
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

17

A Low-Overhead Minimum Process Coordinated
Checkpointing Algorithm for Mobile Distributed

System

Parveen Kumar1
,
 Poonam Gahlan2

1
Department of Computer Science & Engineering

Meerut Institute of Engineering & Technology, Meerut, India, -250005
2
Department of Computer Sc & Engg, Singhania University, Pacheri Bari (Rajasthan) India

ABSTRACT
A distributed system is a collection of independent entities

that cooperate to solve a problem that cannot be

individually solved. A mobile computing system is a

distributed system where some of processes are running on

mobile hosts (MHs), whose location in the network

changes with time. The number of processes that take

checkpoints is minimized to 1) avoid awakening of MHs in

doze mode of operation, 2) minimize thrashing of MHs

with checkpointing activity, 3) save limited battery life of

MHs and low bandwidth of wireless channels. In

minimum-process checkpointing protocols, some useless

checkpoints are taken or blocking of processes takes place.

In this paper, we propose a minimum-process coordinated

checkpointing algorithm for non-deterministic mobile

distributed systems, where no useless checkpoints are

taken. An effort has been made to minimize the blocking of

processes and synchronization message overhead. We try to

reduce the loss of checkpointing effort when any process

fails to take its checkpoint in coordination with others.

KEYWORDS: Checkpointing algorithms; parallel &

distributed computing; rollback recovery; fault-tolerant

system; mobile computing.

1. INTRODUCTION
A distributed system is a collection of independent entities

that cooperate to solve a problem that cannot be

individually solved. With the widespread proliferation of

the Internet and the emerging global village, the notion of

distributed computing systems as a useful and widely

deployed tool is becoming a reality [24]. A distributed

system can be characterized as a collection of mostly

autonomous processors communicating over a

communication network and having the following features

[25]:

• No common physical clock This is an important

assumption because it introduces the element of

“distribution” in the system and gives rise to the inherent

asynchrony amongst the processors.

. No shared memory This is a key feature that requires

message-passing for communication. It may be noted that a

distributed system may still provide the abstraction of a

common address space via the distributed shared memory

abstraction.

• Geographical separation It is not necessary for the

processors to be on a wide-area network (WAN). Recently,

the network/cluster of workstations (NOW/COW)

configuration connecting processors on a LAN is also being

increasingly regarded as a small distributed system. This

NOW configuration is becoming popular because of the

low-cost high-speed off-the-shelf processors now available.

The Google search engine is based on the NOW

architecture.

• Autonomy and heterogeneity The processors are

“loosely coupled in that they have different speeds and

each can be running a different operating system. They are

usually not part of a dedicated system, but cooperate with

one another by offering services or solving a problem [25].

Local checkpoint is the saved state of a process at a

processor at a given instance. Global checkpoint is a

collection of local checkpoints, one from each process. A

global state is said to be “consistent” if it contains no

orphan message; i.e., a message whose receive event is

recorded, but its send event is lost. To recover from a

failure, the system restarts its execution from a previous

consistent global state saved on the stable storage during

fault-free execution. In distributed systems, checkpointing

can be independent, coordinated or quasi-synchronous.

Message Logging is also used for fault tolerance in

distributed systems [14]. Most of the existing coordinated

checkpointing algorithms [9, 19] rely on the two-phase

protocol and save two kinds of checkpoints on the stable

storage: tentative and permanent. In the first phase, the

initiator process takes a tentative checkpoint and requests

all or selective processes to take their tentative checkpoints.

If all processes are asked to take their checkpoints, it is

called all-process coordinated checkpointing [5, 7, 19].

Alternatively, if selective communicating processes are

required to take checkpoints, it is called minimum-process

checkpointing. Each process informs the initiator whether

it succeeded in taking a tentative checkpoint. After the

initiator has received positive acknowledgments from all

relevant processes, the algorithm enters the second phase.

Alternatively, if a process fails to take its tentative

checkpoint in the first phase, the initiator process requests

all processes to abort their tentative checkpoint.

If the initiator learns that all concerned processes have

successfully taken their tentative checkpoints, the algorithm

enters in the second phase and the initiator asks the relevant

processes to make their tentative checkpoints permanent. In

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

18

order to record a consistent global checkpoint, when a

process takes a checkpoint, it asks (by sending checkpoint

requests to) all relevant processes to take checkpoints.

