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ABSTRACT 

Most of today’s wireless LANs and PANs employ the use of the 

CSMA/CA protocol. In CSMA/CA, a randomly initialised 

counter is used to reduce the probability of nodes accessing the 

channel at the same time. In most implementations, this counter 

is suspended when the channel is idle. In this paper, we derive 

and verify through simulation the exact analytical expression for 

the distribution of this counter’s value. For further validation, 

we show how it can be used to obtain the protocol’s idle period 

distribution under saturation loads. For this latter distribution, 

we provide simulation results to show the accuracy of the 

formula compared to one derived using the de-facto first-order 

Markov channel state model. 

General Terms 

Medium Access Control (MAC), Analytical Modelling. 

Keywords 

Wireless data networks, LAN, PAN, CSMA/CA, random 

backoff algorithm. 

1. INTRODUCTION 
CSMA/CA is a MAC protocol that has widespread use. In the 

present day, one can find it ubiquitously operating in the IEEE 

802.11 [1], Zigbee and HomePlug networking devices that have 

intruded deeply into the home, office and factory environments. 

An important aspect of CSMA/CA is the use of a backoff 

counter to mitigate collision. As soon as it is ready to service the 

next frame from the upper protocol layers, the channel state is 

checked. If it is idle, the frame is transmitted at the start of the 

next available idle slot. If the channel is busy (i.e., with other 

nodes’ transmissions), the backoff counter is initialised to a 

discrete value randomly uniform within the range {0, ..CW - 1}, 

where CW is a parameter known as the contention window 

length. When the channel becomes idle subsequently, the 

backoff counter is decremented at the end of each idle slot. 

When the backoff counter reaches zero, the frame is transmitted 

at the start of the next idle slot. If the transmission collides with 

other nodes’ transmissions, the procedure is repeated again, with 

the backoff counter renewed to a random value in the said range 

twice wider depending on whether a fixed or exponentially 

increasing CW is employed. If the channel becomes busy at any 

time before the backoff counter reaches zero, it is suspended.  

To date, the distribution of the counter’s value when this occurs 

is not known. Yet, knowledge of this fundamental parameter 

makes further analytical modelling of the protocol possible, 

especially in scenarios involving interferences from co-existing 

or exploitative systems which also attempt to use the shared 

channel for their own transmissions. 

Take for example, the case where an aberrant node has joined a 

group of compliant nodes to transmit data over the shared 

channel. Assume that all nodes have a backlog of data to 

transmit (i.e. in saturation load), and that, in addition to abiding 

with the CSMA/CA protocol, the aberrant node also attempt to 

steal an extra transmission when the channel is sensed idle for 

longer than k slots. Let P{W = w} be the new backoff counter 

value probability mass function (PMF), PC(c) ≡ P{C = c} the 

single cell channel state PMF (more on this later), and N the 

number of nodes including the aberrant node. With the 

suspended backoff counter PMF at our disposal, we can easily 

hypothesise that the probability that it will succeed in 

transmitting an extra frame during an idle period as: 

 

 

(1) 

 

 

where the summed term in the nominator represents the 

probability that all nodes have their backoff counters at a value 

greater than k following the occurrence of c concurrent 

CSMA/CA-compliant transmissions, and P{F = f} is the PMF of 

the suspended backoff counter value that we will derive and 

validate in this paper. 

2. RELATED WORK 
Over the years, many authors have contributed to further our 

understanding of the behaviour of the CSMA/CA protocol from 

an analytical perspective. Their studies have given us models for 

the protocol’s transmission attempt probability, channel state 

and state transition probabilities and throughput under saturation 

loads. 

Perhaps the most important contribution is from Bianchi [2,3] 

with his introduction of the Markov chain modeling method. 

Prior to this method, analytical studies on the protocol were 

based on the p-persistent model, as contributed by H.S. Chhaya 

and S. Gupta in [4], and Cali et. al. in [5,6,7]. 

In Bianchi’s model, the back-off counter is decremented right 

after a busy period. However, in actual implementation, it is 

only decremented at the end of an idle slot following that period. 

