respectively:
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subject to the following boundary conditions:
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The solutions of equations (2.19) - (2.22), (2.24) — (2.27)
subject to the boundary conditions (2.23) and (2.28) are
respectively:
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G (y)= B*(e’”’ _ eff‘n.,v) (2.36) Table 1. Showing various distributions
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Values of stream wise velocity, angular velocity, temperature
and mass transfer are presented in Table 2 where
3. RESULTS AND DISCUSSION
. . ) n=2t=5,6=007,G=5Gn=3,4=1,5=02, f=04,n=05Pr=1
Values of streamwise velocity, angular velocity, temperature
and mass transfer are presented in Table 1 where;
n=1t=2,6=00,,G=1,Gn=1,4=1,5=02,5=04,7=05Pr=0.7



Table 2: Showing various distributions.
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Table 3: Values of 7  and N, with different values of
material parameters.

¥

A n t H G fr Gm by o N,

1 1 2 001 1 07 1 02 i | 08T

1 1 5 001 1 07 1 02 1154 | -31840

1 1 2 00 5 07 1 0l 79039 | 08207

1 1 5 00 5 07 3 01 | 15350 31840

1 1 1 001 1 07 1 0l 4797 | L7

1 1 5 001 5 07 1 0l 118010 | -417.7183
00

1 1 5 007 1 1 1 02 515750
0 3655.6000

1 1 1 007 1 1 1 02 156310 | -10.3347

1 1 1 007 1 1 1 02 44801 | -21566

1 1 5 007 1 1 1 0l 5548 | 242303

Values of U, w, € and C are presented in Table 1, where
n=1,4=1t=2,6=0.01,

,n=05,8 =02,Pr=0.7,G=1,Gm=1,=04. For the
reactive flow, the velocity shows high values reaching a
maximum of 1.4525 while the angular velocity is negative.
Also temperature field and mass transfer are high at the
origin.

In Table 2, values of U, w, € and C are presented while other
constants are as before. For the reactive flow, the velocity
profile shows high values reaching a maximum of 1747.1,
while angular velocity is still negative. Temperature field and
mass transfer are high at the origin.

The effect of the material parameters n,t,&,G,Gm and Pron

the streamwise velocity and angular velocity past a vertical
plate are presented in Tables 1 and 2. The analytical results
show that the value of the velocity distribution across the
boundary layer is higher with an increase in the material
parameters as compared with a micropolar fluid. In addition
the value of the angular velocity on the porous plate decreases
as the material parameters are increased.

Typical variation of the temperature fields along the y-
coordinate are shown in Tables 1 and 2 respectively for
different values of Prandtl number Pr. The analytical results
shows that an increase of Prandtl number results in a
decreasing thermal boundary layer thickness and more
uniform temperature distribution across the boundary layer.
The reason is that smaller values of Pr are equivalent to
increasing thermal conductivities and therefore heat is able to
diffuse away from the heated surface more rapidly than for
higher values of Pr. Hence the boundary layer is thicker and



the rate of heat transfer is reduced, for gradients have been
reduced.

The variations of the mass transfer along the y-coordinate are

presented in Tables 1 and 2. The analytical results show that
an increase in the dimensionless exponential index n and ¢
results to a decrease in the values of mass transfer.

The variation of the surface skin friction 7, on the porous

plate with material parameters is presented in Table 3. It is
obvious that an increase in the dimensional exponential index
n results in a decrease in the skin friction while for the
increase of the Grashof numbers G and Gm, the skin friction
on the porous plate shows an increasing nature.

Lastly, the variation of surface heat transfer with the
suction velocity parameter 4 for several values of Prandtl
number is presented in Table 3. Analytical results show that
for given flow and material parameter, the surface heat
transfer from the porous plate tends to decrease slightly by
increasing the magnitude of the Prandtl number.

4. CONCLUSION

The governing equations for an unsteady, free convection and
mass transfer flow of micropolar fluid embedded in a porous
media have been studied. Analytical results are presented to
illustrate the details of the flow and heat transfer
characteristics and their dependence on the material
parameters G,Gm,Sc,Pr,t. It is observe that when the
material parameters increase the streamwise velocity increases
while the angular velocity, temperature field and mass transfer
decreases.
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