Therefore, coordinated checkpointing suffers from high

overhead associated with the checkpointing process [20],

[21], [22], [23]. Much of the previous work [2, 3, 4, 20, 21,

22, 23] in coordinated checkpointing has focused on

minimizing the number of synchronization messages and

the number of checkpoints during the checkpointing

process. However, some algorithms (called blocking

algorithm) force all relevant processes in the system to

block their computations during the checkpointing process

[3, 9, 21, 22, 23]. Checkpointing includes the time to trace

the dependency tree and to save the states of processes on

the stable storage, which may be long. Moreover, in mobile

computing systems, due to the mobility of MHs, a message

may be routed several times before reaching its destination.

Therefore, blocking algorithms may dramatically reduce

the performance of these systems [7]. Recently, non-

blocking algorithms [7, 19] have received considerable

attention. In these algorithms, processes need not block

during the checkpointing by using a checkpointing

sequence number to identify orphan messages. Moreover,

these algorithms [4, 10] require all processes in the system

to take checkpoints during checkpointing, even though

many of them may not be necessary.

A mobile computing system is a distributed system where

some of processes are running on mobile hosts (MHs),

whose location in the network changes with time. To

communicate with MHs, mobile support stations (MSSs)

act as access points for the MHs by wireless networks.

Features that make traditional checkpointing algorithms for

distributed systems unsuitable for mobile computing

systems are: locating processes that have to take their

checkpoints, energy consumption constraints, lack of stable

storage in MHs, and low bandwidth for communication

with MHs [1]. Minimum-process coordinated

checkpointing is an attractive approach for transparently

adding fault tolerance to distributed applications, since it

avoids domino effect, minimizes the stable storage

requirement and also forces only interacting processes to

checkpoint.

Prakash-Singhal algorithm [13] forces only a minimum

number of processes to take checkpoints and does not block

the underlying computation during checkpointing.

However, it was proved that their algorithm may result in

an inconsistency [3]. Cao and Singhal [4] achieved non-

intrusiveness in the minimum-process algorithm by

introducing the concept of mutable checkpoints. The

number of useless checkpoints in [4] may be exceedingly

high in some situations [16]. Kumar et. al [16] and Kumar

et. al [11] reduced the height of the checkpointing tree and

the number of useless checkpoints by keeping non-

intrusiveness intact, at the extra cost of maintaining and

collecting dependency vectors, computing the minimum set

and broadcasting the same on the static network along with

the checkpoint request. Some minimum-process blocking

algorithms are also proposed in literature [3, 9, 21, 23]. In

this paper, we propose an efficient checkpointing algorithm

for mobile computing systems that forces only a minimum

number of processes to take checkpoints. An effort has

been made to minimize the blocking of processes and

synchronization message overhead. We capture the partial

transitive dependencies during the normal execution by

piggybacking dependency vectors onto computation

messages. The Z-dependencies are well taken care of in

this protocol. In order to reduce the message overhead, we

also avoid collecting dependency vectors of all processes to

find the minimum set as in [3], [11], [21]. We also try to

minimize the loss of checkpointing effort when any process

fails to take its checkpoint.

2. PROPOSED CHECKPOINTING

ALGORITHM

Our system model is similar to [4, 21]. We propose to

handle node mobility and failures during checkpointing as

proposed in [21].

2.1 BASIC IDEA

All Communications to and from MH pass through its local

MSS. The MSS maintains the dependency information of

the MHs which are in its cell. The dependency information

is kept in Boolean vector Ri for process Pi. The vector has

n bits for n processes. When Ri[j] is set to 1, it represents Pi

depends upon Pj. For every Pi, Ri is initialized to 0 except

Ri[i], which is initialized to l. When a process Pi running

on an MH, say MHp, receives a message from a process Pj,

MHp's local MSS should set Ri[j] to 1.If PJ has taken its

permanent checkpoint after sending Ri[j] is not updated.

Suppose there are processes Pi and Pj running on MHs,

MHi and MHj with dependency vectors Ri and Rj. The

dependency vectors of MHs, MHi and MHj are maintained

by their local MSSs, MSSi and MSSj. Process Pi running

on MHi sends message m to process Pj running on MHj.

The message is first sent to MSSi (local MSS of MHi).

