
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

22

Anti-message Logging based Coordinated Checkpointing
Protocol for Deterministic Mobile Computing Systems

 Praveen Kumar Ajay Khunteta
 Department of Computer Science & Engineering, Singhaniya University

 Meerut Institute of Engineering & Technology, Pechri, Rajasthan, India
 Meerut, India

ABSTRACT
A checkpoint algorithm for mobile computing systems needs to

handle many new issues like: mobility, low bandwidth of wireless

channels, lack of stable storage on mobile nodes, disconnections,

limited battery power and high failure rate of mobile nodes.

These issues make traditional checkpointing techniques unsuitable

for such environments. Minimum-process coordinated

checkpointing is an attractive approach to introduce fault

tolerance in mobile distributed systems transparently. This

approach is domino-free, requires at most two checkpoints of a

process on stable storage, and forces only a minimum number of

processes to checkpoint. But, it requires extra synchronization

messages, blocking of the underlying computation or taking

some useless checkpoints. In this paper, we propose a minimum-

process coordinated checkpointing algorithm for deterministic

mobile distributed systems, where no useless checkpoints are

taken, no blocking of processes takes place, and anti-messages of

very few messages are logged during checkpointing. We try to

reduce the loss of checkpointing effort when any process fails to

take its checkpoint in coordination with others. We also address

the related issues like: failures during checkpointing,

disconnections, concurrent initiations of the algorithm.

1. INTRODUCTION

1.1 Definitions and Notations
Checkpoint: Checkpoint is defined as a designated place in a

program at which normal process is interrupted specifically to

preserve the status information necessary to allow resumption of

processing at a later time. A checkpoint is a local state of a

process saved on stable storage. By periodically invoking the

checkpointing process, one can save the status of a program at

regular intervals.

Rollback Recovery: If there is a failure one may restart

computation from the last checkpoints thereby avoiding repeating

computation from the beginning. The process of resuming

computation by rolling back to a saved state is called rollback

recovery.

Global State : In a distributed system, since the processes in the

system do not share memory, a global state of the system is

defined as a set of local states, one from each process. The state of

channels corresponding to a global state is the set of messages

sent but not yet received.

Orphan Message: A message whose receive event is recorded,

but its send event is lost.

Consistent Global State: A global state is said to be “consistent”

if it contains no orphan message. To recover from a failure, the

system restarts its execution from a previous consistent global

state saved on the stable storage during fault-free execution. In

distributed systems, checkpointing can be independent,

coordinated [3], [8], [11] or quasi-synchronous [2], [9]. Message

Logging is also used for fault tolerance in distributed systems

[14].

Asynchronous Checkpointing: Under the asynchronous approach,

checkpoints at each process are taken independently without any

synchronization among the processes. Because of absence of

synchronization, there is no guarantee that a set of local

checkpoints taken will be a consistent set of checkpoints. It may

require cascaded rollbacks that may lead to the initial state due to

domino-effect [7].

Coordinated Checkpointing: In coordinated or synchronous

Checkpointing, processes take checkpoints in such a manner that

the resulting global state is consistent. Mostly it follows two-

phase commit structure [3], [8], [11], [22]. In the first phase,

processes take tentative checkpoints and in the second phase,

these are made permanent. The main advantage is that only one

permanent checkpoint and at most one tentative checkpoint is

required to be stored. In the case of a fault, processes rollback to

the last checkpointed state. Communication-induced

Checkpointing: It avoids the domino-effect without requiring all

checkpoints to be coordinated [2], [7], [9]. In these protocols,

processes take two kinds of checkpoints, local and forced. Local

checkpoints can be taken independently, while forced checkpoints

are taken to guarantee the eventual progress of the recovery line

and to minimize useless checkpoints. As opposed to coordinated

checkpointing, these protocols do no exchange any special

coordination messages to determine when forced checkpoints

should be taken. But, they piggyback protocol specific

information [generally checkpoint sequence numbers] on each

application message; the receiver then uses this information to

decide if it should take a forced checkpoint.

Deterministic Systems: If two processes start in the same state,

and both receive the identical sequence of inputs, they will

produce the identical sequence outputs and will finish in the same

state. The state of a process is thus completely determined by its

starting state and by sequence of messages it has received [23,

[24], [25].

