
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

39

ABSTRACT

DNA matching has become one of the most used

biometric identification method during the last

several years. DNA stores the information for

creating and organizing an organism. It can be

thought of as a string over the alphabets {A, C, G,

T, N}, which makes four chemical components that

make it up. Here, N represents an unknown

nucleotide. This unknown nucleotide may be either

A, or C, or G, or T. The size of each sequence is

varying in the range of millions to billions of

nucleotides.

 Compression of DNA is interesting for both

practical reasons (such as reduced storage and

transmission cost) and functional reasons (such as

inferring structure and function from compression

models). We present a new Lossless Compression

algorithm; which compresses data first horizontally

and then vertically. It is based on substitution and

statistical methods. We claim that our algorithm

achieves one of the best compression ratios for

bench mark DNA sequences in comparison to

other DNA sequence compression methods.

General Terms

 DNA Sequence Compression and Identification

Keywords
 DNA Sequence, Lossless Compression, Horizontal

compassion, Vertical compression, Substitution

methods, Statistical methods, Genome structure

I INTRODUCTION

In the last few years, DNA evidence has started to
play a big part in many nations criminal justice systems. It
has been used to prove that suspects were involved in
crimes and to free people who were wrongly convicted.
Several countries, including United States and Britain,

have built elaborate databases with hundreds of thousands
of unique individual profiles [SSZR2005]. Currently many
countries are establishing DNA database from individual
with the history of violent and crimes. Those databases
would allow the identification of suspects by simply cross
checking the DNA profile of the evidence with those
stored in the database. The Combined DNA Identification

System (CODIS) connects local states and federal law
enforcement agency data banks across the country USA
(approximately 2 million profiles). As of march 2005
CODIS has produced 21000 criminal identifications and it
has assisted in over 23000 investigations.

Today, increasing genome sequence data of
organisms lead DNA database two or three times bigger
annually. Thus, it becomes very hard to download and

maintain such data in personal local system [CKL99]. The
size of current biological databases is rapidly increasing
due to continuous sequencing efforts. Some common
databases need more than 160GB of disk space (e.g. DNA
databank of Japan (DDBJ) [CKL99] and furthermore,
additional disk space is needed for the index files of the
different retrieval methods (e.g. BLAST [GT94]). Thus,
there is a lot of disk space needed for redundant data. One
could now think about efficient compression algorithms to

solve this problem.
The problem with DNA based identification system

is that it cannot be used for online identification of a
person like iris based identification system or thumb print
based identification system. But, DNA database of a
person may be useful for further criminal investigation.
Thus, we may either need to retrieve the DNA data from
server for further processing and investigations or we may

need to transfer the DNA data from one location to
another location for further criminal investigations.

A single person’s complete DNA structure may take
more than 100 gigabytes of memory. Therefore if we
transfer DNA database from one location to another
location for further criminal investigations or for any other
purpose then the transfer time will be very high. If we
download the data from the server for further research

work then its download time will be very high. Thus, we
need an efficient lossless compression technique to
compress the DNA sequence before sending it to another
location so that after receiving and decompressing the data

An Efficient Horizontal and Vertical Method for Online DNA

Sequence Compression

Kamta Nath Mishra
Computer Sc. Department,

Birla Institute of Technology,
Ranchi, India (Allahabad Campus)

Dr. Anupam Aaggarwal
Computer Sc. Department,

I.I.I.T. Jhalwa,
Allahabad, India

 Dr. Prakash C. Srivastava

Computer Sc. Department,
Birla Institute of Technology,

Ranchi, India (Allahabad Campus)

Dr. Edries Abdelhadi
Computer Sc. Department,

Sebha University,
Libya

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

40

at destination end the exactly same DNA sequence should
be obtained.

Sometimes, we need to download the DNA data for
pursuing further research work. If the compressed form of
DNA data is stored on the server then its download time

can be minimized and the researchers can use the same
lossless compression technique to decompress the data
after downloading it. Although lossless compression
algorithms like BZip, Bio-Compress, Bio-Compress2,
GeN, and GeNML are available for compression of DNA
sequences but the compression result of these algorithms
are not sufficient to compress the DNA sequence with
high efficiently.

