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ABSTRACT  
A checkpoint algorithm for mobile computing systems needs to 

handle many new issues like: mobility, low bandwidth of wireless 

channels, lack of stable storage on mobile nodes, disconnections, 

limited battery power and high failure rate of mobile nodes.   

These issues make traditional checkpointing techniques unsuitable 

for such environments. Minimum-process coordinated 

checkpointing is an attractive approach to introduce fault 

tolerance in mobile distributed systems transparently. This 

approach is domino-free, requires at most two checkpoints of a 

process on stable storage, and forces only a minimum number of 

processes to checkpoint.  But, it requires extra synchronization 

messages, blocking of the underlying computation or   taking 

some useless checkpoints. In this paper, we propose a minimum-

process coordinated checkpointing algorithm for deterministic 

mobile distributed systems, where no useless checkpoints are 

taken, no blocking of processes takes place, and anti-messages of 

very few messages are logged during checkpointing. We try to 

reduce the loss of checkpointing effort when any process fails to 

take its checkpoint in coordination with others.   We also address 

the related issues like: failures during checkpointing, 

disconnections, concurrent initiations of the algorithm. 

 

1. INTRODUCTION  

1.1 Definitions and Notations  
Checkpoint:  Checkpoint is defined as a designated place in a 

program at which normal process is interrupted specifically to 

preserve the status information necessary to allow resumption of 

processing at a later time. A checkpoint is a local state of a 

process saved on stable storage. By periodically invoking the 

checkpointing process, one can save the status of a program at 

regular intervals. 

Rollback Recovery:  If there is a failure one may restart 

computation from the last checkpoints thereby avoiding repeating 

computation from the beginning. The process of resuming 

computation by rolling back to a saved state is called rollback 

recovery. 

Global State : In a distributed system, since the processes in the 

system do not share memory, a global state of the system is 

defined as a set of local states, one from each process. The state of 

channels corresponding to a global state is the set of messages 

sent but not yet received.  

Orphan Message:  A message whose receive event is recorded, 

but its send event is lost. 

Consistent Global State:  A global state is said to be “consistent” 

if it contains no orphan message. To recover from a failure, the 

system restarts its execution from a previous consistent global 

state saved on the stable storage during fault-free execution. In 

distributed systems, checkpointing can be independent, 

coordinated [3], [8], [11] or quasi-synchronous [2], [9]. Message 

Logging is also used for fault tolerance in distributed systems 

[14]. 

Asynchronous Checkpointing: Under the asynchronous approach, 

checkpoints at each process are taken independently without any 

synchronization among the processes. Because of absence of 

synchronization, there is no guarantee that a set of local 

checkpoints taken will be a consistent set of checkpoints. It may 

require cascaded rollbacks that may lead to the initial state due to 

domino-effect [7].  

Coordinated Checkpointing: In coordinated or synchronous 

Checkpointing, processes take checkpoints in such a manner that 

the resulting global state is consistent. Mostly it follows two-

phase commit structure [3], [8], [11], [22]. In the first phase, 

processes take tentative checkpoints and in the second phase, 

these are made permanent. The main advantage is that only one 

permanent checkpoint and at most one tentative checkpoint is 

required to be stored. In the case of a fault, processes rollback to 

the last checkpointed state. Communication-induced 

Checkpointing: It avoids the domino-effect without requiring all 

checkpoints to be coordinated [2], [7], [9]. In these protocols, 

processes take two kinds of checkpoints, local and forced.  Local 

checkpoints can be taken independently, while forced checkpoints 

are taken to guarantee the eventual progress of the recovery line 

and to minimize useless checkpoints.  As opposed to coordinated 

checkpointing, these protocols do no exchange any special 

coordination messages to determine when forced checkpoints 

should be taken. But, they piggyback protocol specific 

information [generally checkpoint sequence numbers] on each 

application message; the receiver then uses this information to 

decide if it should take a forced checkpoint.  

Deterministic Systems: If two processes start in the same state, 

and both receive the identical sequence of inputs, they will 

produce the identical sequence outputs and will finish in the same 

state. The state of a process is thus completely determined by its 

starting state and by sequence of messages it has received [23, 

[24], [25].  