Checkpoint Interval (CI): The ith CI of a process denotes all the

computation performed between its ith and (i+1)th checkpoint,

including the ith checkpoint but not the (i+1)th checkpoint.

Direct Dependency among Processes: Pj is directly dependent

upon Pk only if there exists m such that Pj receives m from Pk in

the current CI and Pk has not taken its permanent checkpoint after

sending m.

Minimum Set: A process Pi is in the minimum set only if

checkpoint initiator process is transitively dependent upon it.

Minimum-process Coordinated Checkpointing Algorithms : In

these algorithms, only a subset of interacting processes (called

minimum set) are required to take checkpoints in an initiation.

Anti-Message: David R. Jefferson [29] introduced the concept of

anti-message. Anti-message is exactly like an original message in

format and content except in one field, its sign. Two messages

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

23

that are identical except for opposite signs are called anti-

messages of one another. All messages sent explicitly by user

programs have a positive (+) sign; and their anti-messages have a

negative sign (-). Whenever a message and its anti-message occur

in the same queue, they immediately annihilate one another. Thus

the result of enqueueing a message may be to shorten the queue

by one message rather than lengthen it by one. We depict the anti-

message of m by m-1.

1.2 Proposed Work
In the present study, we propose a minimum-process coordinated

Checkpointing algorithm for Checkpointing deterministic

distributed applications on mobile systems. We eliminate useless

checkpoints as well as blocking of processes during checkpoints

at the cost of logging anti-messages of very few messages during

Checkpointing. We also try to minimize the loss of checkpointing

effort when any process fails to take its checkpoint.

2. THE PROPOSED CHECKPOINTING

ALGORITHM

2.1 System Model
Our system model consists of a number of MHs which

communicate through mobility support stations (MSSs). Each

MSS is a fixed network host which provides wireless

communication support for a fixed geographical area, called a

cell. MSSs are linked together over the wired data networks. The

distributed system consisting of n processes, running on MHs or

MSSs. The MHs can communicate with the MSS through wireless

channels. We assume that wireless channels and logical channels

are all FIFO order. If a MH moves to the cell of another base

station, a wireless channel to the old MSS is disconnected and a

wireless channel in the new MSS is allocated. However, its

checkpoint related information is still with the old MSS. A MH

may voluntarily disconnect from mobile computing networks. The

MH does not send and receive any message when it is in a

disconnected state. We also assume a closed system that consists

of nodes, links, and disks. Input is stored on disk before operation

begins. Output is stored on disk when the job ends.

There is no common clock, shared memory or central coordinator.

Message passing is the only mode of communication between any

pair of processes. The messages originated from a source Mh, are

received by the local Mobile support stations and then forwarded

to the destination MH. Any process can initiate checkpointing. It

is assumed that processes may be failed during processing but

there is no communication link failure. Messages are exchanged

with finite but arbitrary delays. In our algorithm, we consider that

the processes which are running in the distributed mobile systems

are deterministic.

2.2 Basic Idea
In coordinated checkpointing for mobile distributed systems, there

remains a good probability that some process fails to take its

checkpoint especially on MH. It can happen due to abrupt

disconnection, exhausted battery power, or failure in wireless

bandwidth. If a single process fails to take its checkpoint; all the

checkpointing effort goes waste, because, each process has to

abort its tentative checkpoint. In order to take the tentative

checkpoint, an MH needs to transfer large checkpoint data to its

local MSS over wireless channels. Hence, the loss of

checkpointing effort may be quite high. Therefore, we propose

that in the first phase, all concerned MHs will take mutable

checkpoint only. Mutable checkpoint is described in [5], it is

stored on the memory of MH only. In this case, if some process

fails to take its checkpoint in the first phase, then other MHs need

to abort their mutable checkpoints only. The effort of taking a

mutable checkpoint is negligible as compared to the tentative one

[5]. When the initiator process comes to know that all relevant

processes have taken their mutable checkpoints, it asks all

relevant processes to come into the second phase, in which, a

process converts its mutable checkpoint into tentative one, i.e. an

MH transfers its checkpoint to its local MSS over wireless

channel.