Thus, our proposed algorithm DNASC (DNA
Sequence Compressor) will be useful to compress the
DNA data efficiently before sending it from one location
to another location. The receiving computer will further
use our DNASC algorithm to decompress the data after
receiving it.

Therefore, our algorithm will be useful to compress
the DNA sequence before transmitting it and our

algorithm will be used to decompress the DNA data after
receiving it without any data loss (lossless compression
method).

The deoxyribonucleic acid (DNA) constitutes the
physical medium in which all the properties of a living
organism are coded [TG93]. A DNA sequence consists of
four alphabets namely Adenine (A), Cytosine(C), Guanine
(G) and Thymine (T).

The ribonucleic acid (RNA) sequence is also
consisting of four alphabets Adenine (A), Cytosine(C),
Guanine (G) and Uraceil(U). RNA’s nucleotide are similar
to DNA’s nucleotide but Thymine (T) is replaced by
Uraceil(U) in RNA nucleotides. DNA compression by
standard methods such as Lempel and Ziv[LZ76] style or
Huffman coding [Huf52] does not give positive
compression result. It means if we compress DNA or
RNA sequence with LZ76 method or with Huf52 method

then the compressed data will need more space than the
actual data.

Various algorithms have been proposed to compress
the size of text such as LZ76, LH87, Sto88, ZL77, ZL78,
Grumbach and Tahi[GT93], Grumbach and Tahi[GT94],
Apostolico and Lonardi[AL2000]. To compress the DNA
sequence either offline or online we use two main
approaches, the statistical approach and the substitution

approach. In the statistical approach, blocks of fixed
length (generally letters) are encoded with respect to their
probability of appearance [Huf52]. In the substitution
approach, factors of different length are encoded using a
pointer to the previous occurrences of the text [TG94].
The substitution algorithms have negative compression
ratio in DNA sequence compression. It means, the size of
the DNA sequence increases after compressing it by using

substitution approach.
Therefore, Grumbach and Tahi proposed two

compression modes: Horizontal and Vertical. In the
horizontal mode, Grumbach and Tahi compressed the
DNA sequence into a shorter form. In the vertical mode
Grumbach and Tahi compressed the DNA sequence with
respect to another sequence B. This DNA sequence

compression is known as Biocompress. For some genomes
the compression rate of Biocompress is higher than 30%.

Biocompress-2 was developed by Grumbach and
Tahi in 1994. Biocompress-2 was based on the detection
and encoding of factors and palindromes. Biocompress-2

gives good result if the DNA genome has large number of
similar sequences.

If we see the actual DNA structure then we find that
there are so many unknown nucleotides in any DNA
structure. The unknown nucleotides are represented by N
in DNA sequence representation. We have divided our
research work into two parts: In the first part we have
excluded unknown nucleotides in compressing the DNA

sequences, and in the second part we have included
unknown nucleotides at the time of compressing the DNA
sequence.

DNA compress introduced by Chen, Li, Ma, and
Tromp [Chen et al. 2002], which also employs a two pass
strategy is based on substitution (Lempel Ziv style)
compression method. In the first pass a specialized
programme called Pattern Hunter is used as preprocessor

for finding significant approximate repetitions. The second
pass then encodes these by a pointer to their previous
occurrences [KT2005].

This paper is organized as follow. In the next section
(section-II) we will review the basic knowledge of
genome structure. In section-III we will compare the
results of universal text compression algorithms. In
section-IV we will propose our DNA Sequence

Compression (DNASC) Algorithm. In section 5 we will
analyze our results.

 II RESEARCH ANALYSIS OF BASIC

GENOME STRUCTURE’S DATA

 A chromosome contains two complementary

strands of deoxyribonucleic acid or DNA. These are
long polymers of nucleic acid (nucleotides)each
consisting of phosphate, deoxyribose and one of four
‘bases’ which consist of Adenine(A), Cytosine(C),
Guanine(G), and Thymine(T). These always form a base
pair based on hydrogen bonds between complementary
bases: A-T or C-G(The two strands are termed as anti
parallel, in that they ‘run’ in opposite direction) [VVP].

 There is another kind of nucleic acid in the cell
which is called Rebo-Nucleic Acid (RNA). The RNA
contains the same nucleotide but where the thymine(T)
is replaced by Uracil(U). The molecules of RNA are
folded up in a complicated way. It is their three
dimensional structure which determines their activity.
There are pairs of complementary subsequences of RNA
which are mapped together. Such pairs of subsequences
are called palindromes [TG94]. The algorithms for

detecting palindromes were studied by Apostolico,
Breslauer, and Galil in 1992 [AB92].