Checkpoint Interval (CI): The ith CI of a process denotes all the 

computation performed between its ith and (i+1)th checkpoint, 

including the ith checkpoint  but not the (i+1)th checkpoint. 

Direct Dependency among Processes:  Pj is directly dependent 

upon Pk only if there exists m such that Pj receives m from Pk in 

the current CI and Pk has not taken its permanent checkpoint after 

sending m.  

Minimum Set: A process Pi is in the minimum set only if 

checkpoint initiator process is transitively dependent upon it. 

Minimum-process Coordinated Checkpointing Algorithms : In 

these algorithms, only a subset of interacting processes (called 

minimum set) are required to take checkpoints in an initiation.  

Anti-Message: David R. Jefferson [29] introduced the concept of 

anti-message. Anti-message is exactly like an original message in 

format and content except in one field, its sign. Two messages 
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that are identical except for opposite signs are called anti-

messages of one another. All messages sent explicitly by user 

programs have a positive (+) sign; and their anti-messages have a 

negative sign (-). Whenever a message and its anti-message occur 

in the same queue, they immediately annihilate one another. Thus 

the result of enqueueing a message may be to shorten the queue 

by one message rather than lengthen it by one. We depict the anti-

message of m by m-1.   

 

1.2 Proposed Work 
In the present study, we propose a minimum-process coordinated 

Checkpointing algorithm for Checkpointing deterministic 

distributed applications on mobile systems. We eliminate useless 

checkpoints as well as blocking of processes during checkpoints 

at the cost of logging anti-messages of very few messages during 

Checkpointing. We also try to minimize the loss of checkpointing 

effort when any process fails to take its checkpoint.  

 

2. THE PROPOSED CHECKPOINTING 

ALGORITHM 

2.1 System Model  
Our system model consists of a number of MHs which 

communicate through mobility support stations (MSSs). Each 

MSS is a fixed network host which provides wireless 

communication support for a fixed geographical area, called a 

cell. MSSs are linked together over the wired data networks. The 

distributed system consisting of n processes, running on MHs or 

MSSs. The MHs can communicate with the MSS through wireless 

channels. We assume that wireless channels and logical channels 

are all FIFO order. If a MH moves to the cell of another base 

station, a wireless channel to the old MSS is disconnected and a 

wireless channel in the new MSS is allocated. However, its 

checkpoint related information is still with the old MSS. A MH 

may voluntarily disconnect from mobile computing networks. The 

MH does not send and receive any message when it is in a 

disconnected state. We also assume a closed system that consists 

of nodes, links, and disks. Input is stored on disk before operation 

begins. Output is stored on disk when the job ends. 

There is no common clock, shared memory or central coordinator. 

Message passing is the only mode of communication between any 

pair of processes. The messages originated from a source Mh, are 

received by the local Mobile support stations and then forwarded 

to the destination MH.  Any process can initiate checkpointing. It 

is assumed that processes may be failed during processing but 

there is no communication link failure.  Messages are exchanged 

with finite but arbitrary delays. In our algorithm, we consider that 

the processes which are running in the distributed mobile systems 

are deterministic. 

 

2.2 Basic Idea  
In coordinated checkpointing for mobile distributed systems, there 

remains a good probability that some process fails to take its 

checkpoint especially on MH. It can happen due to abrupt 

disconnection, exhausted battery power, or failure in wireless 

bandwidth. If a single process fails to take its checkpoint; all the 

checkpointing effort goes waste, because, each process has to 

abort its tentative checkpoint. In order to take the tentative 

checkpoint, an MH needs to transfer large checkpoint data to its 

local MSS over wireless channels. Hence, the loss of 

checkpointing effort may be quite high. Therefore, we propose 

that in the first phase, all concerned MHs will take mutable 

checkpoint only. Mutable checkpoint is described in [5], it is 

stored on the memory of MH only. In this case, if some process 

fails to take its checkpoint in the first phase, then other MHs need 

to abort their mutable checkpoints only. The effort of taking a 

mutable checkpoint is negligible as compared to the tentative one 

[5]. When the initiator process comes to know that all relevant 

processes have taken their mutable checkpoints, it asks all 

relevant processes to come into the second phase, in which, a 

process converts its mutable checkpoint into tentative one, i.e. an 

MH transfers its checkpoint to its local MSS over wireless 

channel. 

