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ABSTRACT  

DNA matching has become one of the most used 

biometric identification method during the last 

several years. DNA stores the information for 

creating and organizing an organism. It can be 

thought of as a string over the alphabets {A, C, G, 

T, N}, which makes four chemical components that 

make it up. Here, N represents an unknown 

nucleotide. This unknown nucleotide may be either 

A, or C, or G, or T. The size of each sequence is 

varying in the range of millions to billions of 

nucleotides. 

 Compression of DNA is interesting for both 

practical reasons (such as reduced storage and 

transmission cost) and functional reasons (such as 

inferring structure and function from compression 

models). We present a new Lossless Compression 

algorithm; which compresses data first horizontally 

and then vertically. It is based on substitution and 

statistical methods. We claim that our algorithm 

achieves one of the best compression ratios for 

bench mark DNA sequences in comparison to 

other DNA sequence compression methods. 

 

General Terms 

    DNA Sequence Compression and Identification 

 

Keywords 
 DNA Sequence, Lossless Compression, Horizontal 

compassion, Vertical compression, Substitution 

methods, Statistical methods, Genome structure 

I    INTRODUCTION 

In the last few years, DNA evidence has started to 
play a big part in many nations criminal justice systems. It 
has been used to prove that suspects were involved in 
crimes and to free people who were wrongly convicted. 
Several countries, including United States and Britain,  

 
 
 
 
 

 
 
 
 
 
 
 
 

 
have built elaborate databases with hundreds of thousands 
of unique individual profiles [SSZR2005]. Currently many 
countries are establishing DNA database from individual 
with the history of violent and crimes. Those databases 
would allow the identification of suspects by simply cross 
checking the DNA profile of the evidence with those 
stored in the database. The Combined DNA Identification 

System (CODIS) connects local states and federal law 
enforcement agency data banks across the country USA 
(approximately 2 million profiles). As of march 2005 
CODIS has produced 21000 criminal identifications and it 
has assisted in over 23000 investigations. 

Today, increasing genome sequence data of 
organisms lead DNA database two or three times bigger 
annually. Thus, it becomes very hard to download and 

maintain such data in personal local system [CKL99]. The 
size of current biological databases is rapidly increasing 
due to continuous sequencing efforts. Some common 
databases need more than 160GB of disk space (e.g. DNA 
databank of Japan (DDBJ) [CKL99] and furthermore, 
additional disk space is needed for the index files of the 
different retrieval methods (e.g. BLAST [GT94]). Thus, 
there is a lot of disk space needed for redundant data. One 
could now think about efficient compression algorithms to 

solve this problem. 
The problem with DNA based identification system 

is that it cannot be used for online identification of a 
person like iris based identification system or thumb print 
based identification system. But, DNA database of a 
person may be useful for further criminal investigation. 
Thus, we may either need to retrieve the DNA data from 
server for further processing and investigations or we may 

need to transfer the DNA data from one location to 
another location for further criminal investigations. 

A single person’s complete DNA structure may take 
more than 100 gigabytes of memory. Therefore if we 
transfer DNA database from one location to another 
location for further criminal investigations or for any other 
purpose then the transfer time will be very high. If we 
download the data from the server for further research 

work then its download time will be very high. Thus, we 
need an efficient lossless compression technique to 
compress the DNA sequence before sending it to another 
location so that after receiving and decompressing the data 
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at destination end the exactly same DNA sequence should 
be obtained.  

Sometimes, we need to download the DNA data for 
pursuing further research work. If the compressed form of 
DNA data is stored on the server then its download time 

can be minimized and the researchers can use the same 
lossless compression technique to decompress the data 
after downloading it. Although lossless compression 
algorithms like BZip, Bio-Compress, Bio-Compress2, 
GeN, and GeNML are available for compression of DNA 
sequences but the compression result of these algorithms 
are not sufficient to compress the DNA sequence with 
high efficiently. 