In [8], Ziouva and Antonakopoulos tried to correct this 

assumption, but did not take into account that only nodes that 

had transmitted in the previous busy period could start 

transmitting immediately after that period. In [9] and [10] done 

by Foh et al. and Hu et al., respectively, this shortcoming was 

addressed independently.  
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Building on the results of these early works (mainly Bianchi’s), 

two more characteristics - transmission delay and delay jitter - 

were derived in [11] by Foh and Zuckerman, [12] by 

Chatzimisios et al., [13] by T. Sakurai and Hai L. Vu. and in 

[14] by Li et al. 

To this body of work, we add our analysis on a perspective of 

the CSMA/CA protocol that have not been reported elsewhere: 

the probability mass function (PMF) of the suspended backoff 

counter value. In permutation with other known PMFs such as 

the initial backoff value and channel state PMFs, this 

distribution yields further understanding of the behaviour of the 

protocol. However, we restrict our analysis to a specific case of 

the CSMA/CA protocol whereby the contention window is 

fixed, because the steps involved in expanding it to the general 

case (i.e., whereby the contention window is incremented 

exponentially after each collision), eludes us. While this may 

seem like a significant limitation, it should be noted that this 

mode of operation has been shown in [15-17], to provide better 

performance than the exponential backoff scheme, especially 

when the contention window length is set optimally. 

The rest of our paper is organized as follows: In Section 3, we 

review the protocol’s channel state PMF which is required in our 

derivation. In Section 4, we present the steps in deriving the 

suspended backoff counter value PMF. In Section 5, we describe 

a sample application of this PMF which we will use for further 

validation of our analysis. In Section 6, we present a comparison 

of our hypothesis versus statistical results obtained from 

simulations. And finally, in Section 7, we conclude our paper. 

3. CHANNEL STATE DISTRIBUTION 

Let C ∈ {0, 1, ..N} be the discrete random variable representing 

the channel state for a cell with N nodes, with C = 0 representing 

idle state and C = n, the channel being busy with n simultaneous 

transmissions. For CSMA/CA with fixed contention window 

length, the first-order Markov model for the channel state 

transition probabilities is given in [10] as follows:  

 

 

 

 

(2) 

 

 

 

 

Here, PCT (c, c’) ≡ P{Ci = c | Ci−1 = c’} with c and c’ 

being the current and previous states respectively. Using a 

transition matrix P with (i, j)th elements equal to PCT (j, i), the 

channel state probability mass function PC(c) ≡ P{C = c} can 

be obtained via the steady-state equation, 

 

(3) 

 

with PC(i) given by the (i)th element of π. 

 

4. SUSPENDED BACKOFF COUNTER 

VALUE DISTRIBUTION 
Due to the second and third clauses in Eq.(2), note that 

consecutive busy states for C always follow the pattern {c0, c1, 

.., ck, ck+1, ..}, where ck > 0, ck+1 ≤ ck for all k.  

Consider the (N − c0) nodes that do not transmit at the onset of 

this interval of consecutive busy states. Each of them will have 

its backoff counter suspended at the same value at c0 and every 

subsequent ci in the interval. Let q(c0) denote the average 

number of times each of these nodes suspends its backoff 

counter within all possible busy sequences which starts with 

state c0. With c0 = 1, and recalling that 1 + a + a2 + . . . = 

1/(1−a), the corresponding busy state sequences matching the 

pattern {1, 1, ..1} yields, 

(4) 

 

With c0 = 2, two busy state sequence patterns are possible: {2, 2, 

..2} and {2, 2, .., 2, 1, .., 1}. It can be worked out that: 

 

(5) 

 

where the two terms are due to the two patterns, respectively. 

Working with upward values of c0, we deduce that q(c0) is 

solvable with the recursive formula,  

 

 

 

(6) 

 

 

Over all possible busy state sequences, the average number of 

suspensions by the non-transmitting nodes can be expressed as 

the sum of q(c0) over all possible values for c0, weighted by the 

product of the probability that the interval starts with c0 and the 

number of nodes not transmitting in that interval, as follows:  

 

 

(7) 

 

Now consider the c0 nodes that transmitted at the start of the 

interval. In any subsequent state ci, should some of these nodes 

fail to select zero as their next backoff counter value, then (c0 − 

ci) of these nodes would have their counters suspended at ci and 

subsequent states. 