MSSi maintains the dependency vector Ri of MHi. MSSi

appends Ri with message m and sends it to MSSj (local

MSS of MHj). MSSj maintains the dependency vector Rj of

MHj. MSSj replaces Rj with bitwise logical OR of

dependency vectors Ri and Rj and sends m to Pj.

In Figure 1, there are five processes P1, P2, P3, P4, P5 with

dependency vectors R1, R2, R3, R4, R5 initialized to 00001,

00010, 00100, 01000, and 10000 respectively. Initially,

P1

P2

P3

P41

P51

m.00001

m2.00011

m3.01000

t1

t2

Figure1. Maintenance of Dependency

Vectors

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

19

every process depends upon itself. Now process P1 sends m

to P2. P1 appends R1 with m. P2 replaces R2 with the

bitwise logical OR of R1(00001) and R2(00010), which

comes out to be (00011). Now P2 sends m2 to P3 and

appends R2 (00011) with m2. Before receiving m2, the

value of R3 at P3 was 00100. After receiving m2, P3

replaces R3 with the bitwise logical OR of R2 (00011) and

R3 (00100) and R3 becomes (00111). Now P4 sends m3

along with R4 (01000) to P5. After receiving m3, R5

becomes (11000).In this case, if P3 starts checkpointing at

t1, it will compute the tentative minimum set equivalent to

R3(00111), which comes out to be {P1, P2, P3}. If a single

process fails to take its checkpoint; all the checkpointing

effort goes waste, because, each process has to abort its

tentative checkpoint. Furthermore, in order to take the

tentative checkpoint, an MH needs to transfer large

checkpoint data to its local MSS over wireless channels.

Hence, the loss of checkpointing effort may be exceedingly

high due to frequent aborts of checkpointing algorithms.

In mobile distributed systems, there remain certain issues

like: abrupt disconnection, exhausted battery power, or

failure in wireless bandwidth. So there remains a good

probability that some MH may fail to take its checkpoint in

coordination with others. Therefore, we propose that in the

first phase, all processes in the minimum set, take mutable

checkpoint only. Mutable checkpoint is described in [4], it

is stored on the memory of MH only. If some process fails

to take its checkpoint in the first phase, then other MHs

need to abort their mutable checkpoints only. The effort of

taking a mutable checkpoint is negligible as compared to

the tentative one [4]. In this second phase, a process

converts its mutable checkpoint into tentative one. By

using this scheme, we try to minimize the loss of

checkpointing effort in case of abort of checkpointing

algorithm in the first phase.

A non-blocking checkpointing algorithm does not require

any process to suspend its underlying computation. When

processes do not suspend their computation, it is possible

for a process to receive a computation message from

another process, which is already running in a new

checkpointing interval. If this situation is not properly dealt

with, it may result in an inconsistency. During the

checkpointing procedure, a process Pi may receive m from

Pj such that Pj has taken its checkpoint for the current

initiation whereas Pi has not. Suppose, Pi processes m, and

it receives checkpoint request later on, and then it takes its

checkpoint. In that case, m will become orphan in the

recorded global state. We propose that only those

messages, which can become orphan, should be buffered at

the sender’s end. When a process takes its mutable

checkpoint, it is not allowed to send any message till it

receives the tentative checkpoint request. However, in this

duration, the process is allowed to perform its normal

computations and receive the messages. When a process

receives the tentative checkpoint request, it is confirmed

that every concerned process has taken its mutable

checkpoint. Hence, a message generated for sending by a

process after taking its mutable checkpoint can not become

orphan.

2.2 THE PROPOSED ALGORITHM
First phase of the algorithm: When a process, say Pi,

running on an MH, say MHi, initiates a checkpointing, it

sends a checkpoint initiation request to its local MSS,

which will be the proxy MSS (if the initiator runs on an

MSS, then the MSS is the proxy MSS). The proxy MSS

maintains the dependency vector of Pi say Ri. On the basis

of Ri, the set of dependent processes of Pi is formed, say

Sminset. The proxy MSS broadcasts ckpt (Sminset) to all

MSSs. When an MSS receive ckpt (Sminset) message, it

checks, if any processes in Sminset are in its cell. If so, the

MSS sends mutable checkpoint request message to them.