Thus, our proposed algorithm DNASC (DNA 
Sequence Compressor) will be useful to compress the 
DNA data efficiently before sending it from one location 
to another location. The receiving computer will further 
use our DNASC algorithm to decompress the data after 
receiving it.  

Therefore, our algorithm will be useful to compress 
the DNA sequence before transmitting it and our 

algorithm will be used to decompress the DNA data after 
receiving it without any data loss (lossless compression 
method).  

The deoxyribonucleic acid (DNA) constitutes the 
physical medium in which all the properties of a living 
organism are coded [TG93]. A DNA sequence consists of 
four alphabets namely Adenine (A), Cytosine(C), Guanine 
(G) and Thymine (T).  

The ribonucleic acid (RNA) sequence is also 
consisting of four alphabets Adenine (A), Cytosine(C), 
Guanine (G) and Uraceil(U). RNA’s nucleotide are similar 
to DNA’s nucleotide but Thymine (T) is replaced by 
Uraceil(U) in RNA nucleotides. DNA compression by 
standard methods such as Lempel and Ziv[LZ76] style or 
Huffman coding [Huf52] does not give positive 
compression result. It means if we compress DNA or 
RNA sequence with LZ76 method or with Huf52 method 

then the compressed data will need more space than the 
actual data. 

Various algorithms have been proposed to compress 
the size of text such as LZ76, LH87, Sto88, ZL77, ZL78, 
Grumbach and Tahi[GT93], Grumbach and Tahi[GT94], 
Apostolico and Lonardi[AL2000]. To compress the DNA 
sequence either offline or online we use two main 
approaches, the statistical approach and the substitution 

approach. In the statistical approach, blocks of fixed 
length (generally letters) are encoded with respect to their 
probability of appearance [Huf52]. In the substitution 
approach, factors of different length are encoded using a 
pointer to the previous occurrences of the text [TG94]. 
The substitution algorithms have negative compression 
ratio in DNA sequence compression. It means, the size of 
the DNA sequence increases after compressing it by using 

substitution approach.  
Therefore, Grumbach and Tahi proposed two 

compression modes: Horizontal and Vertical. In the 
horizontal mode, Grumbach and Tahi compressed the 
DNA sequence into a shorter form. In the vertical mode 
Grumbach and Tahi compressed the DNA sequence with 
respect to another sequence B. This DNA sequence 

compression is known as Biocompress. For some genomes 
the compression rate of Biocompress is higher than 30%.  

Biocompress-2 was developed by Grumbach and 
Tahi in 1994. Biocompress-2 was based on the detection 
and encoding of factors and palindromes. Biocompress-2 

gives good result if the DNA genome has large number of 
similar sequences.        

If we see the actual DNA structure then we find that 
there are so many unknown nucleotides in any DNA 
structure. The unknown nucleotides are represented by N 
in DNA sequence representation. We have divided our 
research work into two parts: In the first part we have 
excluded unknown nucleotides in compressing the DNA 

sequences, and in the second part we have included 
unknown nucleotides at the time of compressing the DNA 
sequence. 

DNA compress introduced by Chen, Li, Ma, and 
Tromp [Chen et al. 2002], which also employs a two pass 
strategy is based on substitution (Lempel Ziv style) 
compression method. In the first pass a specialized 
programme called Pattern Hunter is used as preprocessor 

for finding significant approximate repetitions. The second 
pass then encodes these by a pointer to their previous 
occurrences [KT2005].  

This paper is organized as follow. In the next section 
(section-II) we will review the basic knowledge of 
genome structure. In section-III we will compare the 
results of universal text compression algorithms. In 
section-IV we will propose our DNA Sequence 

Compression (DNASC) Algorithm. In section 5 we will 
analyze our results. 
 

        II    RESEARCH ANALYSIS OF BASIC 

GENOME STRUCTURE’S DATA 
 

 A chromosome contains two complementary 

strands of deoxyribonucleic acid or DNA. These are 
long polymers of nucleic acid (nucleotides)each 
consisting of phosphate, deoxyribose and one of four 
‘bases’ which consist of Adenine(A), Cytosine(C), 
Guanine(G), and Thymine(T). These always form a base 
pair based on hydrogen bonds between complementary 
bases: A-T or C-G(The two strands are termed as anti 
parallel, in that they ‘run’ in opposite direction) [VVP]. 