Denote r(c0) as the number of suspensions these nodes make in 

the interval which starts with c0. Obviously, with c0 = 1, no 

suspension will occur since a drop in the channel state marks the 

end of the interval, so r(1) = 0. 
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With c0 = 2, only the busy pattern {2, ..2, 1, ..1} would result in 

one node repeatedly suspending its backoff counter. The average 

number of suspensions, given all possible sequences matching 

that pattern, would therefore be: 

 

(8) 

 

With c0 = 3, three patterns of busy state sequences result in 

counters being suspended: {3, ..3, 2, ..2}, {3, ..3, 1, ..1} and {3, 

..3, 2, ..2, 1, ..1}. The first pattern will have one node repeatedly 

suspending its counter, while the last two will have 2 nodes 

doing so. Hence: 

 

 

 

 (9) 

 

 

 

 

where each term is due to each of the three patterns. Working 

with upward values of c0, we found that the recursive 

expression, 

 

 

 

 

 (10) 

 

 

 

 

helps us solve r(c0) when we let r(c0) = r’(c0, c0). Similar to 

Eq.(7), the average number of suspensions by transmitting nodes 

over all possible busy state patterns can be stated as: 

 

 

 (11) 

 

Now let us consider the suspended counter value in relation to Q 

and R that we have derived above. Let the discrete random 

variables F ∈{1, 2, ..CW−1} and W’ ∈{1, 2, ..CW−1} represent 

the suspended counter value and the new non-zero value that the 

counter is initialised to. It should be noted that the event {F = f  | 

W’ = f} can only occur when a transmitting node selects a non-

zero value as its new counter value during the consecutive busy 

state interval, since it will suspend its counter at that value. Over 

all possible values for f, therefore, 

 

 

 (12) 

 

 

For nodes that do not transmit in the busy interval, their 

suspension values have to be at least one less than the newly 

assigned non-zero backoff value since the counter is 

decremented at every idle state and its occurence requires an idle 

to busy channel state transition. In other words, they can only 

contribute to the event {F = f  | W’ > f} occuring. Therefore, 

 

 

 (13) 

 

 

It is important to note that for each variate w of W’, P{F < w | 

W’ = w} represents the sum of (w − 1) component probability 

terms PF(f) | W’ = w, one for each variate f of F satisfying the 

condition f < w. For example, P{F < w | W’ = 3} is the sum of 

PF(1) | W’=3 and PF(2) | W’=3. Furthermore, since the event of a 

non-transmitting node having its counter suspended is 

independent of the event of it selecting a particular variate of 

W’, all the component probability terms of P{F < w | W’ = w} 

are equal regardless of the value of w. As such, the following 

equation relating PF(f) for the 1st type of suspended backoff 

samples to the component probability PF(f) | W’=w, w>f  is valid: 

 

 

 

  

(14) 

 

 

 

Since the probability of suspensions in this case is equivalent to 

the sum of all the component probabilities across all possible 

values of f and w restricted to the condition f < w, we get the 

following expression relating it to the component probability: 

 

 

 

 

 

 

 (15) 

 

 

 

 

 

 

Eliminating the component probability term from Eqs.(14-15), 

we get: 

 

 

  

(16) 
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Since PF(f) = PF(f) | W’=f + PF(f) | W’≠f, we can combine 

Eqs.(12,13,16) to obtain the suspended backoff counter value 

PMF: 

 

 

 

 

 

 (17) 

 

5. TEST APPLICATION: IDLE PERIOD 

DISTRIBUTION 
As a means to further validate the suspended backoff counter 

distribution, we apply to the calculation of the distribution of the 

idle periods for the protocol. This distribution can be used to 

determine the protocol’s performance in the face of interference 

from a co-existing or exploitative system which also attempts to 

transmit when it senses the mutually shared channel as idle. 