During the checkpointing procedure, a process Pi may receive m 

from Pj such that Pj has taken its tentative checkpoint for the 

current initiation whereas Pi has not. Suppose, Pi processes m, and 

it receives checkpoint request later on, and then it takes its 

checkpoint. In that case, m will become orphan in the recorded 

global state. We propose that the anti-messages of only those 

messages, which can become orphan, should be recorded at the 

receiver end. In deterministic systems, orphan messages are 

received as duplicate messages on recovery. A duplicate message 

is annihilated by its anti-message at the receiver end before 

processing. Hence, in deterministic distributed systems, an orphan 

message in global checkpoint does not create any inconsistency 

during recovery, if its anti-message is logged at the receiver end. 

By doing so, we avoid the blocking of processes, as well as, the 

useless checkpoints in minimum-process checkpointing. It should 

be noted that in minimum-process coordinated checkpointing, 

some useless checkpoints are taken or blocking of processes takes 

place.  The overheads of logging a few anti-messages may be 

negligible as compared to taking some useless checkpoints or 

blocking the processes during checkpointing. This scheme will 

not be applicable for non-deterministic systems.  For non-

deterministic systems, we can not deal with an orphan message by 

logging its anti-message at the receiver end; because, in non-

deterministic systems, if we log m1
-1 of orphan message m1, then 

after recovery, we may get m2 in place of m1, which may be 

different from m1. In that case, m1
-1 can not annihilate m2, and  

 

P1_____________________________________________ 

R1[0001] 

                t1 

P2_____________________________________________ 

R2[0010] 

                 m2.[1100]      m3 {after m3 , R3 is 1101} 

P3_____________________________________________ 

R3[0100] 

         m1[1000] 

P4______________________________________________ 

R4[1000] 

Fig. 2.1 

hence the inconsistency will take place. If Pi become sure that it is 

not good to take its checkpoint for current initiation or, if Pi has 

already taken its checkpoint for the current initiation then it can 

process m without any issue. In this case m can not become 

orphan.  

In the figure 2.1 P4 sends m1 to P3 along with its own dependency 

vector R4[1000]. When P3 receives m1 it update its own 

dependency vector by taking logical OR of R4 & R3[0100], which 

comes out to be 1100. When P3 send m2 to P2, it appends 

R3[1100] along with m2. When P2 receive m2, it updates its own 

dependency vector R2 by taking logical OR of R2 and R3, which 
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comes out to be [1110]. In this way, partial transitive 

dependencies are captured during normal computation. It should 

be noted that all the transitive dependencies are not captured 

during normal computation. At time t1, the dependency vector of 

P2 shows that P2 is not transitively dependent upon P1, whereas, P2 

is transitively dependent upon P1due to m3 and m2.  

  

2.3 An Example 
Example: we explain the purposed algorithm with the help of an 

example. In figure 2.2, at time t1, P3 initiates checkpointing. At 

this moment, it dependency vector is[000111]. P1 sends m1 along 

with its dependency vector [000001]. When P2 receives m it 

update its dependency vector by taking bitwise logical OR of 

dependency vectors of P1 and P2, which comes out to be [000011]. 

On receiving m2 the dependency vector of P3 become [000111]. 

At time t1, the P3 computes tentative minimum set{P1, P2,  P3}and 

sends the mutable checkpoint request w P1 & P2 and takes its 

own mutable checkpoint. For an MH the mutable checkpoint is 

stored on the disk of MH. After taking its mutable checkpoint, P3 

sends m4 to P4. P3 also piggyback its own csn along with m4. 

