
International Journal of Computer Applications (0975 – 8887) 

Volume 28– No.8, August 2011 

18 

Identifying Efficient Kernel Function in Multiclass 

Support Vector Machines  

 
R.Sangeetha 

Ph.D Research Scholar 
Department of Computer Science 

Avinashilingam Deemed University for Women 

 

Dr.B.Kalpana 
Associate Professor 

Department of Computer Science  
Avinashilingam Deemed University for Women 

ABSTRACT 

Support vector machine (SVM) is a kernel based novel pattern 

classification method that is significant in many areas like data 

mining and machine learning. A unique strength is the use of 

kernel function to map the data into a higher dimensional feature 

space. In training SVM, kernels and its parameters have very 

vital role for classification accuracy. Therefore, a suitable kernel 

design and its parameters should be used for SVM training.  In 

this paper, we present certain kernel functions for multiclass 

support vector machines and propose the appropriate and 

optimal kernel for one-versus-one (OAO) and one-versus-all 

(OAA) multiclass support vector machines. The performance of 

the one-versus-one and one-versus-all multiclass SVM are 

illustrated by empirical results and it is evaluated by the 

parameters like support vectors, support vector percentage, 

classification error, training error and CPU time. The 

experimental results demonstrate the ability to use more 

generalized kernel function and it goes to prove that the 

polynomial kernel’s efficiency in terms of high classification 

accuracy for several datasets. 

General Terms 
Pattern Classification, Data Mining, Machine Learning  

Keywords 
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1. INTRODUCTION 
Classification and Prediction [1, 2] are thriving research 

problems in machine learning and data mining .Support vector 

machine [5,6,7], a new computational learning method based on    

Vapnik–Chervonenkis theory [3, 4] to solve multidimensional 

function estimation. Basically, SVM classifier is developed for 

binary classification and later on it is extended to multiclass 

support vector machine which is the flattering topic in the field 

of research. In multiclass SVM, multiclass labels are 

decomposed into several two class labels and it trains a svm 

classifier to solve the problems and then reconstruct the solution 

of the multiclass problem from outputs of the classifiers [9], 

such as OAO-SVM and OAA-SVM. 

Classification time and Computational complexity for the 

multiclass SVM classifier depend on the number of support 

vectors required for the multiclass SVM. Number of support 

vector increases, it leads to increase in computational 

requirements such as addition, multiplication and floating point. 

In SVM classification, the required memory to store the support 

vectors is directly proportional to the number of support vectors. 

Hence, support vectors must be reduced to speed up the 

classification and to minimize the computational and hardware 

resources required for classification. 

    The paper is organized as follows. Section 2 explains the 

multiclass support vector machines. Section 3 describes the 

kernels and its parameters. Section 4 comprises the experimental 

results. Lastly, Section 5 concludes with future work on 

achievable prospects in this area..  

2. SUPPORT VECTOR MACHINES 
SVM is based on the structural risk minimization principle 

(SRM), which was proposed by Vapnik [3] and its 

generalization is optimal. Initially, SVM is developed for binary 

classification and later it extended multiclass classification. Its 

core concept is to derive the hyperplane to separate the two 

classes. Consider a set of training examples (xi, yi), i = 1,…. l,  

xi ∈  Rn, yi ∈  {+1, −1}, and try to train a function yi =f(xi) that 

predicts the classification yi of unknown data xi, with minimal 

error. Support vector machines use a function ψ to map data into 

a higher dimensional space and construct a separating 

hyperplanes in feature space. One of the hyperplanes that 

maximizes the margin is an optimal separating hyperplane. 

Binary classification and its kernel selection are explained in 

[12, 13]. 

2.1 Multiclass Support Vector Machines [15] 
Many real world problems like circuit diagnosis, natural 

language processing come under the category of multiclass 

support vector machines. Multiclass SVM can be solved by 

combining the binary classification decision functions. 

Multiclass SVM is of two types namely, One versus One 

decomposition and One versus All decomposition.  