Any process receiving a mutable checkpoint request takes a

mutable checkpoint and sends a response to its local MSS.

After an MSS received all response messages from the

processes to which it sent mutable checkpoint request

messages, it sends a response to the proxy MSS. It should

be noted that in the first phase, all processes take the

mutable checkpoints. For a process running on a static host,

mutable checkpoint is equivalent to tentative checkpoint.

But, for an MH, mutable checkpoint is different from

tentative checkpoint. In order to take a tentative

checkpoint, an MH has to record its local state and has to

transfer it to its local MSS. But, the mutable checkpoint is

stored on the local disk of the MH. It should be noted that

the effort of taking a mutable checkpoint is very small as

compared to the tentative one[4]. For a disconnected MH

that is a member of minimum set, the MSS that has its

disconnected checkpoint, considers its disconnected

checkpoint as the required come.

Second Phase of the Algorithm: After the proxy MSS has

received the response from every MSS, the algorithm

enters the second phase. If the proxy MSS learns that all

relevant processes have taken their mutable checkpoints

successfully, it asks them to convert their mutable

checkpoints into tentative ones and also sends the exact

minimum set along with this request. Alternatively, if

initiator MSS comes to know that some process has failed

to take its checkpoint in the first phase, it issues abort

request to all MSS. In this way the MHs need to abort only

the mutable checkpoints, and not the tentative ones. In this

way we try to reduce the loss of checkpointing effort in

case of abort of checkpointing algorithm in first

phase.When an MSS receives the tentative checkpoint

request, it asks all the process in the minimum set, which

are also running in itself, to convert their mutable

checkpoints into tentative ones. When an MSS learns that

all relevant process in its cell have taken their tentative

checkpoints successfully, it sends response to proxy MSS.

Third Phase of the Algorithm:

Finally, when the proxy MSS learns that all processes in

the minimum set have taken their tentative checkpoints

successfully, it issues commit request to all MSSs. When a

process in the minimum set gets the commit request, it

converts its tentative checkpoint into permanent one and

discards its earlier permanent checkpoint, if any.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

20

Message handling during checkpointing:

When a process takes its mutable checkpoint, it does not

send any massage till it receives the tentative checkpoint

request. Suppose, Pi sends m to Pj after taking its mutable

checkpoint and Pj has not taken its mutable checkpoint at

the time of receiving m. In this case, if Pj takes its mutable

checkpoint after processing m, then m will become

orphan. Therefore, we do not allow Pi to send any

massage unless and until every process in the minimum

set have taken its mutable checkpoint in the first phase. Pi

can send massages when it receives the tentative

checkpoint request; because, at this moment every

concerned process has taken its mutable checkpoint and m

cannot become orphan. The massages to be sent are

buffered at senders end. In this duration, a process is

allowed to continue its normal computations and receive

massages.

Suppose, Pj gets the mutable checkpoint request at MSSp.

Now, we find any process Pk such that Pk does not belong

to Sminset and Pk belongs to Rj[]. In this case, Pk is also

included in the minimum set; and Pj sends mutable

checkpoint request to Pk. It should be noted that the Sminset,

computed on the basis of dependency vector of initiator

process is only a subset of the minimum set. Due to zigzag

dependencies, initiator process may be transitively

dependent upon some more process which is not included

in the Sminset.

2.3 AN EXAMPLE
The proposed Algorithm can be better understood by the

example shown in Figure 2. There are six processes (P0

to P5) denoted by straight lines. Each process is assumed to

have initial permanent checkpoints with csn equal to “0”.

Cix denotes the xth checkpoints of Pi. Initial dependency

vectors of P0, P1, P2, P3, P4, P5 are [000001], [000010]

[000100], [001000], [010000], and [100000], respectively.

The dependency vectors are maintained as explained in

Section 2.1. P0 sends m2 to P1 along with its dependency

vector [000001]. When P1 receives m2, it computes its

dependency vector by taking bitwise logical OR of

dependency vectors of P0 and P1, which comes out to be

[000011]. Similarly, P2 updates its dependency vector on

receiving m3 and it comes out to be [000111]. At time t1, P2

initiates checkpointing algorithm with its dependency

vector is [000111]. At time t1, P2 finds that it is transitively

dependent upon P0 and P1. Therefore, P2 computes the

tentative minimum set [Sminset= {P0, P1, P2}]. P2 sends the

mutable checkpoint request to P1 and P0 and takes its own

mutable checkpoint C21. For an MH the mutable checkpoint

is stored on the disk of MH. It should be noted that Sminset is

only a subset of the minimum set. When P1 takes its

mutable checkpoint C11, it finds that it is dependent upon P3

due to m4, but P3 is not a member of Sminset; therefore, P1

sends mutable checkpoint request to P3. Consequently, P3

takes its mutable checkpoint C31.