During the checkpointing procedure, a process Pi may receive m

from Pj such that Pj has taken its tentative checkpoint for the

current initiation whereas Pi has not. Suppose, Pi processes m, and

it receives checkpoint request later on, and then it takes its

checkpoint. In that case, m will become orphan in the recorded

global state. We propose that the anti-messages of only those

messages, which can become orphan, should be recorded at the

receiver end. In deterministic systems, orphan messages are

received as duplicate messages on recovery. A duplicate message

is annihilated by its anti-message at the receiver end before

processing. Hence, in deterministic distributed systems, an orphan

message in global checkpoint does not create any inconsistency

during recovery, if its anti-message is logged at the receiver end.

By doing so, we avoid the blocking of processes, as well as, the

useless checkpoints in minimum-process checkpointing. It should

be noted that in minimum-process coordinated checkpointing,

some useless checkpoints are taken or blocking of processes takes

place. The overheads of logging a few anti-messages may be

negligible as compared to taking some useless checkpoints or

blocking the processes during checkpointing. This scheme will

not be applicable for non-deterministic systems. For non-

deterministic systems, we can not deal with an orphan message by

logging its anti-message at the receiver end; because, in non-

deterministic systems, if we log m1
-1 of orphan message m1, then

after recovery, we may get m2 in place of m1, which may be

different from m1. In that case, m1
-1 can not annihilate m2, and

P1___

R1[0001]

 t1

P2___

R2[0010]

 m2.[1100] m3 {after m3 , R3 is 1101}

P3___

R3[0100]

 m1[1000]

P4__

R4[1000]

Fig. 2.1

hence the inconsistency will take place. If Pi become sure that it is

not good to take its checkpoint for current initiation or, if Pi has

already taken its checkpoint for the current initiation then it can

process m without any issue. In this case m can not become

orphan.

In the figure 2.1 P4 sends m1 to P3 along with its own dependency

vector R4[1000]. When P3 receives m1 it update its own

dependency vector by taking logical OR of R4 & R3[0100], which

comes out to be 1100. When P3 send m2 to P2, it appends

R3[1100] along with m2. When P2 receive m2, it updates its own

dependency vector R2 by taking logical OR of R2 and R3, which

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

24

comes out to be [1110]. In this way, partial transitive

dependencies are captured during normal computation. It should

be noted that all the transitive dependencies are not captured

during normal computation. At time t1, the dependency vector of

P2 shows that P2 is not transitively dependent upon P1, whereas, P2

is transitively dependent upon P1due to m3 and m2.

2.3 An Example
Example: we explain the purposed algorithm with the help of an

example. In figure 2.2, at time t1, P3 initiates checkpointing. At

this moment, it dependency vector is[000111]. P1 sends m1 along

with its dependency vector [000001]. When P2 receives m it

update its dependency vector by taking bitwise logical OR of

dependency vectors of P1 and P2, which comes out to be [000011].

On receiving m2 the dependency vector of P3 become [000111].

At time t1, the P3 computes tentative minimum set{P1, P2, P3}and

sends the mutable checkpoint request w P1 & P2 and takes its

own mutable checkpoint. For an MH the mutable checkpoint is

stored on the disk of MH. After taking its mutable checkpoint, P3

sends m4 to P4. P3 also piggyback its own csn along with m4.

When P4 receive m4, it finds that csn of P3 at the time of sending

m4 is 1; therefore, P4 concludes that P3 has taken its checkpoint

for the new initiation and P4 has not taken checkpoint for the

same. Therefore, P4 logs m4
-1 and process m4. when P2 takes its

mutable checkpoint C21, it finds that it is dependent upon P4, due

to m3 and P4 is not in the tentative minimum set {P1,P2,P3},

Figure 2.2

therefore, P2 sends checkpoint request to P4 and P4 takes its

mutable checkpoint C41. P5 sends m6 to P6. on the basis of

piggybacked csn of P5, on m6, P6 concludes that P5 has not taken it

checkpoint for the current initiation, therefore P6 process m6

without logging m6
-1. At time t2, P3 receives response form all

process in the minimum set(not shown in the figute) and finds that

they have taken their mutable checkpoints successfully, therefore

P3 issues tentative checkpoint request to all processes. On getting

tentative checkpoint request, a process converts it mutable

checkpoint into tentative one and sends the response to initiator

process P3. At time t3, P3 receives responses form the process in

minimum set and finds that they have taken their tentative

checkpoints successfully, therefore, P3 issues commit request to

all process. A process in the minimum set converts its tentative

checkpoint into permanent checkpoint and discards it old

permanent checkpoint if any. The anti messages are also logged

on stable storage. In the present case the global checkpoint is

collected as follows:{C11, C21, C31, C41, m4
-1, C50, C60). If the

system recovers from this state after a fault, P3 will send m4 again

as the processes are assumed to be deterministic. When P4 will

receive m4, it will find that m4
-1 is logged at P4. P4 concludes that

it has already received m4, therefore P4 ignores m4.