Fig (i) Conversion of DNA to mRNA

DNA
TTTTCGAATTNAACCTCGGTTTNCCTGC
CTAACCTCCCAAGTAGCTGGGACTACA
GGCGCCTGCCCGCGCACCCGGCTAATT

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

41

TTTAGTAGAGACCGTGTTTCACCGTGTT
AGCCAGGATGGTCTCGATCTCCTGAC

mRNA
UUUUCGAAUUNAACCUCGGUUUNCCU
GCCUAACCUCCCAAGUAGCUGGGACU

ACAGGCGCCUGCCCGCGCACCCGGCUA
AUUUUUAGUAGAGACCGUGUUUCACC
GUGUUAGCCAGGAUGGUCUCGAUCUC
CUGAC

The complete DNA sequence of a living

organism is called its genome. The RNA plays an
important role to translate DNA into proteins. A section

of the DNA coding for a protein is called genome
structure [TG93].
 DNA can be converted into RNA just by
replacing thymine (T) with uracil(U). In the above Fig
(i), we have converted DNA into messenger ribonucleic
acid.

Fig (ii) Comparison of the compression results in bits

per base obtained from the algorithms Bzip2,

Bio2,Gen2, CTW, DNA, and GeNML

For converting DNA sequence if we take window size
equals to 218 then we find very good compression

results. But we can take block size equals to 24 or 32 or
40 or 48 or 56 or 64 or 72 or 80 or 88 or 96 characters.

The sequence on which we perform
compression tests are the DNA samples which are
obtained from the finch TV tool. We are using the

sample data obtained from finch TV tool because it is
the actual DNA sequence data and it is easily available
in the form of A, C, G, T, and N(space in DNA
sequence). Similar results can be obtained for the data of
MIPACGA, MPOMTCG, CHNTXX, MPOCPCG,
YSCCHRIII, VACCG, HUMGHCSA, HUMHBB, and
HS5HCMVCG.

III COMPARISON OF DNA

COMPRESSION ALGORITHMS

 If we compare the results obtained by algorithms
suggested in the previous research work of Bzip2,
Biocompress2, Gen2, CTW, DNA, and GeNML for the
DNA sequences of CHMPXX, CHNTXX,

HEHCMVCG, MTPACCG, and VACCG for different
size of DNA sequences in terms of Bits per base, then
we find the above results of Fig (ii)[KT2005]:
 The results of above Fig (ii) show that the
GeNNML model gives the best compression result. The
GeNML algorithm has combined the statistical and
substitution method together for window size = 218 and
block size=24 to 96.

IV THE ALGORITHM DNA

SEQUENCE COMPRESSOR (DNASC)

In human DNA structure there are so many unknown
nucleotides. These unknown nucleotides are represented
by N (space). On April 14 2003 complete human

genome structure was released on the NCBI website. If
we see the DNA sequence of human genome then we
find that the human genome structure consists of five
characters A, C, G, T, and N where N represent
unknown nucleotides (space).
 Finch TV software tool is a tool which converts
chromosomes of human genome in the form of DNA
sequences (A, C, G, T, N). We have taken the human

DNA sequence which is obtained from finch TV
software tool for our research and HUMDYSTROP. The
study reports reveal that in the human DNA structure
certain characters are repeated again and again. The
method which we have developed for compressing
human DNA sequence is known as DNA Sequence
Compressor (DNASC). This method can be used to
compress the DNA and RNA sequence of human

genome. But it is not applicable for compressing
proteins.