 There is another kind of nucleic acid in the cell 
which is called Rebo-Nucleic Acid (RNA). The RNA 
contains the same nucleotide but where the thymine(T) 
is replaced by Uracil(U). The molecules of RNA are 
folded up in a complicated way. It is their three 
dimensional structure which determines their activity. 
There are pairs of complementary subsequences of RNA 
which are mapped together. Such pairs of subsequences 
are called palindromes [TG94]. The algorithms for 

detecting palindromes were studied by Apostolico, 
Breslauer, and Galil in 1992 [AB92]. 

 

Fig (i) Conversion of DNA to mRNA 
 

DNA 
TTTTCGAATTNAACCTCGGTTTNCCTGC
CTAACCTCCCAAGTAGCTGGGACTACA
GGCGCCTGCCCGCGCACCCGGCTAATT
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TTTAGTAGAGACCGTGTTTCACCGTGTT
AGCCAGGATGGTCTCGATCTCCTGAC  

mRNA 
UUUUCGAAUUNAACCUCGGUUUNCCU
GCCUAACCUCCCAAGUAGCUGGGACU 

ACAGGCGCCUGCCCGCGCACCCGGCUA
AUUUUUAGUAGAGACCGUGUUUCACC
GUGUUAGCCAGGAUGGUCUCGAUCUC
CUGAC 

 
The complete DNA sequence of a living 

organism is called its genome. The RNA plays an 
important role to translate DNA into proteins.  A section 

of the DNA coding for a protein is called genome 
structure [TG93].   
 DNA can be converted into RNA just by 
replacing thymine (T) with uracil(U). In the above Fig 
(i), we have converted DNA into messenger ribonucleic 
acid. 

 

Fig (ii) Comparison of the compression results in bits 

per base obtained from the algorithms Bzip2, 

Bio2,Gen2, CTW, DNA, and GeNML  

 

 

For converting DNA sequence if we take window size 
equals to 218 then we find very good compression 

results. But we can take block size equals to 24 or 32 or 
40 or 48 or 56 or 64 or 72 or 80 or 88 or 96 characters.  

The sequence on which we perform 
compression tests are the DNA samples which are 
obtained from the finch TV tool. We are using the 

sample data obtained from finch TV tool because it is 
the actual DNA sequence data and it is easily available 
in the form of A, C, G, T, and N(space in DNA 
sequence). Similar results can be obtained for the data of 
MIPACGA, MPOMTCG, CHNTXX, MPOCPCG, 
YSCCHRIII, VACCG, HUMGHCSA, HUMHBB, and 
HS5HCMVCG.  

 

III    COMPARISON OF DNA 

COMPRESSION ALGORITHMS 
 

 If we compare the results obtained by algorithms 
suggested in the previous research work of Bzip2, 
Biocompress2, Gen2, CTW, DNA, and GeNML for the 
DNA sequences of CHMPXX, CHNTXX, 

HEHCMVCG, MTPACCG, and VACCG for different 
size of DNA sequences in terms of Bits per base, then 
we find the above results of Fig (ii)[KT2005]: 
 The results of above Fig (ii) show that the 
GeNNML model gives the best compression result. The 
GeNML algorithm has combined the statistical and 
substitution method together for window size = 218 and 
block size=24 to 96.     

 

IV  THE ALGORITHM DNA 

SEQUENCE COMPRESSOR (DNASC) 
 
In human DNA structure there are so many unknown 
nucleotides. These unknown nucleotides are represented 
by N (space). On April 14 2003 complete human 

genome structure was released on the NCBI website. If 
we see the DNA sequence of human genome then we 
find that the human genome structure consists of five 
characters A, C, G, T, and N where N represent 
unknown nucleotides (space). 
 Finch TV software tool is a tool which converts 
chromosomes of human genome in the form of DNA 
sequences (A, C, G, T, N). We have taken the human 

DNA sequence which is obtained from finch TV 
software tool for our research and HUMDYSTROP. The 
study reports reveal that in the human DNA structure 
certain characters are repeated again and again. The 
method which we have developed for compressing 
human DNA sequence is known as DNA Sequence 
Compressor (DNASC). This method can be used to 
compress the DNA and RNA sequence of human 

genome. But it is not applicable for compressing 
proteins.  