2.4 Data Structures
Here, we describe the data structures used in the proposed

checkpointing protocol. A process on MH that initiates

checkpointing, is called initiator process and its local MSS is

called initiator MSS. If the initiator process is on an MSS, then the

MSS is the initiator MSS. All data structures are initialized on

completion of a checkpointing process, if not mentioned

explicitly.

Pr_csni : A monotonically increasing integer checkpoint sequence

number for each process. It is incremented by 1 on mutable

checkpoint.

td_vecti []: It is a bit array of length n for n process in the system.

td_vecti[] =1 implies Pi is transitively dependent upon Pj. When Pi

receives m from Pj such that Pj has not taken any permanent

checkpoint after sending m then Pi sets td_vecti[j]=1. When Pi

commit its checkpoint, it sets td_vecti[]=0 for all processes except

for itself which is initialized to 1.

chkpt-sti: A boolean which is set to „1‟ when Pi takes a tentative

checkpoint; on commit or abort, it is reset to zero

m_vect[]: An bit array of size n for n processes in the systems.

When Pi starts checkpointing procedures, it computes tentative

minimum set as follows: m_vect[j] = td_vecti[j] where j=1,2,

….,n.

TC[]: An array of size n to save information about the processes

which have taken their tentative checkpoints in the second phase.

When process Pj takes its tentative checkpoint then jth bit of this

vector is set to 1. It is initialized to all zeros in the beginning of

the checkpointing process. It is maintained by the checkpoint

initiator MSS only.

MC[]: A bit array of size n, maintained by initiator MSS. MC[i]=1

implies Pi has taken its mutable checkpoint in the first phase.

MSS_chk_taken2[]: A bit array of length n maintained by each

MSS. MSS_chk_taken2[i] =1 implies Pi has taken its tantative

checkpoint successfully in the second phase.

MSS_chk_request2[]: A bit array of length n at each MSS.

MSS_chk_request2[i] =1, Pi has been issued tentative checkpoint

request in the second phase.

Max_time: it is a flag used to provide timing in checkpointing

operation. It is initialized to zero when timer is set and becomes

„1‟ when maximum allowable time for collecting global

checkpoint expires.

MSS_plist[]: A bit array of length n for n processes which is

maintained at each MSS MSS_plistK[j]=1 implies each process Pj

is running on MSSk. If Pj is disconnected, then it checkpoint

related information is on MSSk.

MSS_chk_taken: A bit array of length n bits maintained by the

MSS. MSS_chk_taken [j]=1 implies Pj which is in the cell of

MSS has taken its mutable checkpoint in the first phase.

MSS_chk_request: A bit array of length n at each MSS. The jth bit

of this array is set to „1‟ whenever initiator sends the checkpoint

request to Pj and Pj is in the cell of this MSS.

m1.[000001]

t2 t1

P1

P2

P3

P4

P5

m4.1

Tentative Checkpoint
Permanent

Checkpoin
t

Checkpoint/commit request Computation message

mutable

checkpoint

P6

m6

m2[000011]

m5

C31[000111]

C21

C11

C41

m6.0

C60

C40

m3

t3

3

C50

C30

C20

C10

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

25

MSS_fail_bit: A flag maintained on every MSS, initialized to „0‟;

set to „1‟ when any process in the cell of MSS fails to take

tentative checkpoint

Pin : The process which has initiated the checkpointing operation

MSSin : The MSS which has Pin in its cell

p_csnin : checkpoint sequence number of initiator process

g_chkpt: A flag which indicates that some global checkpoint is

being saved

csn[]: An array of size n, maintained on every MSS, for n

processes. csn[i] represens the most recently committed

checkpoint sequence number of Pi. After the commit operation, if

m_vect[i]=1 then csn[i] is incremented. It should be noted that

entries in this array are updated only after converting tentative

checkpoints in to permanent checkpoints and not after taking

tentative checkpoints.

