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ABSTRACT  
A distributed system is a collection of independent entities 

that cooperate to solve a problem that cannot be 

individually solved. A mobile computing system is a 

distributed system where some of processes are running on 

mobile hosts (MHs), whose location in the network 

changes with time. The number of processes that take 

checkpoints is minimized to 1) avoid  awakening of MHs in 

doze mode of operation, 2) minimize thrashing of MHs 

with checkpointing activity, 3) save limited battery life of 

MHs and low bandwidth of wireless channels. In 

minimum-process checkpointing protocols, some useless 

checkpoints are taken or blocking of processes takes place. 

In this paper, we propose a minimum-process coordinated 

checkpointing algorithm for non-deterministic mobile 

distributed systems, where no useless checkpoints are 

taken. An effort has been made to minimize the blocking of 

processes and synchronization message overhead. We try to 

reduce the loss of checkpointing effort when any process 

fails to take its checkpoint in coordination with others.   
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distributed computing; rollback recovery; fault-tolerant 
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1.  INTRODUCTION 
A distributed system is a collection of independent entities 

that cooperate to solve a problem that cannot be 

individually solved. With the widespread proliferation of 

the Internet and the emerging global village, the notion of 

distributed computing systems as a useful and widely 

deployed tool is becoming a reality [24]. A distributed 

system can be characterized as a collection of mostly 

autonomous processors communicating over a 

communication network and having the following features 

[25]:  

• No common physical clock This is an important 

assumption because it introduces the element of 

“distribution” in the system and gives rise to the inherent 

asynchrony amongst the processors. 

. No shared memory This is a key feature that requires 

message-passing for communication. It may be noted that a 

distributed system may still provide the abstraction of a 

common address space via the distributed shared memory 

abstraction.  

• Geographical separation It is not necessary for the 

processors to be on a wide-area network (WAN). Recently, 

the network/cluster of workstations (NOW/COW) 

configuration connecting processors on a LAN is also being 

increasingly regarded as a small distributed system. This 

NOW configuration is becoming popular because of the 

low-cost high-speed off-the-shelf processors now available. 

The Google search engine is based on the NOW 

architecture. 

• Autonomy and heterogeneity The processors are 

“loosely coupled in that they have different speeds and 

each can be running a different operating system. They are 

usually not part of a dedicated system, but cooperate with 

one another by offering services or solving a problem [25]. 

 

Local checkpoint is the saved state of a process at a 

processor at a given instance. Global checkpoint is a 

collection of local checkpoints, one from each process. A 

global state is said to be “consistent” if it contains no 

orphan message; i.e., a message whose receive event is 

recorded, but its send event is lost. To recover from a 

failure, the system restarts its execution from a previous 

consistent global state saved on the stable storage during 

fault-free execution. In distributed systems, checkpointing 

can be independent, coordinated or quasi-synchronous. 

Message Logging is also used for fault tolerance in 

distributed systems [14]. Most of the existing coordinated 

checkpointing algorithms [9, 19] rely on the two-phase 

protocol and save two kinds of checkpoints on the stable 

storage: tentative and permanent. In the first phase, the 

initiator process takes a tentative checkpoint and requests 

all or selective processes to take their tentative checkpoints. 

If all processes are asked to take their checkpoints, it is 

called all-process coordinated checkpointing [5, 7, 19]. 

Alternatively, if selective communicating processes are 

required to take checkpoints, it is called minimum-process 

checkpointing.  Each process informs the initiator whether 

it succeeded in taking a tentative checkpoint. After the 

initiator has received positive acknowledgments from all 

relevant processes, the algorithm enters the second phase. 

Alternatively, if a process fails to take its tentative 

checkpoint in the first phase, the initiator process requests 

all processes to abort their tentative checkpoint.  

If the initiator learns that all concerned processes have 

successfully taken their tentative checkpoints, the algorithm 

enters in the second phase and the initiator asks the relevant 

processes to make their tentative checkpoints permanent. In 
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order to record a consistent global checkpoint, when a 

process takes a checkpoint, it asks (by sending checkpoint 

requests to) all relevant processes to take checkpoints. 

Therefore, coordinated checkpointing suffers from high 

overhead associated with the checkpointing process [20], 

[21], [22], [23]. Much of the previous work [2, 3, 4, 20, 21, 

22, 23] in coordinated checkpointing has focused on 

minimizing the number of synchronization messages and 

the number of checkpoints during the checkpointing 

process. However, some algorithms (called blocking 

algorithm) force all relevant processes in the system to 

block their computations during the checkpointing process 

[3, 9, 21, 22, 23]. Checkpointing includes the time to trace 

the dependency tree and to save the states of processes on 

the stable storage, which may be long. Moreover, in mobile 

computing systems, due to the mobility of MHs, a message 

may be routed several times before reaching its destination. 

Therefore, blocking algorithms may dramatically reduce 

the performance of these systems [7]. Recently, non-

blocking algorithms [7, 19] have received considerable 

attention. In these algorithms, processes need not block 

during the checkpointing by using a checkpointing 

sequence number to identify orphan messages. Moreover, 

these algorithms [4, 10] require all processes in the system 

to take checkpoints during checkpointing, even though 

many of them may not be necessary.  

 

A mobile computing system is a distributed system where 

some of processes are running on mobile hosts (MHs), 

whose location in the network changes with time. To 

communicate with MHs, mobile support stations (MSSs) 

act as access points for the MHs by wireless networks. 