 Biocompress-2[GT94], and GeNML[KT2005]
 uses four characters of alphabet for DNA
sequences in the form of characters A, C, G, and T. We
take 5 characters A(Adenine), C(Cytosine), Guanine(G),
Thymine(T), and N(Unknown Nucleotides) in our
research work. We are including unknown nucleotides (N)
in our research work because these unknown nucleotides

Sequence Size Bzip2 Bio2 Gen
2

CTW DN
A

GeNML

CHMPXX

12102
4

2.12

1.68

1.67

1.67

1.67

1.66

CHNTXX

15584
4

2.18

1.62

1.61

1.61

1.61

1.61

HEHCMV-CG

22935
4

2.17

1.85

1.85

1.84

1.85

1.84

HUMDYSTRO
P

38770

2.18

1.93

1.92

1.92

1.91

1.91

HUMGHCSA

66495

1.73

1.31

1.10

1.10

1.03

1.01

HUMHDABC
D

58864

2.07

1.88

1.82

1.82

1.80

1.71

HUMHPRTB

56737

2.09

1.91

1.85

1.84

1.82

1.76

MPOMTCG

18660
8

2.17

1.94

1.91

1.90

1.89

1.88

MTPACG

10032
4

2.12

1.88

1.86

1.86

1.86

1.84

VACCG

19173
7

2.09

1.76

1.76

1.76

1.76

1.76

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

42

are occurring again and again in the human genome
structure.

GeNML[KT2005] method is the combination of
substitution and statistical methods and Biocompress-
2[GT94] is based on substitution method. GeNML and

Biocompress-2 both can compress the online textual data
[SSZR2005].

OFF-LINE3 [AL2000] compresses the offline
textual data of DNA sequence. Since, the block size
providing the best compression may vary as per the local
changes in the DNA and RNA sequences. In our research
work we have taken window size equals to 27 = 128
characters and we may take block size equals to 4, 6, 8,

10, 12, 14, or 16.
Let us take following Fig (iii) of human genome

DNA sequence of 128 characters which is obtained from
Finch TV software:

Fig (iii): Sample of human DNA sequence for

128 character data obtained from Finch TV software

Tool
TTTTCGAATTNAACCTCGGTTTNCCTGCCTAACCT
CCCAAGTAGCTGGGACTACAGGCGCCTGCCCGCG
CACCCGGCTAATTTTTAGTAGAGACCGTGTTTCAC
CGTGTTAGCCAGGATGGTCTCGAT

If we see the repetition of the characters A, C,
G, T or N in the human genome DNA sequence
HUMDYSTROP, HUMGHCSA, HUMHDABCD, and

HUMHPRTB then we find that no character is repeated
continuously for more than 9 times. Therefore, in our
research work we have assumed that no character of the
human genome is repeated continuously for more than 9
times.

The human DNA sequence characters are
represented by following equations:

 S1= {A, C, G, T, N} (equation I)
 S2= {1, 2, 3, 4, 5} (equation II)

If character A is repeated continuously for 5
times, character C is repeated for 3 times, character G is
repeated for 4 times, T is repeated for 3 times and
character N is repeated for 2 times in the DNA sequence
then in Lempel-Ziv (LZ) style representation our data will
be represented by following equations:

S3= {AAAAA, CCCC, GGGG, TTT, NN}

 (equation III),
 and S4= {15, 23, 35, 43, 52}

 (equation IV)
 We can’t use 2 bits to represent the digits of
equation IV because the largest two digit number which
may exist in human DNA sequence as per our assumption
will be 59. To represent 59 we need at least 7 bits. Thus,
we will use 6 bits to represent each two digits number of

equation-IV. If we represent each two digits number of
equation IV by 7 bits then we get the following equation:

S5 = {0001111, 0010111, 0100010, 0101011,
 0110100} (equation V)

Therefore, if we represent the sample data of Fig
(iii) in extended Lempel-Ziv (LZ) style by considering the
equations I, II, III, IV, and V after including unknown

nucleotides (N) then we find the following sequence of
digits:

Fig(iv): Lempel-Ziv style (LZ) representation of data after

including unknown nucleotides (N) and

considering equation I, II, III, IV.

442131 124251 122241 233243 522241
312241 331231 411131 214133 122141
112111 322131 234131 233121 312111
233221 411246 314111 451131 411131
113111 223141 314321 112231 413142
113122 113211 413241 214121 311141

If we represent each 2 digits number of Fig (iv) into
binary form by taking 7 bits then we will get the
following result of Fig (v):

Fig (v): 7-Bit binary conversion of extended LZ

 style data of Fig - iv
010110000101010011111
000110001010100110011
000110000101100101001
001010101000000101011
011001100101100101001
001111100101100101001

010000100011000011111

010100100010110011111
001010101010010100001
000101100101010101001
000101100101010001011
010000000101010011111