         Biocompress-2[GT94],  and GeNML[KT2005] 
 uses four characters of alphabet for DNA 
sequences in the form of characters A, C, G, and  T. We 
take 5 characters A(Adenine), C(Cytosine), Guanine(G), 
Thymine(T), and N(Unknown Nucleotides) in our 
research work. We are including unknown nucleotides (N) 
in our research work because these unknown nucleotides 

Sequence Size Bzip2 Bio2 Gen
2 

CTW DN
A 

GeNML 

 
CHMPXX 
 

 
12102
4 

 
2.12 

 
1.68 

 
1.67 

 
1.67 

 
1.67 

 
1.66 

 
CHNTXX 
 

 
15584
4 

 
2.18 

 
1.62 

 
1.61 

 
1.61 

 
1.61 

 
1.61 

 
HEHCMV-CG 
 

 
22935
4 

 
2.17 

 
1.85 

 
1.85 

 
1.84 

 
1.85 

 
1.84 

 

HUMDYSTRO
P 
 

 

38770 

 

2.18 

 

1.93 

 

1.92 

 

1.92 

 

1.91 

 

1.91 

 
HUMGHCSA 
 

 
66495 

 
1.73 

 
1.31 

 
1.10 

 
1.10 

 
1.03 

 
1.01 

 

HUMHDABC
D 
 

 

58864 

 

2.07 

 

1.88 

 

1.82 

 

1.82 

 

1.80 

 

1.71 

 
HUMHPRTB 
 

 
56737 

 
2.09 

 
1.91 

 
1.85 

 
1.84 

 
1.82 

 
1.76 

 

MPOMTCG 
 

 

18660
8 

 

2.17 

 

1.94 

 

1.91 

 

1.90 

 

1.89 

 

1.88 

 
MTPACG 
 

 
10032
4 

 
2.12 

 
1.88 

 
1.86 

 
1.86 

 
1.86 

 
1.84 

 

VACCG 
 

 

19173
7 

 

2.09 

 

1.76 

 

1.76 

 

1.76 

 

1.76 

 

1.76 
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are occurring again and again in the human genome 
structure. 

GeNML[KT2005] method is the combination of 
substitution and statistical methods and Biocompress-
2[GT94] is based on substitution method. GeNML and 

Biocompress-2 both can compress the online textual data 
[SSZR2005].  

OFF-LINE3 [AL2000] compresses the offline 
textual data of DNA sequence. Since, the block size 
providing the best compression may vary as per the local 
changes in the DNA and RNA sequences. In our research 
work we have taken window size equals to 27 = 128 
characters and we may take block size equals to 4, 6, 8, 

10, 12, 14, or 16.        
Let us take following Fig (iii) of human genome 

DNA sequence of 128 characters which is obtained from 
Finch TV software: 

 

Fig (iii):  Sample of human DNA sequence for 

128 character data obtained from Finch TV software 

Tool 
TTTTCGAATTNAACCTCGGTTTNCCTGCCTAACCT
CCCAAGTAGCTGGGACTACAGGCGCCTGCCCGCG
CACCCGGCTAATTTTTAGTAGAGACCGTGTTTCAC
CGTGTTAGCCAGGATGGTCTCGAT 
 

If we see the repetition of the characters A, C, 
G, T or N in the human genome DNA sequence 
HUMDYSTROP, HUMGHCSA, HUMHDABCD, and 

HUMHPRTB then we find that no character is repeated 
continuously for more than 9 times. Therefore, in our 
research work we have assumed that no character of the 
human genome is repeated continuously for more than 9 
times. 