m_vect1[]: An array of size n maintained on every MSS. It

contains those new processes which are found on getting

checkpoint request from initiator.

m_vect2[]: An array of size n. for all j such that m_vect1[j] 0,

m_vect2= m_vect2 m_vect1.

m_vect3[]: An array of length n; on receiving m_vect3[],

m_vect[], m_vect1[] along with checkpoint request [c_req] or on

the computation of m_vect1[] locally: m_vect3[]=m_vect3[]

c_req.m_vect3[]; m_vect3[]=m_vect3[] m_vect[];

m_vect3[]=m_vect3[] c_req.m_vect1[]; m_vect3[]=m_vect3[]

 m_vect1[]; m_vect3[] maintains the best local knowledge of

the minimum set at an MSS;

2.5 Computation of m_vect[], m_vect1[],

m_vect2[], m_vect3[]:
1. Suppose a process Pr wants to initiate checkpointing procedure.

Its send its request to its local MSS, say MSSr.. MSSr maintains

the dependency vector of Pr (say td_vectr[]).MSSr coordinates

checkpointing on behalf of Pr. It computes tentative minimum set

as follows:

 i=1,n m_vect[i] = td_vectr[i]

2. On receving m_vect[] from MSSr, any MSS (say MSSS)

computes the m_vect1[] as follows:

Suppose MSSs maintains the process Pj such that Pj MSSs and

Pj m_vect

 m_vect1[i]=1 iff m_vect[i]=0 and td_vectj[i]=1

m_vect1[] maintains the new processes found for the minimum

set when a process receives the checkpoint request.

m_vect2=m_vect2 U m_vect1

 i, m_vect1[i]=0

 3. m_vect3= m_vect U m_vect2

MSSin sends c_req to MSSs along with m_vect[]and some process

(say Pk) is found at MSSs, which takes the checkpoint to this

c_req. All MSSs maintains the processes of minimum set to the

best of their knowledge in m_vect3. It is required to minimize

duplicate checkpoint requests. Suppose, there exists some process

(say Pl) such that Pk is directly dependent upon Pl and Pl is not in

the m_vect3 , then MSSs sends c_req to Pl. The new processes

found for the minimum set while executing a potential checkpoint

request at an MSS are stored in m_vect1. When an MSS finds that

all the local processes, which were asked to take checkpoints,

have taken their checkpoints, it sends the response to the MSSin

along with m_vect2; so that MSSin may update its knowledge

about minimum set and wait for the new processes before sending

commit. In this way, MSSin sends commit only if all the processes

in the minimum set have taken their tentative checkpoints.

2.6. The Checkpointing Protocol
 As the wireless bandwidth is a scarce commodity in mobile

systems; therefore; we impose minimum burdon on wireless

channels. The local MSS of an MH acts on behalf of the process

running on MH. We piggyback checkpoint sequence numbers and

dependency vectors onto normal computation messages, but this

information is not sent on wireless channels. The local MSS of an

MH, strips all the additional information from the computation

message and sends it to the concerned MH. The dependency

vector of a process running on an MH is maintained by its local

MSS.

Our algorithm is distributed in nature in the sense that any process

can initiate checkpointing. If two processes initiate checkpointing

concurrently, then the checkpoint imitator of the lower process ID

will prevail. The local MSS of a process coordinates

checkpointing on its behalf. Suppose two processes Pi and Pj starts

checkpointing concurrently and MSSp and MSSq are their local

MSS respectively then MSSp and MSSq will send checkpoint

requests along with tentative minimum set to all the MSS‟s.

MSSp will receive the checkpoint request of MMSq and MMSq

will receive the checkpoint request of MSSp. Suppose Process-ID

of Pi is less than Process-ID of Pj, then the checkpoint initiates of

Pi will prevail. Any other MSS will automatically ignore the

request of Pj because, every MSS will compare the process id of P i

and Pj.

 We propose that any process in the system can initiate the

checkpointing operation. When a process Pin starts checkpointing

procedure, it send its request to its local MSS say MSSin. MSSin

computes the tentative minimum set (m_vect[]) as follows:

i=1,n m_vect[i] = td_vect[i]. MSSin coordinates checkpointing

process on behalf of Pin. We want to emphasize that td_vectin[]

contains the processes on which Pin transitively depends and the

set is not complete.