 

5.1 Derivation Using The Suspended Backoff 
Counter Value Distribution 
With the probability mass functions PF(f) for the suspended 

backoff value at our disposal, we can express the probability 

mass function for the idle period given the preceeding channel 

state, PI(i) | C=c as the following permutation: 

 

 

 (18) 

 

 

A bit of explanation may be necessary to induct the reader to 

how the above equation is derived: Note that for the idle period 

to be equal to i, both the new and suspended backoff counters 

must be equal to or higher than i, with at least one of them 

equalling i. So the first two factors involving the terms P{W ≥ i} 

and P{F ≥ i} ensures the former condition, while the remaining 

factor ensure the latter. For the complete idle period distribution, 

i.e., one that spans across the entire measured space, we perform 

a weighted summation of Eq.(18) over all channel states: 

 

 

 

 (19) 

 
 

5.2 Derivation Using De-Facto Markov 

Model 
By way of Eq.(2), each variate i of the distribution can be 

approximated as having the occurrence probability of a string of 

consecutive idle states of length (I − 1). Though this method is 

flawed since it ignores that the string length is bounded to CW − 

1, to the best of our knowledge, it is the only one available 

currently: 

 

 

 

 

 

 

 (20) 

 

 

 

 

 

 

6. MODEL VERIFICATION 
 

The ns-2 [18] program was used to obtain the simulation results 

of the suspended backoff counter value PF(f) and idle period 

distribution PI(i) of the protocol. Nodes were placed arbitrarily 

within a 10m by 10m area with frame sizes set to a constant 

value (512 bytes), and fed with saturation loads. Changes were 

made to the IEEE 802.11 source code to ensure that the 

contention window is fixed, and to disable radio capture (since 

the focus of our analysis is purely on the CSMA/CA protocol). 

 

For each combination of CW and N, the program was run 25 

times with each run using a different seed value for the random 

value generator and spanning 100,000 channel state transitions. 

In each run, the expectation and variance of the suspended 

backoff counter value and idle period was determined and 

recorded, such that in the end we had 25 samples of each value 

per combination of CW and N. 

 

To validate our model, we ran the one sample T- and Chi-square 

test. In the T-test, the 95% confidence interval (95% CI) was 

calculated based on the 25 samples obtained per combination of 

CW and N, and compared against the analytical values given by 

Eqs.(16,20). In all combinations of CW and N, the analytical 

values were well within the 95% CI of the values obtained from 

the simulation. 

 

We present several results here in brief. In Tables 1-4, the 

analytical results for the frozen back-off counter distribution 

expectation (E[F]) and variance (Var[F]) with N = {2, 4, 7, 10} 

is shown to be within the 95% CI of the simulation results across 

the range 2 ≤ CW ≤ 32. In Figs. 1-4, the idle period distribution 

expectation (E[I]) and variance (Var[I]) for CW = {4, 8, 16, 32} 

computed using Eq.(20) is seen to fall within the 95% CI of the 

simulation results across the range 2 ≤ N ≤ 10. 
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These tables and figures are but a sampling of the results of our 

tests. Over the range of values for CW = {2, 3, .., 32} and N={2, 

.., 10}, our hypothesis passed both the T- and Chi-square tests, 

suggesting that our analysis is indeed accurate. In addition, it 

can be seen in Figs. 1-4 that for small values of N, the 

approximation of Var[I] based on the Markov model given by 

Eq.(20) performs poorly compared to our model. This suggests 

that this de-facto model is not appropriate when used in 

scenarios involving small number of nodes, i.e., ranging from 2 

to 10. 

 

 

 

7. CONCLUSION 
We have presented an analytical model for the suspended 

backoff counter distribution, backing it with simulation results 

which certify its correctness. The derivation of this distribution 

is not found elsewhere in the literature, and may be useful in 

further characterisation of the CSMA/CA protocol especially in 

scenarios involving interference from other systems or non-

conformant nodes. As further demonstration to its accuracy, we 

also tested the correctness of this distribution when used to 

derive the protocol’s idle period. In the process of doing so, 

found it not only to be correct, but also that the only method 

prior to the availability our model – i.e., the one deriving from 

the Markov model, is inaccurate and cannot be used for the 

number of nodes that is typical in real life scenarios. 

Table 1: Expectation & Variance for the Frozen Back-off 

Distribution: Analytical versus Simulation (for N =2) 

CW 
E[F] 

Ana. 

E[F] Sim 

(95% CI) 

Var[F] 

Ana. 