The OAA decomposition [10] transforms the multiclass problem 

into a series of c binary subtasks that can be trained by the 

binary SVM. Let the training set 
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are trained by the binary SVM solver from the 

set YyT y

XY ∈,

 The OAO decomposition [10] transforms the multi-class 

problem into a series of g = c(c −1)/2 binary subtasks that can 

be trained by the binary SVM. Let the training set 
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The training set gjT j

XY ,...2,1, = is constructed for all 

g=c(c−1)/2 combinations of classes { }121 \& jjj yYyYy ∈∈
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  The binary SVM rules qj , j = 1, . . . , g are trained on the 
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3. KERNELS IN MULTICLASS SVM 
Support vector machine is the first kernel based learning 

algorithm. Kernel function determines the characteristics of 

OAO and OAA SVM model and level of non linearity. A 

necessary and sufficient condition for a simple inner product 

kernel to be valid is that it must satisfy Mercer’s theorem [11]. 

In general, kernels are of two types namely Local and Global 

kernels. Data that are close to each other in local kernels 

influence on the kernel points and data that are far away from 

each other in global kernels influence on the kernel points. 

Commonly used kernels like Linear, Polynomial, RBF, Sigmoid 

are discussed in [12, 13] and used in this paper. Also, there are 

some more kernels which are represented in Table 1.Kernel 

functions and its transformation largely depends on the domain 

.So, selecting a suitable kernel function with its parameter is a 

major research area in multiclass support vector machine. 

Table 2. Data Sets Used 

Data Sets Size Features Class 

Distribution 

Pentagon 99 2 5 

Iris 150 4 3 

Wine 270 13 3 

 

4. EXPERIMENTAL RESULTS 
In this Section, we evaluate the performance of one-versus-one 

and one-versus-all multiclass SVM using different kernel 

functions on two benchmark datasets(Iris, Wine) taken from 

UCI machine learning repository and a pentagon dataset taken 

from [10].Brief outline of the datasets is given in table 2.Kernels 

are evaluated using the performance metrics like support 

vectors, support vector percentage, training error, classification 

error and CPU.Here,five fold cross validation is used to split the 

training dataset and test dataset. For each method in multiclass 

SVM, the optimal regularization parameter C and the kernel 

parameters are estimated by repeating classifications. The 

classification accuracy of SVM methods based on classification 

error and training error with these optimal parameters are 

compared. The tables 3.1, 3.2, 3.3 show the results for 3-class, 

5-class OAA and OAO SVM. In that only few kernels give good 

classification performance with low classification error.  

Linear kernel 
j

T

iji xxxxK +=1),(  is a simple kernel function 

based on the penalty parameter C, since parameter C controls 

the trade-off between frequency of error c and complexity of 

decision rule [7]. Also, it reduces the support vectors, training 

error and classification error by incrementing the parameter 

C.But it is not suitable for large datasets. 

Polynomial kernel 
p

j

T

iji xxxxK )1(),( +=  also known as 

global kernel, is non-stochastic kernel estimate with two 

parameters i.e. C and polynomial degree p. Each data from the 

set xi has an influence on the kernel point of the test value xj, 

irrespective of its the actual distance from xj [14], It gives good 

classification accuracy with minimum number of support 

vectors and low classification error. 

Radial basis function )exp(),(
2

jiji xxxxK −−= γ also 

known as local kernel, is equivalent to transforming the data 

into an infinite dimensional Hilbert space .Thus, it can easily 

solve the non-linear classification problem. It has an effect on 

the data points in the neighborhood of the test value [14]. RBF 

gives similar result as polynomial with minimum training error 
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but for some cases the number of support vector and 

classification error increases. 

Exponential radial basis function )
2

exp(),(
2σ
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gives piecewise linear solution. Gaussian radial basis function 

)
2
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−
−=   deals with data that has conditional 

probability distribution approaching gaussian function. RBF 

kernels perform better than the linear and polynomial kernel. 

However, it is difficult to find an optimum parameters σ and 

equivalent C that gives better result for a given problem. 

Sigmoid kernel )tanh(),( δ−= j

T

iji xkxxxK
 
is not efficient as 

other kernel function, because it lacks the necessary condition of 

a valid kernel. Parameters κ and δ must be chosen properly to 

obtain high classification accuracy. 

Metrics of the Kernels based on the parameter values in Table 

3.1, 3.2 and 3c are graphically portrayed in the Annexure I to 

analyze the data. In kernel function, number of support vector 

increases then the classification accuracy diminishes. Figures                     

[1-6] represent the support vector, support vector % for OAO 

and OAA SVMs. Figures [7-12] symbolize Train error and test 

error for OAO and OAA SVMs. After analyzing all the features 

of the kernel function using figures [1-12], appropriate and 

optimal kernels for our datasets are polynomial kernel, RBF 

kernel .They have minimum number of support vectors, 

minimum value as classification error and training error and 

good classification accuracy.  