MSSin sends c-req (mutable checkpoint request) to all MSS‟s

along with m_vectin[]. When an MSS say MSSp receives c-req; it

sends the c-req to all such process which are running in its cell

and are also the member of m_vectin[]. Suppose, Pj gets the

checkpoint request at MSSp. Now we find any process Pk such that

Pk does not belong to m_vectin[] and Pk belongs to td_vectj[]. In

this case, Pk is also included in the minimum set. During

checkpointing, suppose Pi takes it checkpoint and after that it send

m to Pj such that Pj has not taken its checkpoint at the time of

receiving m. If Pj receive m and it gets checkpoint request later on

then m will become orphan. In order to handle this situation, we

log m-1 at Pj. if Pj takes the checkpoint, then m becomes the

orphan message in the recorded global state. In deterministic

system, orphan message will be delivered again at receiving and it

will be annihilated by its anti-message stored at the receiver end.

Suppose, Pi sends m to Pj and Pj has already logged m-1. it implies

Pj has already received m and m is a duplicate message, therefore,

Pj ignores m and also delete m-1.

For a disconnected MH that is a member of minimum set, the

MSS that has its disconnected checkpoint, considers its

disconnected checkpoint as the required come. When a MSS

learns that its concerned processes in its cell have taken their

mutable checkpoints, it sends the response to MSSin . It should be

noted that in the first phase, all processes take the mutable

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

26

checkpoints. For a process running on a static host, mutable

checkpoint is equivalent to tentative checkpoint. But, for an MH,

mutable checkpoint is different from tentative checkpoint. In

order to take a tentative checkpoint, an MH has to record its local

state and has to transfer it to its local MSS. But, the mutable

checkpoint is stored on the local disk of the MH. It should be

noted that the effort of taking a mutable checkpoint is very small

as compared to the tentative one[5]. When the initiator MSS

comes to know that all processes in the minimum set taken their

mutable checkpoint successfully MSSin issues tentative

checkpoint request to all MSSs along with the exact minimum set.

Alternatively, if MSSin comes to know that some process has

failed to take its checkpoint in the first phase, it issues abort

request to all MSS. In this way the MHs need to abort only the

mutable checkpoints, and not the tentative ones. In this way we

try to reduce the loss of checkpointing effort in case of abort of

checkpointing algorithm in first phase.

When an MSSs receives the tentative checkpoint request, it asks

all relevant process to convert their mutable checkpoints into

tentative ones. In order to convert its mutable checkpoint into

tentative one, an MH needs to transfer its checkpoint data to its

local MSS. A process on static node has to do nothing in order to

convert its mutable checkpoint into tentative one. When an MSS

learns that all its relevant processes have taken their tentative

checkpoint, it informs MSSin. Finally, when the initiator MSS

learns that all processes in the minimum set have taken their

tentative checkpoints successfully, it issues commit request to all

MSSs. When a process in the minimum set gets the commit

request, it converts it tentative checkpoint into permanent one and

discards its earlier permanent checkpoint, if any. All the anti-

messages are also stored on stable storage along with committed

checkpoints.

3. PERFORMANCE EVALUATION
In [13], initiator process/MSS collects dependency vectors for all

the processes and computes the minimum set and sends the

checkpointing request to all the processes with minimum set. The

algorithm is non-blocking; the message received during

checkpointing may add processes to the minimum set. It suffers

from additional message overhead of sending request to all

processes to send their dependency vectors and all processes send

dependency vectors to the initiator process. But in our algorithm,

no such overhead is imposed. The Cao-Singhal [5] suffers from

the formation of checkpointing tree as shown in basic idea. In our

algorithm, theoretically, we can say that the length of the

checkpointing tree will be considerably low as compared to

algorithm [5], as most of the transitive dependencies are captured

during the normal processing. We do not compare our algorithm

with Prakash-Singhal [15], as Cao-Singhal proved that there no

such algorithm exists [4].