The human DNA sequence characters are 
represented by following equations: 

 S1= {A, C, G, T, N}         (equation I) 
 S2= {1, 2, 3, 4, 5}   (equation II) 

If character A is repeated continuously for 5 
times, character C is repeated for 3 times, character G is 
repeated for 4 times, T is repeated for 3 times and 
character N is repeated for 2 times in the DNA sequence 
then in Lempel-Ziv (LZ) style representation our data will 
be represented by following equations: 

S3= {AAAAA, CCCC, GGGG, TTT, NN}
    

 (equation III),  
  and S4= {15, 23, 35, 43, 52}  

    (equation IV) 
 We can’t use 2 bits to represent the digits of 
equation IV because the largest two digit number which 
may exist in human DNA sequence as per our assumption 
will be 59. To represent 59 we need at least 7 bits. Thus, 
we will use 6 bits to represent each two digits number of 

equation-IV. If we represent each two digits number of 
equation IV by 7 bits  then we get the following equation: 

S5 = {0001111, 0010111, 0100010, 0101011, 
             0110100}  (equation V) 

Therefore, if we represent the sample data of Fig 
(iii) in extended Lempel-Ziv (LZ) style by considering the 
equations I, II, III, IV, and V after including unknown 

nucleotides (N) then we find the following sequence of 
digits: 

 

Fig(iv): Lempel-Ziv style (LZ) representation of data after 

including unknown nucleotides (N) and 

considering  equation I, II, III, IV. 
 
442131 124251  122241 233243  522241 
312241    331231 411131  214133 122141 
112111 322131    234131 233121  312111 
233221  411246 314111    451131 411131 
113111 223141 314321    112231    413142  
113122 113211 413241    214121  311141

  
                     

If we represent each 2 digits number of Fig (iv) into 
binary form by taking 7 bits then we will get the 
following result of Fig (v):  
 

Fig (v): 7-Bit binary conversion of extended LZ 

 style data of Fig - iv   
010110000101010011111 
000110001010100110011 
000110000101100101001   
001010101000000101011 
011001100101100101001  
001111100101100101001 
 
010000100011000011111 

010100100010110011111 
001010101010010100001  
000101100101010101001  
000101100101010001011  
010000000101010011111 
 
001011001010010011111  
001011101010010011111  
010100100111110001011  

001011101000000010101  
010100100011000101110  
001111101010010001011 
 
010110100010110010111  
010100100010110010111  
000101100111110000011  
001011000111110100001  

001111101010110011101  
000101100101100010111 
 
010100100111110100010 
000101100111110010110  
000101101000000001011  
010100101000000101001  
001010101010010010101  

001111100010110101001 

   
 
 From the statistical point of view human DNA 
sequences are the messages S = S1, S2, S3, S4,…Sn. 

emitted by a source with M=5 symbols [TG93]. 
 These symbols are represented by A, C, G, T, 
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and N. In our work we have represented it by S={1, 
2, 3, 4, 5}.  
 Let Cb is the current block of 6 digits in which 
each 2 digit is represented by 7-bit binary number. 
Now each block will be encoded with respect to the 

current block[TG93]. If we represent each 2 digit of  
a block by using 7 bits then the maximum number of 
possible combinations will be 27 = 128. 
  Let us suppose that the next block is 
represented by Nb.  Now, following conditions may 
occur [EAHKNM2008]: 
 
CONDITION 1: If next block is similar to the current 

block 
                     Then Nb = Cb 

CONDITION 2: If next block is complement of the 
current block  
             Then Nb = Complement of Cb 

CONDITION 3: If next block is the reverse of the 
current block  
                   Then Nb = Reverse of Cb. 

CONDITION 4: If next block is complement of 
reverse of the current block 
    Then Nb = Complement of Reverse 
of  Cb. 

CONDITION 5: If next block is 2’s complement of 
the current block  

Then Nb =  2’s Complement of Cb 

CONDITION 6: If next block is the reverse of 2’s 

complement of  the current block  
                   Then Nb = Reverse of 2’s complement of 
    Cb. 