When P4 receive m4, it finds that csn of P3 at the time of sending 

m4 is 1; therefore, P4 concludes that P3 has taken its checkpoint 

for the new initiation and P4 has not taken checkpoint for the 

same. Therefore, P4 logs m4
-1 and process m4. when P2 takes its 

mutable checkpoint C21, it finds that it is dependent upon P4, due 

to m3 and P4 is not in the tentative minimum set {P1,P2,P3},  

 
Figure 2.2 

therefore, P2 sends checkpoint request to P4 and P4 takes its 

mutable checkpoint C41. P5 sends m6 to P6. on the basis of 

piggybacked csn of P5, on m6, P6 concludes that P5 has not taken it 

checkpoint for the current initiation, therefore P6 process m6 

without logging m6
-1. At time t2, P3 receives response form all 

process in the minimum set(not shown in the figute) and finds that 

they have taken their mutable checkpoints successfully, therefore 

P3 issues tentative checkpoint request to all processes. On getting 

tentative checkpoint request, a process converts it mutable 

checkpoint into tentative one and sends the response to initiator 

process P3. At time t3, P3 receives responses form the process in 

minimum set and finds that they have taken their tentative 

checkpoints successfully, therefore, P3 issues commit request to 

all process. A process in the minimum set converts its tentative 

checkpoint into permanent checkpoint and discards it old 

permanent checkpoint if any. The anti messages are also logged 

on stable storage. In the present case the global checkpoint is 

collected as follows:{C11, C21, C31, C41, m4
-1, C50, C60). If the 

system recovers from this state after a fault, P3 will send m4 again 

as the processes are assumed to be deterministic. When P4 will 

receive m4, it will find that m4
-1 is logged at P4. P4 concludes that 

it has already received m4, therefore P4 ignores m4.     

 

2.4 Data Structures 
Here, we describe the data structures used in the proposed 

checkpointing protocol. A process on MH that initiates 

checkpointing, is called initiator process and its local MSS is 

called initiator MSS. If the initiator process is on an MSS, then the 

MSS is the initiator MSS. All data structures are initialized on 

completion of a checkpointing process, if not mentioned 

explicitly.    

Pr_csni : A monotonically increasing integer checkpoint sequence 

number for each process. It is incremented by 1 on mutable 

checkpoint.  

td_vecti []: It is a bit array of length n for n process in the system. 

td_vecti[] =1 implies Pi is transitively dependent upon Pj. When Pi 

receives m from Pj such that Pj has not taken any permanent 

checkpoint after sending m then Pi sets td_vecti[j]=1. When Pi 

commit its checkpoint, it sets td_vecti[]=0 for all processes except 

for itself which is initialized to 1.   

chkpt-sti: A boolean which is set to  „1‟ when Pi takes a tentative 

checkpoint; on commit or abort, it is reset to zero  

m_vect[]:  An bit array of  size n for n processes in the systems. 

When Pi starts checkpointing procedures, it computes tentative 

minimum set as follows: m_vect[j] = td_vecti[j] where j=1,2, 

….,n.  

TC[]: An array of size n to save information about the processes 

which have taken their tentative checkpoints in the second phase. 

When process Pj takes its tentative checkpoint then jth bit of this 

vector is set to 1. It is initialized to all zeros in the beginning of 

the checkpointing process. It is maintained by the checkpoint 

initiator MSS only.   

MC[]: A bit array of size n, maintained by initiator MSS. MC[i]=1 

implies Pi has taken its mutable checkpoint in the first phase. 

MSS_chk_taken2[]: A bit array of length n maintained by each 

MSS. MSS_chk_taken2[i] =1 implies Pi has taken its tantative 

checkpoint successfully in the second phase.   

MSS_chk_request2[]: A bit array of length n at each MSS. 

MSS_chk_request2[i] =1, Pi has been issued tentative checkpoint 

request in the second phase. 

Max_time: it is a flag used to provide timing in checkpointing 

operation. It is initialized to zero when timer is set and becomes 

„1‟ when maximum allowable time for collecting global 

checkpoint expires.   

MSS_plist[]: A bit array of length n for n processes which is 

maintained at each MSS MSS_plistK[j]=1 implies each process Pj 

is running on MSSk. If Pj is disconnected, then it checkpoint 

related information is on MSSk.  