001011001010010011111
001011101010010011111
010100100111110001011

001011101000000010101
010100100011000101110
001111101010010001011

010110100010110010111
010100100010110010111
000101100111110000011
001011000111110100001

001111101010110011101
000101100101100010111

010100100111110100010
000101100111110010110
000101101000000001011
010100101000000101001
001010101010010010101

001111100010110101001

 From the statistical point of view human DNA
sequences are the messages S = S1, S2, S3, S4,…Sn.

emitted by a source with M=5 symbols [TG93].
 These symbols are represented by A, C, G, T,

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

43

and N. In our work we have represented it by S={1,
2, 3, 4, 5}.
 Let Cb is the current block of 6 digits in which
each 2 digit is represented by 7-bit binary number.
Now each block will be encoded with respect to the

current block[TG93]. If we represent each 2 digit of
a block by using 7 bits then the maximum number of
possible combinations will be 27 = 128.
 Let us suppose that the next block is
represented by Nb. Now, following conditions may
occur [EAHKNM2008]:

CONDITION 1: If next block is similar to the current

block
 Then Nb = Cb

CONDITION 2: If next block is complement of the
current block
 Then Nb = Complement of Cb

CONDITION 3: If next block is the reverse of the
current block
 Then Nb = Reverse of Cb.

CONDITION 4: If next block is complement of
reverse of the current block
 Then Nb = Complement of Reverse
of Cb.

CONDITION 5: If next block is 2’s complement of
the current block

Then Nb = 2’s Complement of Cb

CONDITION 6: If next block is the reverse of 2’s

complement of the current block
 Then Nb = Reverse of 2’s complement of
 Cb.

CONDITION 7: If next block is 2’s complement of
reverse of the current block
 Then Nb = 2’s Complement of
Reverse of Cb.

CONDITION 8: If next block is 9’s complement of
the current block

Then Nb = 9’s Complement of Cb

CONDITION 9: If next block is the reverse of 9’s
complement of the current block
 Then Nb = Reverse of 9’s complement of
 Cb.

CONDITION 10: If next block is 9’s complement of
reverse of the current block
 Then Nb = 9’s Complement of

Reverse of Cb.

CONDITION 11: If next block is 10’s complement
of the current block

Then Nb = 10’s Complement of Cb

CONDITION 12: If next block is the reverse of 10’s
complement of the current block
 Then Nb = Reverse of 10’s complement
of Cb.

CONDITION 13: If next block is 10’s complement
of reverse of the current block
 Then Nb = 10’s Complement of
Reverse of Cb.

CONDITION 14: If next block is equal to 1-bit to 6-
bits of right shift or left shift of the current block

 Then Nb = 1- bit to 6 Bits of right shift
or left shift of Cb.

CONDITION 15: If next block is equal to 1-bit to 6-
bits of right shift or left shift of 1’s complement of
the current block

 Then Nb = 1- bit to 6 Bits of right shift
or left shift of 1’s complement of Cb.

CONDITION 16: If next block is equal to 1-bit to 6-
bits of right shift or left shift of 2’s complement of
the current block
 Then Nb = 1- bit to 6 Bits of right shift
or left shift of 2’s complement of Cb.

CONDITION 17: If next block is equal to 1-bit to 6-

bits of right shift or left shift of 9’s complement of
the current block
 Then Nb = 1- bit to 6 Bits of right shift
or left shift of 9’s complement of Cb.

CONDITION 18: If next block is equal to 1-bit to 6-
bits of right shift or left shift of 10’s complement of
the current block
 Then Nb = 1- bit to 6 Bits of right shift

or left shift of 10’s complement of Cb.

CONDITION 19: If next block is equal to 1-bit to 6-
bits of right shift or left shift of reverse of 1’s
complement of the current block
 Then Nb = 1- bit to 6 Bits of right shift
or left shift of reverse of 1’s complement of Cb.

CONDITION 20: If next block is equal to 1-bit to 6-
bits of right shift or left shift of reverse of 2’s

complement of the current block
 Then Nb = 1- bit to 6 Bits of right shift
or left shift of reverse of 2’s complement of Cb.

CONDITION 21: If next block is equal to 1-bit to 6-
bits of right shift or left shift of reverse of 9’s
complement of the current block
Then Nb = 1- bit to 6 Bits of right shift or
 left shift of reverse of 9’s
 complement of Cb.