CONDITION 7: If next block is 2’s complement of 
reverse of the current block 
    Then Nb = 2’s Complement of 
Reverse of  Cb. 

CONDITION 8: If next block is 9’s complement of 
the current block  

Then Nb =   9’s Complement of Cb 

CONDITION 9: If next block is the reverse of 9’s 
complement of  the current block  
                   Then Nb = Reverse of 9’s complement of 
    Cb. 

CONDITION 10: If next block is 9’s complement of 
reverse of the current block 
    Then Nb = 9’s Complement of 

Reverse of  Cb. 

CONDITION 11: If next block is 10’s complement 
of the current block  

Then Nb =   10’s Complement of Cb 

CONDITION 12: If next block is the reverse of 10’s 
complement of  the current block  
                   Then Nb = Reverse of 10’s complement 
of  Cb. 

CONDITION 13: If next block is 10’s complement 
of reverse of the current block 
    Then Nb = 10’s Complement of 
Reverse of  Cb. 

 
CONDITION 14: If next block is equal to 1-bit to 6-
bits of right shift or left shift of the current block 

  Then Nb = 1- bit to 6 Bits of right shift 
or left shift of  Cb. 

CONDITION 15: If next block is equal to 1-bit to 6-
bits of right shift or left shift of 1’s complement of  
the current block 

  Then Nb = 1- bit to 6 Bits of right shift 
or left shift of  1’s complement of  Cb. 

CONDITION 16: If next block is equal to 1-bit to 6-
bits of right shift or left shift of 2’s complement of  
the current block 
  Then Nb = 1- bit to 6 Bits of right shift 
or left shift of 2’s complement of  Cb. 

CONDITION 17: If next block is equal to 1-bit to 6-

bits of right shift or left shift of 9’s complement of  
the current block 
  Then Nb = 1- bit to 6 Bits of right shift 
or left shift of 9’s complement of  Cb. 

CONDITION 18: If next block is equal to 1-bit to 6-
bits of right shift or left shift of 10’s complement of  
the current block 
  Then Nb = 1- bit to 6 Bits of right shift 

or left shift of 10’s complement of  Cb. 

CONDITION 19: If next block is equal to 1-bit to 6-
bits of right shift or left shift of reverse of 1’s 
complement of the current block 
  Then Nb = 1- bit to 6 Bits of right shift 
or left shift of reverse of 1’s complement of  Cb. 

CONDITION 20: If next block is equal to 1-bit to 6-
bits of right shift or left shift of reverse of 2’s 

complement of the current block 
  Then Nb = 1- bit to 6 Bits of right shift 
or  left shift of reverse of 2’s complement of  Cb. 

CONDITION 21: If next block is equal to 1-bit to 6-
bits of right shift or left shift of reverse of 9’s 
complement of the current block 
Then Nb = 1- bit to 6 Bits of right shift or  
       left shift of reverse of 9’s  
       complement of  Cb. 

CONDITION 22: If next block is equal to 1-bit to 6-
bits of right shift or left shift of reverse of 10’s 
complement of the current block 
  Then Nb = 1- bit to 6 Bits of right shift 
  or left shift of reverse of 10’s  
   complement of Cb. 

 These conditions can be represented by either 
capital case letters from A TO Z or by small case 

letters from a to z or by numerals from 0 to 9 or by 
special symbols.  
Thus, we will get following cases for all the above 
stated conditions: 
CASE 1 : P1(Cb / Nb) =   A - Z   
CASE 2 : P2(Cb / Nb) =   a -z   
CASE 3 : P3(Cb / Nb) =   0 to 9  
CASE 4 :  P4(Cb / Nb) =   Special symbol  

 

 Therefore, we can represent the data of DNA 
sequence by following mathematical equation: 
P(Cb / Nb)=  P1(Cb / Nb) + P2(Cb / Nb) + P3(Cb / Nb) + 
  P4(Cb / Nb) (equation vi)    
 
 If we take window size equals to 128 bytes 
means 128*8 = 1024 bits and block size equals to 21 
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bits then we will have total 48 blocks in which the 
last block will be having little unused space.    
  