Var[F] Sim 

(95% CI) 

2 1.0000 1.0000 
1.0000 

0.0000 0.0000 

4 1.4444 1.4406 
1.4535 

0.3580 0.3529   
0.3638 

8 2.7143 2.7033   
2.7272 

2.3469 2.3226  
2.3707 

12 4.0303 4.0002   
4.0383 

6.1203 6.0263  
6.1803 

16 5.3556 5.3220   
5.3725 

11.674 11.500  
11.805 

20 6.6842 6.6491   
6.7335 

19.006 18.743 
19.340 

24 8.0145 7.9781   
8.0686 

28.116 27.315 
28.416 

28 9.3457 9.2937   
9.4392 

39.004 38.647 
39.604 

32 10.677 10.582 
10.718 

51.670 51.198  
53.058 

 

Table 4: Expectation & Variance for the Frozen Back-off 

Distribution: Analytical versus Simulation (for N =10) 

CW 
E[F] 

Ana. 

E[F] Sim 

(95% CI) 

Var[F] 

Ana. 

Var[F] Sim 

(95% CI) 

2 1.0000 1.0000 
1.0000 

0.0000 0.0000 

4 1.5292 1.5269   
1.5313 

0.4450 0.4439   
0.4478 

8 2.7545 2.7526   
2.7597 

2.4487 2.4447   
2.4587 

12 4.0499 4.0458   
4.0590 

6.1970 6.1825   
6.2234 

16 5.3667 5.3659   
5.3854 

11.733 11.720  
11.790 

20 6.6914 6.6806  
6.7158 

19.053 18.970  
19.137 

24 8.0194 7.9802   
8.0299 

28.155 27.950  
28.265 

28 9.3493 9.3197   
9.3671 

39.038 38.801  
39.271 

32 10.680 10.650  
10.725 

51.699 51.420 
51.946 

 

Table 3: Expectation & Variance for the Frozen Back-off 

Distribution: Analytical versus Simulation (for N =7) 

CW 
E[F] 

Ana. 

E[F] Sim 

(95% CI) 

Var[F] 

Ana. 

Var[F] Sim 

(95% CI) 

2 1.0000 1.0000 
1.0000 

0.0000 0.0000 

4 1.5097 1.5091   
1.5134 

0.4263 0.4254   
0.4301 

8 2.7398 2.7358   
2.7504 

2.4119 2.4018   
2.4306 

12 4.0423 4.0403   
4.0585 

6.1673 6.1507   
6.2137 

16 5.3623 5.3568   
5.3805 

11.709 11.666  
11.760 

20 6.6885 6.6678   
6.7082 

19.034 18.864  
19.108 

24 8.0176 7.9886   
8.0335 

28.140 27.928  
28.244 

28 9.3479 9.3154   
9.3723 

39.024 38.839  
39.293 

32 10.679 10.651  
10.709 

51.688 51.354  
51.893 

  

Table 2: Expectation & Variance for the Frozen Back-off 

Distribution: Analytical versus Simulation (for N =4) 

CW 
E[F] 

Ana. 

E[F] Sim 

(95% CI) 

Var[F] 

Ana. 

Var[F] Sim 

(95% CI) 

2 1.0000 1.0000 
1.0000 

0.0000 0.0000 

4 1.4767 1.4749 0.3928 0.3898   
0.3965 

8 2.7244 2.7207   
2.7332 

2.3729 2.3724   
2.3956 

12 4.0349 4.0149   
4.0482 

6.1385 6.0901   
6.1824 

16 5.3582 5.3364   
5.3800 

11.687 11.566  
11.761 

20 6.6859 6.6812   
6.7296 

19.017 18.836  
19.235 

24 8.0157 8.0047 
8.0585 

28.125 27.837  
28.303 

28 9.3465 9.2871   
9.3605 

39.012 38.642  
39.377 

32 10.678 10.631  
10.728 

51.677 50.945  
51.838 
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Fig. 1: Idle Period Expectation & Variance: Analytical, 

Simulation and Markov Model (for CW = 4). 
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Fig. 2: Idle Period Expectation & Variance: Analytical, 

Simulation and Markov Model (for CW = 8). 
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Fig. 3: Idle Period Expectation & Variance: Analytical, 

Simulation and Markov Model (for CW = 16). 
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Fig. 4: Idle Period Expectation & Variance: Analytical, 

Simulation and Markov Model (for CW = 32). 
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