Furthermore, in [5] algorithm, transitive dependencies are

captured by direct dependencies. Hence the average number of

useless checkpoints requests will be significantly higher than the

proposed algorithm. In [5], huge data structure are piggybacked

along with checkpointing request, because they are unable to

maintain exact dependencies among processes. Incorrect

dependencies are solved by these huge data structures. In our case,

no such data structures are piggybacked on checkpointing request

and no such useless checkpoint requests are sent., because we are

able to maintain exact dependencies among processes and

furthermore, are able to capture transitive dependencies during

normal computation at the cost of piggybacking bit vector of

length n for n processes.

In Cao-Singhal algorithm[5], some useless checkpoints are taken

or some blocking of processes takes place, we avoid both by

logging anti-messages of very few message at the receiver end

only during the checkpoint process. The drawback of our

algorithm is that it is not applicable for non deterministic systems

while the CS[5] algorithm is designed for non deterministic

systems. Our algorithm is distributed in nature that any process

can initiate checkpointing. We do not allow concurrent executions

of the protocol. If we allow, concurrent executions then our goal

of minimizing checkpointing efforts will be defeated, many

processes will start taking checkpoint quite frequently without

advancing their recovery line significantly.

4. CONCLUSION
In this paper, we have proposed a minimum-process non-intrusive

checkpointing protocol for deterministic mobile distributed

systems, where no useless checkpoints are taken. The number of

processes that take checkpoints is minimized to 1) avoid

awakening of MHs in doze mode of operation, 2) minimize

thrashing of MHs with checkpointing activity, 3) save limited

battery life of MHs and low bandwidth of wireless channels. In

minimum-process checkpointing protocols, some useless

checkpoints are taken or blocking of processes takes place; we

eliminate both by logging anti-messages of very few selective

messages at the receiver end only during the checkpointing

period. The overheads of logging a few anti-messages may be

negligible as compared to taking some useless checkpoints or

blocking the processes during checkpointing. We try to reduce

the checkpointing time by avoiding checkpointing tree which may

be formed in Cao-Singhal [5] algorithm. We captured the

transitive dependencies during the normal execution by

piggybacking dependency vectors onto computation messages.

The Z-dependencies are well taken care of in this protocol. We

also avoided collecting dependency vectors of all processes to

find the minimum set as in [4], [13].

6. REFERENCES
[1]. Acharya A. and Badrinath B. R., “Checkpointing Distributed

Applications on Mobile Computers,” Proceedings of the 3rd

International Conference on Parallel and Distributed Information

Systems, pp. 73-80, September 1994.

[2]. Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M., “A

Communication-Induced Checkpointing Protocol that Ensures

Rollback-Dependency Trackability,” Proceedings of the

International Symposium on Fault-Tolerant-Computing Systems,

pp. 68-77, June 1997.

[3]. Cao G. and Singhal M., “On coordinated checkpointing in

Distributed Systems”, IEEE Transactions on Parallel and

Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec 1998.

[4]. Cao G. and Singhal M., “On the Impossibility of Min-process

Non-blocking Checkpointing and an Efficient Checkpointing

Algorithm for Mobile Computing Systems,” Proceedings of

International Conference on Parallel Processing, pp. 37-44,

August 1998.

[5]. Cao G. and Singhal M., “Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing systems,” IEEE

Transaction On Parallel and Distributed Systems, vol. 12, no. 2,

pp. 157-172, February 2001.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

27

[6]. Chandy K. M. and Lamport L., “Distributed Snapshots:

Determining Global State of Distributed Systems,” ACM

Transaction on Computing Systems, vol. 3, No. 1, pp. 63-75,

February 1985.

[7]. Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., “A

Survey of Rollback-Recovery Protocols in Message-Passing

Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-408,

2002.

[8]. Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The

Performance of Consistent Checkpointing,” Proceedings of the

11th Symposium on Reliable Distributed Systems, pp. 39-47,

October 1992.

[9]. Hélary J. M., Mostefaoui A. and Raynal M.,

“Communication-Induced Determination of Consistent

Snapshots,” Proceedings of the 28th International Symposium on

Fault-Tolerant Computing, pp. 208-217, June 1998.

[10]. Higaki H. and Takizawa M., “Checkpoint-recovery Protocol

for Reliable Mobile Systems,” Trans. of Information processing

Japan, vol. 40, no.1, pp. 236-244, Jan. 1999.