 After replacing the values of capital case letters 
(A -  Z), small case letters (a – z), digits (0 – 9), and 

special symbols for the conditions 1 to 128 in Fig(v), 
we will get the compressed data of DNA sequence.   
 If we compare the compression result of 
DNASC algorithm with the existing compression 
algorithms then we find that DNASC algorithm gives 
the best result. We will compare the compression 
result of our algorithm with other algorithms in the 
next section (section 5). 

 

 STEPS OF DNASC ALGORITHM: 
STEP 1: Initialize the values of parameters:  

 block_size(b), Window_size(w). 
STEP 2: Let the value of DNA sequence A is 1, C 
 is 2, G is 3, T is 4, and N is 5. 
STEP 3: Read the DNA sequence from the file and 
convert it in the form of extended LZ style by using 
a counter variable (initialize counter=0). If a 
character of the DNA sequence is repeated more 
than one time continuously then the value of the 
counter will be increased by 1. 

STEP 4:  Convert the extended LZ data into 
different blocks. (For our case block_size(b)=6 
digits). 
STEP 5:  Convert every 2-digits data of all the 
blocks in 7 bits binary code. 
STEP 6:   Initialize, current_block(W)=first block 
STEP 7:  Compute complement_of_first_block,  
reverse of first block, complement of reverse of fist 

block, 2’s complement of current block, reverse of 
2’s complement of current block, 2’s complement 
of reverse of current block, 9’s complement of 
current block, Reverse of 9’s complement of 
current block, 9’s complement of reverse of current 
block, 10’s complement of current block, Reverse 
of 10’s complement of current block, 10’s 
complement of reverse of current block,  left shift 

of first block from 1-bit to 6 bits, and right shift of 
first block from 1-bit to 6-bits.  
STEP 8:   Compress all the blocks of the window in 
the form of A – Z, a – z, 0 – 9, and special symbols. 
STEP 9(a):   Display the compressed DNA 
sequence result. 
STEP 9(b): Prepare a table which represents the 
conversion of bits into capital case letters (A-Z), 

small case letters(a-z), digits(0-9), and special 
symbols. 
SPET 10:  Decompress the DNA sequence by using 
the table of STEP 9, and display the decompressed 
result. 
STEP 11: END. 

The DNASC algorithm can be 
implemented in C or C++ language. 
 

 

 

 

V  ANALYSIS OF DNASC 

ALGORITHM’S RESULT 
 

The biocompress and biocompress-II algorithms 
have used Lempel-Ziv style of data representation for 
DNA nucleotides A, C, G, and T. They did not include 
unknown nucleotide N (space) of the DNA sequence. It 
compresses the DNA sequence first horizontally and then 
vertically. Biocompress and biocompress-II uses 2 bits for 
encoding a DNA sequence alphabet.  

 

Fig vi: Performance comparison of DNASC 

with GeNML and other algorithms  

 
 

 
GNML and GeNML algorithms use the 
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vertically, and then KT2005 have used probability and 
statistics to find the occurrences of a particular sequence 
in the DNA database. 

KT2005 have used window size equals to 218 

and block size equals to 24 or 32 or 40 or 48.  

In our algorithm DNASC we have also included 
unknown nucleotides N (space) with other symbols A, C, 
G, and T of DNA sequence. 
 In our DNASC algorithm we have used 
extended Lempel-Ziv[LZ76] style representation for 5 
basic symbols A, C, G, T, and N. Here, N represents 
unknown nucleotides which is either A, or C, or G, or T. 
These unknown nucleotides can be either A, or C, or G, or 

T. But in our representation we have taken unknown 
nucleotide (N) as a separate symbol. Thus, in our 
representation we have used five basic symbols. 
   