After taking its mutable checkpoint C21, P2 generates m8 for

P3. As P2 has already taken its mutable checkpoint for the

current initiation and it has not received the tentative

checkpoint request from the initiator; therefore P2 buffers

m8 on its local disk. We define this duration as the

uncertainty period of a process during which a process is

not allowed to send any massage. The massages generated

for sending are buffered at the local disk of the sender’s

process. P2 can sends m8 only after getting tentative

checkpoint request or abort massages from the initiator

process. Similarly, after taking its mutable checkpoint P0

buffers m10 for its uncertainty period. It should be noted

that P1 receives m10 only after taking its mutable

checkpoint. Similarly, P3 receives m8 only after taking its

mutable checkpoint C31.A process receives all the massages

during its uncertainty period for example P3 receives m11. A

process is also allowed to perform its normal computations

during its uncertainty period.

At time t2, P2 receives responses to mutable checkpoints

requests from all process in the minimum set (not shown in

the Figure 2) and finds that they have taken their mutable

checkpoints successfully, therefore, P2 issues tentative

checkpoint request to all processes. On getting tentative

checkpoint request, processess in the minimum set [P0, P1,

P2, P3] convert their mutable checkpoints into tentative

ones and send the response to initiator process P2; these

process also send the massages, buffered at their local

disks, to the destination processes For example, P0 sends

m10 to P1 after getting tentative checkpoint request [not

shown in the figure]. Similarly, P2 sends m8 to P3 after

getting tentative checkpoint request. At time t3, P2 receives

responses from the process in minimum set [not shown in

the figure] and finds that they have taken their tentative

checkpoints successfully, therefore, P2 issues commit

request to all process. A process in the minimum set

converts its tentative checkpoint into permanent checkpoint

and discards it old permanent checkpoint if any.

3. CONCLUSION
In this paper, we have proposed a minimum-process

checkpointing protocol for deterministic mobile distributed

systems, where no useless checkpoints are taken and an

effort has been made to minimize the blocking of

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

21

processes. We try to reduce the checkpointing time and

blocking time of processes by limiting checkpointing tree

which may be formed in other algorithms [4, 9]. We

captured the transitive dependencies during the normal

execution by piggybacking dependency vectors onto

computation messages. The Z-dependencies are well taken

care of in this protocol. We also try to reduce the loss of

checkpointing effort when any process fails to take its

checkpoint in coordination with others.

REFERENCES
[1] Acharya A. and Badrinath B. R., “Checkpointing

Distributed Applications on Mobile Computers,”

Proceedings of the 3rd International Conference on

Parallel and Distributed Information Systems, pp. 73-

80, September 1994.

[2] Cao G. and Singhal M., “On coordinated

checkpointing in Distributed Systems”, IEEE

Transactions on Parallel and Distributed Systems, vol.

9, no.12, pp. 1213-1225, Dec 1998.

[3] Cao G. and Singhal M., “On the Impossibility of Min-

process Non-blocking Checkpointing and an Efficient

Checkpointing Algorithm for Mobile Computing

Systems,” Proceedings of International Conference on

Parallel Processing, pp. 37-44, August 1998.

[4] Cao G. and Singhal M., “Mutable Checkpoints: A

New Checkpointing Approach for Mobile Computing

systems,” IEEE Transaction On Parallel and

Distributed Systems, vol. 12, no. 2, pp. 157-172,

February 2001.

[5] Chandy K. M. and Lamport L., “Distributed

Snapshots: Determining Global State of Distributed

Systems,” ACM Transaction on Computing Systems,

vol. 3, No. 1, pp. 63-75, February 1985.

[6] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson

D.B., “A Survey of Rollback-Recovery Protocols in

Message-Passing Systems,” ACM Computing

Surveys, vol. 34, no. 3, pp. 375-408, 2002.