CONDITION 22: If next block is equal to 1-bit to 6-
bits of right shift or left shift of reverse of 10’s
complement of the current block
 Then Nb = 1- bit to 6 Bits of right shift
 or left shift of reverse of 10’s
 complement of Cb.

 These conditions can be represented by either
capital case letters from A TO Z or by small case

letters from a to z or by numerals from 0 to 9 or by
special symbols.
Thus, we will get following cases for all the above
stated conditions:
CASE 1 : P1(Cb / Nb) = A - Z
CASE 2 : P2(Cb / Nb) = a -z
CASE 3 : P3(Cb / Nb) = 0 to 9
CASE 4 : P4(Cb / Nb) = Special symbol

 Therefore, we can represent the data of DNA
sequence by following mathematical equation:
P(Cb / Nb)= P1(Cb / Nb) + P2(Cb / Nb) + P3(Cb / Nb) +
 P4(Cb / Nb) (equation vi)

 If we take window size equals to 128 bytes
means 128*8 = 1024 bits and block size equals to 21

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

44

bits then we will have total 48 blocks in which the
last block will be having little unused space.

 After replacing the values of capital case letters
(A - Z), small case letters (a – z), digits (0 – 9), and

special symbols for the conditions 1 to 128 in Fig(v),
we will get the compressed data of DNA sequence.
 If we compare the compression result of
DNASC algorithm with the existing compression
algorithms then we find that DNASC algorithm gives
the best result. We will compare the compression
result of our algorithm with other algorithms in the
next section (section 5).

 STEPS OF DNASC ALGORITHM:
STEP 1: Initialize the values of parameters:

 block_size(b), Window_size(w).
STEP 2: Let the value of DNA sequence A is 1, C
 is 2, G is 3, T is 4, and N is 5.
STEP 3: Read the DNA sequence from the file and
convert it in the form of extended LZ style by using
a counter variable (initialize counter=0). If a
character of the DNA sequence is repeated more
than one time continuously then the value of the
counter will be increased by 1.

STEP 4: Convert the extended LZ data into
different blocks. (For our case block_size(b)=6
digits).
STEP 5: Convert every 2-digits data of all the
blocks in 7 bits binary code.
STEP 6: Initialize, current_block(W)=first block
STEP 7: Compute complement_of_first_block,
reverse of first block, complement of reverse of fist

block, 2’s complement of current block, reverse of
2’s complement of current block, 2’s complement
of reverse of current block, 9’s complement of
current block, Reverse of 9’s complement of
current block, 9’s complement of reverse of current
block, 10’s complement of current block, Reverse
of 10’s complement of current block, 10’s
complement of reverse of current block, left shift

of first block from 1-bit to 6 bits, and right shift of
first block from 1-bit to 6-bits.
STEP 8: Compress all the blocks of the window in
the form of A – Z, a – z, 0 – 9, and special symbols.
STEP 9(a): Display the compressed DNA
sequence result.
STEP 9(b): Prepare a table which represents the
conversion of bits into capital case letters (A-Z),

small case letters(a-z), digits(0-9), and special
symbols.
SPET 10: Decompress the DNA sequence by using
the table of STEP 9, and display the decompressed
result.
STEP 11: END.

The DNASC algorithm can be
implemented in C or C++ language.

V ANALYSIS OF DNASC

ALGORITHM’S RESULT

The biocompress and biocompress-II algorithms
have used Lempel-Ziv style of data representation for
DNA nucleotides A, C, G, and T. They did not include
unknown nucleotide N (space) of the DNA sequence. It
compresses the DNA sequence first horizontally and then
vertically. Biocompress and biocompress-II uses 2 bits for
encoding a DNA sequence alphabet.