5. CONCLUSION AND FUTURE WORK 
From the empirical results, we present the performance of 

multiclass SVM using different kernels on three different 

datasets and a comparison is made. Here, we are attempted to 

explore the best choice among SVM kernels namely linear, 

polynomial, radial basis function (RBF) and sigmoid kernels . 

Different degree of the polynomial kernels and different widths 

of the RBF kernel are evaluated. As a result, the efficient kernel 

for multiclass SVM classifier is polynomial kernel for these 

datasets. 

In multiclass SVM, OAO / OAA model’s quality is ascertained 

by its ability to learn from the data and to predict unknown data 

i.e. learning capacity and generalization ability. These two 

important characteristics of SVM are determined by an optimal 

and efficient kernel function and its parameter selection. We 

have to select a kernel function that should satisfy both these 

properties. Generalization ability gets better for certain 

polynomial degrees and radial basis with suitable parameter 

selection gives good learning capacity. Single parameter value 

of kernel cannot decide these two properties. So, two kernel 

functions with these characteristics are selected and checked 

whether the merits of two kernels can be combined to form a 

hybrid kernel. High classification accuracy can be achieved by 

optimizing the kernel function and tuning its kernel parameters. 
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Appendix 
Table 3.1 Iris Dataset 

 

 

Table 3.2 Pentagon Dataset 

 

Table 3.2 Wine Dataset 

' 

 

Kernels  Parameter 

One versus One 

Parameter 

One versus All 

SV SV% TE CE 
CPU   

(S) 
SV SV% TE CE 

CPU 

(s) 

Linear C=10 16 13.33 0.0167 0.5 0.03 C=10 70 58.33 0.0583 0.3333 0.14 

C=100 11 7.5 0.0 0.6333 0.01 C=10000 63 52.5 0.0167 0.3000 28 

Polynomial C=1, p = 1.5 23 19.1 0.0167 0.3333 0.04 C=10,p=2 15 12.5 0.08 0.1 0.34 

C=1,p=2.5 16 13.33 0.1416 0.4333 0.125 C=100,p=2 10 8.3 0.0 0.2 0.09 

RBF C=1,  γ = 0.5 40 33.33 0.058 0.2667 0.03 C=10, γ =1.5 20 16.67 0.033 0.0667 0.04 

C=1, γ =1.5 31 25.8 0.025 0.5333 0.05 C=10, γ =1 23 19.1 0.025 0.1333 0.04 

ERBF C=1,σ=1.5 47 39 0.0167 0.0333 0.031 C=1, σ =0.5 31 25.8 0.008 0.0667 0.015 

C=10, σ =2.5 28 23.33 0.0167 0.2667 0.03 C=100, σ =2 17 14.16 0.1667 0.1 0.06 

GRBF C=10, σ =2 31 25.8 0.025 0.1333 0.03 C=10, σ =0.05 45 37.5 0.008 0.2333 0.12 

C=10, σ =1.5 26 21.6 0.0167 0.4 0.03 C=100, σ =0.05 44 36.67 0.008 0.2 0.28 

Sigmoid C=1, k=1,δ=2 46 38.3 0.0583 0.2667 0.063 C=1000,k=1,δ =3 12 10 0.0 0.2 0.218 

C=1000,k =5,δ=2 40 33.33 0.3083 0.0333 0.016 C=1000,k=2,δ =5 11 9.16 0.0 0.2667 0.313 

Kernels  Parameter 

One versus One 

Parameter 

One versus All 

SV SV% TE CE 
CPU   

(S) 
SV SV% TE CE 

CPU 

(s) 

Linear C=10 25 31.65 0.0 0.25 0.015 C=10 50 63.3 0.013 0.05 0.109 

C=100 20 25.32 0.0 0.25 0.03 C=1000 40 50.63 0.0 0.05 0.078 

Polynomial C=1000,p=3 18 22.78 0.0 0.25 0.0 C=100,p=1.5 19 24.05 0.0 0.1 0.1 

C=1000,p=6 15 18.98 0.0 0.25 0.031 C=1000,p=1.5 17 21.51 0.0 0.1 0.171 

RBF C=10,  γ  = 0.005 15 18.98 0.0 0.4 0.0 C=100, γ =0 .5 43 54.43 0.367 0.3 0.156 