 The above Fig (vi) shows the performance 
comparison between Bzip-2, Bio-2, Gen-2, CTW, DNA, 
GeNml, and our algorithm DNA Sequence Compressor 
(DNASC) for DNA sequences after including unknown 

nucleotides as a separate entity N. The practical evaluation 
of the performance of DNASC was done in such a way 
that it is easily comparable with the published results 
explaining the performance of Biocompress-2[GT94], 
Gencompress-2 [Chen et al 2001], DNA Compress [Chen 
et al 2002], and GeNML [Grambach and Tahi 2005], 
which all are using the same set of DNA sequences. These 
DNA sequences are available as a DNA database and 

these DNA databases are modified and updated usually. 
For each file of DNA database we have taken window size 
is equal to 128 and block size equal to 21. Encoding all the 
files in a computer of dual core processor with 512MB 
RAM and 1.6GHz processing speed the algorithm has 
taken approximately the same time which Grambach and 
Tahi algorithm takes to compress the whole set of DNA 
sequences of Fig(ii). But our algorithm gives better 
compression result in terms of bits per base in comparison 

to other existing algorithms. To decompress the DNA 
sequence data set our algorithm has taken approximately 
half of the time which was taken by the processor to 
compress it. 
 We have found in our research work that the 
cases where our method cannot improve the known result 
then for these cases none of the existing algorithm could 
provide an improved result. The results of our algorithm 

are an improvement over the best known results to date on 
all the files in which repetitions may occur again and 
again. 

 
 In our algorithm we have compressed the DNA 
sequence first horizontally and then vertically in our 
algorithm. To compress the data vertically we have taken 
block size equals to 6 and window size equals to 128. To 

compress each 2 digits of a block we have used 7 bits. 
Therefore, each block is compressed by using only 21 bits 
because each block has 6 digits and each 2 digit is 
represented by 7 bits.  
 Two cases of GeNML model: 
CASE 1: If the next block is same as the first block then 
the value of   P(Cb / Nb) will be 1. 
CASE 2: Otherwise the value of P(Cb / Nb) will be 0. 

 But, in our algorithm’s statistical part we have 
used 22 basic cases which includes all the possible 
combination and these cases are described in section- iv. 
Further we have represented the conditions from 1 to 26 
by capital case letters(A-Z), conditions from 27 to 52 by 

small case letters(a-z), and conditions from 53 to 62 by 
digits (0 – 9), and other conditions by special symbols. 
Now these numbers are further represented in 7 bits binary 
numbers.     

 In order to illustrate the practical strength of our 
algorithm we have tried to compress the complete human 
genome structure which was released in April 2004. Here, 
we found that the human genome consists of a large 

number of unknown nucleotide which are represented by 
N. These unknown nucleotides can be either A, or C, or G, 
or T. Our algorithm also compressed the human genome 
structure successfully. The parameter set for the 
compression of human genome structure was Window size 
equal to 512, and block size equal to 64. Here, we took 
block size took block size in the multiples of window size 
to minimize memory waste.    

 

VI      CONCLUSIONS AND FUTURE 

WORK 
 

 In this paper we have introduced an efficient 
DNA sequence compression algorithm called DNASC. 
This algorithm has following six parts:  
Part I: Lempel-Ziv style representation of data, 
Part II: Dividing the Lempel-Ziv style data into different 
blocks of same size (block size = 6) for a window size=27,  

Part III: Converting each block into 7-bits binary code.   
Part IV:  Encrypt the data,  by using the conditions (1 to 
22)  discussed in section IV, in the form of capital case 
letters (A-Z), small case letters (a-z), digits (0 – 9), and 
special symbols. 
PART V:  Prepare the encryption and decryption table. 
PART VI: Finally decrypt the data by using decryption 
table. 

DNASC algorithm is the combination of substitution 
and statistical methods. The performance of the 
algorithm DNASC depends upon 128 conditions 
explained in section IV.  
 Finally, we have analyzed and compared the 
performance of DNASC algorithm with other 
algorithms. Taking different block size and window size 
in DNA sequence compression is an important area of 
research and we need to do further research work in this 

area. 
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