Fig vi: Performance comparison of DNASC

with GeNML and other algorithms

GNML and GeNML algorithms use the

combination of substitution method and statistical method.
In GeNML method Korodi and Tahi first used the
substitution method to compress the data horizontally and

Sequence Size Bzip
2

Bio2 Gen2 CTW DN
A

GeN
ML

DNASC

CHMPX

X

12102

4

2.12

1.68

1.67

1.67

1.67

1.66

1.50

CHNTX
X

15584
4

2.18

1.62

1.61

1.61

1.61

1.61

1.51

HEHCM
V-CG

22935
4

2.17

1.85

1.85

1.84

1.85

1.84

1.80

HUMDY
S-TROP

38770

2.18

1.93

1.92

1.92

1.91

1.91

1.89

HUMGH
C-SA

66495

1.73

1.31

1.10

1.10

1.03

1.01

0.91

HUMHD
A-BCD

58864

2.07

1.88

1.82

1.82

1.80

1.71

1.61

HUMHP
R-TB

56737

2.09

1.91

1.85

1.84

1.82

1.76

1.71

MPOMT
C-G

18660
8

2.17

1.94

1.91

1.90

1.89

1.88

1.88

MTPAC
G

10032
4

2.12

1.88

1.86

1.86

1.86

1.84

1.80

VACCG

19173
7

2.09

1.76

1.76

1.76 1.76

1.76

1.70

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

45

vertically, and then KT2005 have used probability and
statistics to find the occurrences of a particular sequence
in the DNA database.

KT2005 have used window size equals to 218

and block size equals to 24 or 32 or 40 or 48.

In our algorithm DNASC we have also included
unknown nucleotides N (space) with other symbols A, C,
G, and T of DNA sequence.
 In our DNASC algorithm we have used
extended Lempel-Ziv[LZ76] style representation for 5
basic symbols A, C, G, T, and N. Here, N represents
unknown nucleotides which is either A, or C, or G, or T.
These unknown nucleotides can be either A, or C, or G, or

T. But in our representation we have taken unknown
nucleotide (N) as a separate symbol. Thus, in our
representation we have used five basic symbols.

 The above Fig (vi) shows the performance
comparison between Bzip-2, Bio-2, Gen-2, CTW, DNA,
GeNml, and our algorithm DNA Sequence Compressor
(DNASC) for DNA sequences after including unknown

nucleotides as a separate entity N. The practical evaluation
of the performance of DNASC was done in such a way
that it is easily comparable with the published results
explaining the performance of Biocompress-2[GT94],
Gencompress-2 [Chen et al 2001], DNA Compress [Chen
et al 2002], and GeNML [Grambach and Tahi 2005],
which all are using the same set of DNA sequences. These
DNA sequences are available as a DNA database and

these DNA databases are modified and updated usually.
For each file of DNA database we have taken window size
is equal to 128 and block size equal to 21. Encoding all the
files in a computer of dual core processor with 512MB
RAM and 1.6GHz processing speed the algorithm has
taken approximately the same time which Grambach and
Tahi algorithm takes to compress the whole set of DNA
sequences of Fig(ii). But our algorithm gives better
compression result in terms of bits per base in comparison

to other existing algorithms. To decompress the DNA
sequence data set our algorithm has taken approximately
half of the time which was taken by the processor to
compress it.
 We have found in our research work that the
cases where our method cannot improve the known result
then for these cases none of the existing algorithm could
provide an improved result. The results of our algorithm

are an improvement over the best known results to date on
all the files in which repetitions may occur again and
again.

 In our algorithm we have compressed the DNA
sequence first horizontally and then vertically in our
algorithm. To compress the data vertically we have taken
block size equals to 6 and window size equals to 128. To

compress each 2 digits of a block we have used 7 bits.
Therefore, each block is compressed by using only 21 bits
because each block has 6 digits and each 2 digit is
represented by 7 bits.
 Two cases of GeNML model:
CASE 1: If the next block is same as the first block then
the value of P(Cb / Nb) will be 1.
CASE 2: Otherwise the value of P(Cb / Nb) will be 0.

 But, in our algorithm’s statistical part we have
used 22 basic cases which includes all the possible
combination and these cases are described in section- iv.
Further we have represented the conditions from 1 to 26
by capital case letters(A-Z), conditions from 27 to 52 by

small case letters(a-z), and conditions from 53 to 62 by
digits (0 – 9), and other conditions by special symbols.
Now these numbers are further represented in 7 bits binary
numbers.

 In order to illustrate the practical strength of our
algorithm we have tried to compress the complete human
genome structure which was released in April 2004. Here,
we found that the human genome consists of a large

number of unknown nucleotide which are represented by
N. These unknown nucleotides can be either A, or C, or G,
or T. Our algorithm also compressed the human genome
structure successfully. The parameter set for the
compression of human genome structure was Window size
equal to 512, and block size equal to 64. Here, we took
block size took block size in the multiples of window size
to minimize memory waste.