MSS_chk_taken: A bit array of length n bits maintained by the 

MSS. MSS_chk_taken [j]=1 implies  Pj  which is in the cell of 

MSS has taken its mutable checkpoint in the first phase. 

MSS_chk_request: A bit array of length n at each MSS. The jth bit 

of this array is set to „1‟ whenever initiator sends the checkpoint 

request to Pj and Pj is in the cell of this MSS. 

m1.[000001] 
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MSS_fail_bit: A flag maintained on every MSS, initialized to „0‟; 

set to „1‟ when any process in the cell of MSS fails to take 

tentative checkpoint 

Pin : The process which has initiated the checkpointing operation 

MSSin : The MSS which has Pin in its cell 

p_csnin : checkpoint sequence number of initiator process 

g_chkpt:  A flag which indicates that some global checkpoint is 

being saved 

csn[]: An array of size n, maintained on  every MSS, for n 

processes. csn[i] represens the most recently committed 

checkpoint sequence number of Pi. After the commit operation, if 

m_vect[i]=1 then csn[i] is incremented. It should be noted that 

entries in this array are updated only after converting tentative 

checkpoints in to permanent checkpoints and not after taking 

tentative checkpoints. 

m_vect1[]: An array of size n maintained on every MSS. It 

contains those new processes which are found on getting 

checkpoint request from initiator. 

m_vect2[]: An array of size n. for all j such that m_vect1[j] 0, 

m_vect2= m_vect2  m_vect1.  

m_vect3[]: An array of length n; on receiving m_vect3[], 

m_vect[], m_vect1[] along with checkpoint request [c_req] or on 

the computation of m_vect1[] locally: m_vect3[]=m_vect3[]  

c_req.m_vect3[]; m_vect3[]=m_vect3[] m_vect[];  

m_vect3[]=m_vect3[]  c_req.m_vect1[]; m_vect3[]=m_vect3[] 

 m_vect1[];  m_vect3[] maintains the best local knowledge of 

the minimum set at an MSS; 

         

2.5 Computation of m_vect[], m_vect1[], 

m_vect2[], m_vect3[]: 
1.  Suppose a process Pr wants to initiate checkpointing procedure. 

Its send its request to its local MSS, say MSSr.. MSSr maintains 

the dependency vector of Pr (say td_vectr[]).MSSr  coordinates 

checkpointing on behalf of Pr.  It computes tentative minimum set 

as follows: 

    i=1,n  m_vect[i] = td_vectr[i] 

2. On receving m_vect[] from MSSr, any MSS (say MSSS) 

computes the m_vect1[] as follows: 

Suppose MSSs maintains the process Pj such that Pj   MSSs and 

Pj  m_vect 

 m_vect1[i]=1 iff m_vect[i]=0 and td_vectj[i]=1 

m_vect1[] maintains the new processes found for the minimum 

set when a process receives the checkpoint request.  

m_vect2=m_vect2 U m_vect1 

 i, m_vect1[i]=0 

 3. m_vect3= m_vect U m_vect2 

MSSin sends c_req to MSSs along with m_vect[]and some process 

(say Pk)  is found at MSSs, which takes the checkpoint to this 

c_req. All MSSs maintains the processes of minimum set to the 

best of their knowledge in m_vect3. It is required to minimize 

duplicate checkpoint requests. Suppose, there exists some process 

(say Pl) such that Pk is directly dependent upon Pl and Pl is not in 

the m_vect3 , then MSSs sends c_req to Pl. The new processes 

found for the minimum set while executing a potential checkpoint 

request at an MSS are stored in m_vect1. When an MSS finds that 

all the local processes, which were asked to take checkpoints, 

have taken their checkpoints, it sends the response to the MSSin 

along with m_vect2; so that MSSin may update its knowledge 

about minimum set and wait for the new processes before sending 

commit. In this way, MSSin sends commit only if all the processes 

in the minimum set have taken their tentative checkpoints.  