C=100, γ =0.5 20 25.32 0.0 0.3 0.12 C=100, γ =6 21 26.58 0.025 0.1 0.09 

ERBF C=100, σ =1.5 21 26.58 0.0 0.25 0.02 C=100, σ =0.5 30 37.97 0.0 0.05 0.046 

C=1000, σ =0.5 28 35.44 0.02 0.8 0.016 C=inf, σ =2 19 24.05 0.0 0.1 0.109 

GRBF C=100, σ =0.05 38 48.1 0.0 0.5 0.031 C=10, σ =0.5 32 40.5 0.101 0.45 0.031 

C=1000, σ =2 18 22.78 0.04 0.3 0.015 C=inf, σ =0.5 17 21.51 0.316 0.25 0.031 

Sigmoid C=10, k=1, δ =2 28 35.44 0.01 0.3 0.0 C=100,k=1,δ=1 20 25.32 0.0 0.1 0.046 

C=100,k=0.5,δ=1 20 25.32 0.03 0.25 0.031 C=inf,k=2,δ=0.5 19 24.05 0.0 0.1 0.187 

Kernels  Parameter 

One versus One 

Parameter 

One versus All 

SV SV% TE CE 
CPU   

(S) 
SV SV% TE CE 

CPU 

(s) 

Linear C=1 33 22.91 0.0625  0.9412 85.12 C=10 35 24.3 0.528 0.8542 121 

C=100 31 21.52 0.0694 0.9118 121.1 C=100 39 27.08 0.253 0.8574 114 

Polynomial C=10,p=0.5 44 30.55 0.1458 0.1471 0.687 C=10,p=2 8 5.55 0.319 0.0882 0.156 

C=100,p=0.25 45 31.25 0.2656 0.1471 0.153 C=100,p=2 8 5.55 0.319 0.0882 0.171 

RBF C=100, γ =0.0005 68 47.22 0.0486 0.4118 0.703 C=100,γ =0.00005 65 45.13 0.09 0.6765 2.359 

C=100, γ =0.05 75 52.08 0.0069 0.0588 0.859 C=1000,γ =0.00005 55 38.19 0.09 0.6765 62 

ERBF C=100, σ =8 70 48.6 0.0277 0.5588 0.812 C=100, σ =6 78 54.16 0.006 0.705 9.875 

C=100, σ =2.5 85 59.02 0.0138 0.2647 0.328 C=100, σ =10 72 50 0.006 0.6765 11.26 

GRBF C=1000, σ =8 80 55.55 0.0277 0.1765 0.593 C=1000, σ =8 90 62.5 0.013 0.8529 2.234 

C=1000, σ =6 80 55.55 0.0208 0.0882 48 C=1000, σ =6 100 69.44 0.0 0.8876 1.187 

Sigmoid C=100, k=2, δ =4 112 77.77 0.9 0.5902 0.562 C=100, =2,δ=4 122 84.72 0.58 0.8532 1.234 

C=100, k=2,δ =2 110 76.38 0.91 0.5902 0.531 C=100 k=2,δ=2 122 84.72 0.59 0.8532 1.25 
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        Fig.1: OAO -Support Vectors with its % for Iris Dataset                    Fig.2: OAO - Support Vectors with its % for Pentagon Dataset 

       

         Fig.3: OAO - Support Vectors with its % for Wine Dataset                   Fig.4: OAA - Support Vectors with its % for Iris Dataset 

        

      Fig.5: OAA - Support Vectors with its % for Pentagon Dataset            Fig.6: OAA - Support Vectors with its % for Wine Dataset 
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                          Fig.7: OAA – Error Rate for Iris Dataset                                      Fig.8: OAA - Error Rate for Pentagon Dataset 

 

      

                           Fig.9: OAA - Error Rate for Wine Dataset                              Fig.10: OAA - Error Rate for Iris Dataset 

 

    

                    Fig.11: OAA - Error Rate for Pentagon Dataset                                 Fig.12: OAA - Error Rate for Wine Dataset 

 