[11]. Koo R. and Toueg S., “Checkpointing and Roll-Back

Recovery for Distributed Systems,” IEEE Trans. on Software

Engineering, vol. 13, no. 1, pp. 23-31, January 1987.

[12]. Neves N. and Fuchs W. K., “Adaptive Recovery for Mobile

Environments,” Communications of the ACM, vol. 40, no. 1, pp.

68-74, January 1997.

[13] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta “A

Non-Intrusive Minimum Process Synchronous Checkpointing

Protocol for Mobile Distributed Systems” Proceedings of IEEE

ICPWC-2005, pp 491-95, January 2005.

[14]. Pradhan D.K., Krishana P.P. and Vaidya N.H., “Recovery in

Mobile Wireless Environment: Design and Trade-off Analysis,”

Proceedings 26th International Symposium on Fault-Tolerant

Computing, pp. 16-25, 1996.

[15]. Prakash R. and Singhal M., “Low-Cost Checkpointing and

Failure Recovery in Mobile Computing Systems,” IEEE

Transaction On Parallel and Distributed Systems, vol. 7, no. 10,

pp. 1035-1048, October1996.

[16]. Ssu K.F., Yao B., Fuchs W.K. and Neves N. F., “Adaptive

Checkpointing with Storage Management for Mobile

Environments,” IEEE Transactions on Reliability, vol. 48, no. 4,

pp. 315-324, December 1999.

[17]. J.L. Kim, T. Park, “An efficient Protocol for checkpointing

Recovery in Distributed Systems,” IEEE Trans. Parallel and

Distributed Systems, pp. 955-960, Aug. 1993.

[18]. L. Kumar, M. Misra, R.C. Joshi, “Checkpointing in

Distributed Computing Systems” Book Chapter “Concurrency in

Dependable Computing”, pp. 273-92, 2002.

[19]. L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal

checkpointing for mobile distributed systems” Proceedings. 19th

IEEE International Conference on Data Engineering, pp 686 – 88,

2003.

[20]. Ni, W., S. Vrbsky and S. Ray, “Pitfalls in Distributed

Nonblocking Checkpointing”, Journal of Interconnection

Networks, Vol. 1 No. 5, pp. 47-78, March 2004.

[21]. L. Lamport, “Time, clocks and ordering of events in a

distributed system” Comm. ACM, vol.21, no.7, pp. 558-565, July

1978.

[22]. Silva, L.M. and J.G. Silva, “Global checkpointing for

distributed programs”, Proc. 11th
 symp. Reliable Distributed

Systems, pp. 155-62, Oct. 1992.

[23]. Parveen Kumar, Lalit Kumar, R K Chauhan, “A Non-

intrusive Hybrid Synchronous Checkpointing Protocol for Mobile

Systems”, IETE Journal of Research, Vol. 52 No. 2&3, 2006.

[24]. Parveen Kumar, “A Low-Cost Hybrid Coordinated

Checkpointing Protocol for mobile distributed systems”, Mobile

Information Systems. pp 13-32, Vol. 4, No. 1, 2007.

[25]. Lalit Kumar Awasthi, P.Kumar, “A Synchronous

Checkpointing Protocol for Mobile Distributed Systems:

Probabilistic Approach” International Journal of Information and

Computer Security, Vol.1, No.3 pp 298-314.

[26]. Johnson, D.B., Zwaenepoel, W., “ Sender-based message

logging”, In Proceedingss of 17th international Symposium on

Fault-Tolerant Computing, pp 14-19, 1987.

[27]. Johnson, D.B., Zwaenepoel, W., “Recovery in Distributed

Systems using optimistic message logging and checkpointing. pp

171-181, 1988.

[28] Pushpendra Singh, Gilbert Cabillic, “A Checkpointing

Algorithm for Mobile Computing Environment”, LNCS, No.

2775, pp 65-74, 2003.

[29] David R. Jefferson, “Virtual Time”, ACM Transactions on

Programming Languages and Systems, Vol. 7, NO.3, pp 404-425,

July 1985.

[30] Sunil Kumar, R K Chauhan, Parveen Kumar, “A Minimum-

process Coordinated Checkpointing Protocol for Mobile

Computing Systems”, International Journal of Foundations of

Computer science,Vol 19, No. 4, pp 1015-1038 (2008).