 

2.6. The Checkpointing Protocol 
 As the wireless bandwidth is a scarce commodity in mobile 

systems; therefore; we impose minimum burdon on wireless 

channels. The local MSS of an MH acts on behalf of the process 

running on MH. We piggyback checkpoint sequence numbers and 

dependency vectors onto normal computation messages, but this 

information is not sent on wireless channels. The local MSS of an 

MH, strips all the additional information from the computation 

message and sends it to the concerned MH. The dependency 

vector of a process running on an MH is maintained by its local 

MSS.   

Our algorithm is distributed in nature in the sense that any process 

can initiate checkpointing. If two processes initiate checkpointing 

concurrently, then the checkpoint imitator of the lower process ID 

will prevail. The local MSS of a process coordinates 

checkpointing on its behalf. Suppose two processes Pi and Pj starts 

checkpointing concurrently and MSSp and MSSq are their local 

MSS respectively then MSSp and MSSq will send checkpoint 

requests along with tentative minimum set to all the MSS‟s. 

MSSp will receive the checkpoint request of MMSq and MMSq 

will receive the checkpoint request of MSSp. Suppose Process-ID 

of Pi is less than Process-ID of Pj, then the checkpoint initiates of 

Pi will prevail. Any other MSS will automatically ignore the 

request of Pj because, every MSS will compare the process id of P i 

and Pj. 

 We propose that any process in the system can initiate the 

checkpointing operation. When a process   Pin starts checkpointing 

procedure, it send its request to its local MSS say MSSin. MSSin 

computes the tentative minimum set (m_vect[]) as follows: 

i=1,n  m_vect[i] = td_vect[i]. MSSin  coordinates checkpointing 

process on behalf of Pin. We want to emphasize that td_vectin[] 

contains the processes on which Pin transitively depends and the 

set is not complete. 

MSSin sends c-req (mutable checkpoint request) to all MSS‟s 

along with m_vectin[]. When an MSS say MSSp receives c-req; it 

sends the c-req to all such process which are running in its cell 

and are also the member of m_vectin[]. Suppose, Pj gets the 

checkpoint request at MSSp. Now we find any process Pk such that 

Pk does not belong to m_vectin[] and Pk belongs to td_vectj[]. In 

this case, Pk is also included in the minimum set. During 

checkpointing, suppose Pi takes it checkpoint and after that it send 

m to Pj such that Pj has not taken its checkpoint at the time of 

receiving m. If Pj receive m and it gets checkpoint request later on 

then m will become orphan. In order to handle this situation, we 

log m-1 at Pj. if Pj takes the checkpoint, then m becomes the 

orphan message in the recorded global state. In deterministic 

system, orphan message will be delivered again at receiving and it 

will be annihilated by its anti-message stored at the receiver end. 

Suppose, Pi sends m to Pj and Pj has already logged m-1. it implies 

Pj has already received m and m is a duplicate message, therefore, 

Pj ignores m and also delete m-1.  

For a disconnected MH that is a member of minimum set, the 

MSS that has its disconnected checkpoint, considers its 

disconnected checkpoint as the required come. When a MSS 

learns that its concerned processes in its cell have taken their 

mutable checkpoints, it sends the response to MSSin .  It should be 

noted that in the first phase, all processes take the mutable 
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checkpoints. For a process running on a static host, mutable 

checkpoint is equivalent to tentative checkpoint. But, for an MH, 

mutable checkpoint is different from tentative checkpoint. In 

order to take a tentative checkpoint, an MH has to record its local 

state and has to transfer it to its local MSS. But, the mutable 

checkpoint is stored on the local disk of the MH. It should be 

noted that the effort of taking a mutable checkpoint is very small 

as compared to the tentative one[5].  When the initiator MSS 

comes to know that all processes in the minimum set taken their 

mutable checkpoint successfully MSSin issues tentative 

checkpoint request to all MSSs along with the exact minimum set. 

Alternatively, if MSSin comes to know that some process has 

failed to take its checkpoint in the first phase, it issues abort 

request to all MSS. In this way the MHs need to abort only the 

mutable checkpoints, and not the tentative ones. In this way we 

try to reduce the loss of checkpointing effort in case of abort of 

checkpointing algorithm in first phase. 