[7] Elnozahy E.N., Johnson D.B. and Zwaenepoel W.,

“The Performance of Consistent Checkpointing,”

Proceedings of the 11th Symposium on Reliable

Distributed Systems, pp. 39-47, October 1992.

[8] Higaki H. and Takizawa M., “Checkpoint-recovery

Protocol for Reliable Mobile Systems,” Trans. of

Information processing Japan, vol. 40, no.1, pp. 236-

244, Jan. 1999.

[9] Koo R. and Toueg S., “Checkpointing and Roll-Back

Recovery for Distributed Systems,” IEEE Trans. on

Software Engineering, vol. 13, no. 1, pp. 23-31,

January 1987.

[10] Neves N. and Fuchs W. K., “Adaptive Recovery for

Mobile Environments,” Communications of the ACM,

vol. 40, no. 1, pp. 68-74, January 1997.

[11] Parveen Kumar, Lalit Kumar, R K Chauhan, V K

Gupta “A Non-Intrusive Minimum Process

Synchronous Checkpointing Protocol for Mobile

Distributed Systems” Proceedings of IEEE ICPWC-

2005, pp 491-95, January 2005.

[12] Pradhan D.K., Krishana P.P. and Vaidya N.H.,

“Recovery in Mobile Wireless Environment: Design

and Trade-off Analysis,” Proceedings 26th

International Symposium on Fault-Tolerant

Computing, pp. 16-25, 1996.

[13] Prakash R. and Singhal M., “Low-Cost Checkpointing

and Failure Recovery in Mobile Computing Systems,”

IEEE Transaction On Parallel and Distributed

Systems, vol. 7, no. 10, pp. 1035-1048, October1996.

[14] Ssu K.F., Yao B., Fuchs W.K. and Neves N. F.,

“Adaptive Checkpointing with Storage Management

for Mobile Environments,” IEEE Transactions on

Reliability, vol. 48, no. 4, pp. 315-324, December

1999.

[15] J.L. Kim, T. Park, “An efficient Protocol for

checkpointing Recovery in Distributed Systems,”

IEEE Trans. Parallel and Distributed Systems, pp.

955-960, Aug. 1993.

[16] L. Kumar, M. Misra, R.C. Joshi, “Low overhead

optimal checkpointing for mobile distributed systems”

Proceedings. 19th IEEE International Conference on

Data Engineering, pp 686 – 88, 2003.

[17] Ni, W., S. Vrbsky and S. Ray, “Pitfalls in Distributed

Nonblocking Checkpointing”, Journal of

Interconnection Networks, Vol. 1 No. 5, pp. 47-78,

March 2004.

[18] L. Lamport, “Time, clocks and ordering of events in a

distributed system” Comm. ACM, vol.21, no.7, pp.

558-565, July 1978.

[19] Silva, L.M. and J.G. Silva, “Global checkpointing for

distributed programs”, Proc. 11th symp. Reliable

Distributed Systems, pp. 155-62, Oct. 1992.

[20] Parveen Kumar, Lalit Kumar, R K Chauhan, “A Non-

intrusive Hybrid Synchronous Checkpointing Protocol

for Mobile Systems”, IETE Journal of Research, Vol.

52 No. 2&3, 2006.

[21] Parveen Kumar, “A Low-Cost Hybrid Coordinated

Checkpointing Protocol for mobile distributed

systems”, Mobile Information Systems. pp 13-32, Vol.

4, No. 1, 2007.

[22] Lalit Kumar Awasthi, Parveen Kumar, “A

Synchronous Checkpointing Protocol for Mobile

Distributed Systems: Probabilistic Approach”

International Journal of Information and Computer

Security, Vol.1, No.3 pp 298-314.

[23] Sunil Kumar, R K Chauhan, Parveen Kumar, “A

Minimum-process Coordinated Checkpointing

Protocol for Mobile Computing Systems”,

International Journal of Foundations of Computer

science,Vol 19, No. 4, pp 1015-1038 (2008).

[24] A. Tanenbaum and M. Van Steen, Distributed

Systems: Principles and paradigms,Upper Saddle

River, NJ, Prentice-Hall,2003.

[25] M. Singhal and N. Shivaratri, Advanced Concepts

in Operating Systems, New York, McGraw Hill, 1994.