VI CONCLUSIONS AND FUTURE

WORK

 In this paper we have introduced an efficient
DNA sequence compression algorithm called DNASC.
This algorithm has following six parts:
Part I: Lempel-Ziv style representation of data,
Part II: Dividing the Lempel-Ziv style data into different
blocks of same size (block size = 6) for a window size=27,

Part III: Converting each block into 7-bits binary code.
Part IV: Encrypt the data, by using the conditions (1 to
22) discussed in section IV, in the form of capital case
letters (A-Z), small case letters (a-z), digits (0 – 9), and
special symbols.
PART V: Prepare the encryption and decryption table.
PART VI: Finally decrypt the data by using decryption
table.

DNASC algorithm is the combination of substitution
and statistical methods. The performance of the
algorithm DNASC depends upon 128 conditions
explained in section IV.
 Finally, we have analyzed and compared the
performance of DNASC algorithm with other
algorithms. Taking different block size and window size
in DNA sequence compression is an important area of
research and we need to do further research work in this

area.

REFERENCES:
1. [AL2000] Alberto Apostolico and Stefano

Lonardo, Compression of Biological Sequences

By Greedy Off-Line Textual Substitution,
2000.

2. [AB92] A. Apostolico, D. Bresauer, and Z.
Galil. Optimal Parallel algorithms for periods,
palindromes, and squares. In unpublished 1992.

3. [LZ76] A. Lempel and J. Ziv, On the complexity
of finite sequences, IEE Transaction Inform.
Theory, 22(1): 75-81, 1976.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

46

4. [CKL99] Chen, X, Kwong, S., and Li, M., A
compression algorithm for DNA sequences and
its application in genome comparison, Genome
Informatics, 10:52-61, 1999

5. [Huf52] D.A. Huffman, A method for

construction of minimum redundancy codes, In
proc. IRE, volume 40, page 1098 – 11101,
Sept 1952.

6. [LH87] D.A. Lelewer and D.S. Hirshberg, Data
Compression. ACM computing Surveys,
19(3):261-287, 1987.

7. [EAHKNM2008] E.A. Hadi, K. N. Mishra,
DNA Sequence Compression Algorithm,

National Conference on Communication and
Information Technology, Tripoli, May 19 – 21
2008.

8. [TG93] Fariza Tahi, Stephen Grumbach, A
New Challenge for Compression Algorithms:
Genetic Sequence, 1993

9. [TG94] Fariza Tahi, Stephen Grumbach,
Compression of DNA Sequences: Extended

Abstract, 1994
10. [KT2005] Gregely Korodi, Ioan Tabus, An

Efficient Normal Maximum Likelyhood
Algorithm for DNA sequence compression,
2005.

11. [Sto88] J.A. Storer. Data Compression methods
and theory, Computer Science Press, 1988.

12. [ZL77] J. Ziv and A. Lempel, A universal
algorithm for sequential data compression.
IEEE Transactions on Information Theory,

22(3): 337-343, May 1977.
13. [ZL78] J. Ziv and A. Lempel, Compression of

individual sequences via variable rate coding.
IEEE Transactions on Information Theory,
24(5): 530-536, Sept 1978.

14. [SSZR2005] Sheng Bao, Shi Chen, Zhi-Qiang
Jing, Ran Ren, DNA Sequence Compression
Algorithm Based on LUT and LZ77,

Proceeding of the fifth International
Symposium on Signal Processing and
Information Technology, Volume, Issue, 18 –
21 Dec. 2005 Page(s): 23 – 28.

15. [GT94] S. Grumbach, and H. Tahi, A New
Challenge for compression Algorithms: genetic
sequences, Information Processing and
Management, 30:875-886, 1994.

16. [VVP] V.V. Pillay, Textbook of Forensic
Medicine and Toxicology, Paras Publication,
India

17. www.ebi.ac.uk/embl/Documentation/User_man
ual/usrman.html, Jan 2008

http://www.ebi.ac.uk/embl/Documentation/User_manual/usrman.html
http://www.ebi.ac.uk/embl/Documentation/User_manual/usrman.html