When an MSSs receives the tentative checkpoint request, it asks 

all relevant process to convert their mutable checkpoints into 

tentative ones. In order to convert its mutable checkpoint into 

tentative one, an MH needs to transfer its checkpoint data to its 

local MSS. A process on static node has to do nothing in order to 

convert its mutable checkpoint into tentative one. When an MSS 

learns that all its relevant processes have taken their tentative 

checkpoint, it informs MSSin. Finally, when the initiator MSS 

learns that all processes in the minimum set have taken their 

tentative checkpoints successfully, it issues commit request to all 

MSSs. When a process in the minimum set gets the commit 

request, it converts it tentative checkpoint into permanent one and 

discards its earlier permanent checkpoint, if any. All the anti-

messages are also stored on stable storage along with committed 

checkpoints. 

 

3. PERFORMANCE EVALUATION 
In [13], initiator process/MSS collects dependency vectors for all 

the processes and computes the minimum set and sends the 

checkpointing request to all the processes with minimum set. The 

algorithm is non-blocking; the message received during 

checkpointing may add processes to the minimum set. It suffers 

from additional message overhead of sending request to all 

processes to send their dependency vectors and all processes send 

dependency vectors to the initiator process. But in our algorithm, 

no such overhead is imposed. The Cao-Singhal [5] suffers from 

the formation of checkpointing tree as shown in basic idea. In our 

algorithm, theoretically, we can say that the length of the 

checkpointing tree will be considerably low as compared to 

algorithm [5], as most of the transitive dependencies are captured 

during the normal processing. We do not compare our algorithm 

with Prakash-Singhal [15], as Cao-Singhal proved that there no 

such algorithm exists [4]. 

Furthermore, in [5] algorithm, transitive dependencies are 

captured by direct dependencies. Hence the average number of 

useless checkpoints requests will be significantly higher than the 

proposed algorithm. In [5], huge data structure are piggybacked 

along with checkpointing request, because they are unable to 

maintain exact dependencies among processes. Incorrect 

dependencies are solved by these huge data structures. In our case, 

no such data structures are piggybacked on checkpointing request 

and no such useless checkpoint requests are sent., because we are 

able to maintain exact dependencies among processes and 

furthermore, are able to capture transitive dependencies during 

normal computation at the cost of piggybacking bit vector of 

length n for n processes. 

In Cao-Singhal algorithm[5], some useless checkpoints are taken 

or some blocking of processes takes place, we avoid both by 

logging anti-messages of very few message at the receiver end 

only during the checkpoint process. The drawback of our 

algorithm is that it is not applicable for non deterministic systems 

while the CS[5] algorithm is designed for non deterministic 

systems.  Our algorithm is distributed in nature that any process 

can initiate checkpointing. We do not allow concurrent executions 

of the protocol. If we allow, concurrent executions then our goal 

of minimizing checkpointing efforts will be defeated, many 

processes will start taking checkpoint quite frequently without 

advancing their recovery line significantly. 

  

4. CONCLUSION 
In this paper, we have proposed a minimum-process non-intrusive 

checkpointing protocol for deterministic mobile distributed 

systems, where no useless checkpoints are taken. The number of 

processes that take checkpoints is minimized to 1) avoid  

awakening of MHs in doze mode of operation, 2) minimize 

thrashing of MHs with checkpointing activity, 3) save limited 

battery life of MHs and low bandwidth of wireless channels. In 

minimum-process checkpointing protocols, some useless 

checkpoints are taken or blocking of processes takes place; we 

eliminate both by logging anti-messages of very few selective 

messages at the receiver end only during the checkpointing 

period. The overheads of logging a few anti-messages may be 

negligible as compared to taking some useless checkpoints or 

blocking the processes during checkpointing.   We try to reduce 

the checkpointing time by avoiding checkpointing tree which may 

be formed in Cao-Singhal [5] algorithm. We captured the 

transitive dependencies during the normal execution by 

piggybacking dependency vectors onto computation messages.  

The Z-dependencies are well taken care of in this protocol. We 

also avoided collecting dependency vectors of all processes to 

find the minimum set as in [4], [13].  
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