Features that make traditional checkpointing algorithms for 

distributed systems unsuitable for mobile computing 

systems are: locating processes that have to take their 

checkpoints, energy consumption constraints, lack of stable 

storage in MHs, and low bandwidth for communication 

with MHs [1]. Minimum-process coordinated 

checkpointing is an attractive approach for transparently 

adding fault tolerance to distributed applications, since it 

avoids domino effect, minimizes the stable storage 

requirement and also forces only interacting processes to 

checkpoint.  

 

Prakash-Singhal algorithm [13] forces only a minimum 

number of processes to take checkpoints and does not block 

the underlying computation during checkpointing. 

However, it was proved that their algorithm may result in 

an inconsistency [3]. Cao and Singhal [4] achieved non-

intrusiveness in the minimum-process algorithm    by 

introducing the concept of mutable checkpoints. The 

number of useless checkpoints in [4] may be exceedingly 

high in some situations [16]. Kumar et. al [16] and  Kumar 

et. al [11] reduced the height of the checkpointing tree and 

the number of useless checkpoints by keeping non-

intrusiveness intact, at the extra cost of maintaining and 

collecting dependency vectors, computing the minimum set 

and broadcasting the same on the static network along with 

the checkpoint request. Some minimum-process blocking 

algorithms are also proposed in literature [3, 9, 21, 23]. In 

this paper, we propose an efficient checkpointing algorithm 

for mobile computing systems that forces only a minimum 

number of processes to take checkpoints. An effort has 

been made to minimize the blocking of processes and 

synchronization message overhead. We capture the partial 

transitive dependencies during the normal execution by 

piggybacking dependency vectors onto computation 

messages.  The Z-dependencies are well taken care of in 

this protocol. In order to reduce the message overhead, we 

also avoid collecting dependency vectors of all processes to 

find the minimum set as in [3], [11], [21]. We also try to 

minimize the loss of checkpointing effort when any process 

fails to take its checkpoint.  

2. PROPOSED CHECKPOINTING 

ALGORITHM 

Our system model is similar to [4, 21]. We propose to 

handle node mobility and failures during checkpointing as 

proposed in [21].   

2.1 BASIC IDEA  

All Communications to and from MH pass through its local 

MSS. The MSS maintains the dependency information of 

the MHs which are in its cell. The dependency information 

is kept in Boolean vector Ri for process Pi. The vector has 

n bits for n processes. When Ri[j] is set to 1, it represents Pi 

depends upon Pj. For every Pi, Ri is initialized to 0 except 

Ri[i], which is initialized to l. When a process Pi running 

on an MH, say MHp, receives a message from a process Pj, 

MHp's local MSS should set Ri[j] to 1.If PJ has taken its 

permanent checkpoint after sending Ri[j] is not updated. 

Suppose there are processes Pi and Pj running on MHs, 

MHi and MHj with dependency vectors Ri and Rj. The 

dependency vectors of MHs, MHi and MHj are maintained 

by their local MSSs, MSSi and MSSj. Process Pi running 

on MHi sends message m to process Pj running on MHj. 

The message is first sent to MSSi (local MSS of MHi). 

MSSi maintains the dependency vector Ri of MHi. MSSi 

appends Ri with message m and sends it to MSSj (local 

MSS of MHj). MSSj maintains the dependency vector Rj of 

MHj. MSSj replaces Rj with bitwise logical OR of 

dependency vectors Ri and Rj and sends m to Pj. 

                                                      
In Figure 1, there are five processes P1, P2, P3, P4, P5 with 

dependency vectors R1, R2, R3, R4, R5 initialized to 00001, 

00010, 00100, 01000, and 10000 respectively. Initially, 

P1 

P2 

P3 

P41 

P51 

m.00001 

m2.00011 

m3.01000 

t1 

t2 

Figure1.  Maintenance of Dependency    

Vectors 
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every process depends upon itself. Now process P1 sends m 

to P2. P1 appends R1 with m. P2 replaces R2 with the 

bitwise logical OR of R1(00001)  and R2(00010), which 

comes out to be   (00011). Now P2 sends m2 to P3 and 

appends R2 (00011) with m2. Before receiving m2, the 

value of R3 at P3 was 00100. After receiving m2, P3 

replaces R3 with the bitwise logical OR of R2 (00011) and 

R3 (00100) and  R3 becomes (00111). Now P4 sends m3 

along with R4 (01000) to P5. After receiving m3, R5 

becomes (11000).In this case, if P3 starts checkpointing at 

t1, it will compute the tentative  minimum set equivalent to 

R3(00111),  which comes  out to be {P1, P2, P3}.  If a single 

process fails to take its checkpoint; all the checkpointing 

effort goes waste, because, each process has to abort its 

tentative checkpoint. Furthermore, in order to take the 

tentative checkpoint, an MH needs to transfer large 

checkpoint data to its local MSS over wireless channels. 

Hence, the loss of checkpointing effort may be exceedingly 

high due to frequent aborts of checkpointing algorithms.  

In mobile distributed systems, there remain certain issues 

like: abrupt disconnection, exhausted battery power, or 

failure in wireless bandwidth. So there remains a good 

probability that some MH may fail to take its checkpoint in 

coordination with others. Therefore, we propose that  in the 

first phase, all processes in the minimum set,  take mutable 

checkpoint only. Mutable checkpoint is described in [4], it 

is stored on the memory of MH only. If some process fails 

to take its checkpoint in the first phase, then other MHs 

need to abort their mutable checkpoints only. The effort of 

taking a mutable checkpoint is negligible as compared to 

the tentative one [4]. In this second phase, a process 

converts its mutable checkpoint into tentative one. By 

using this scheme, we try to minimize the loss of 

checkpointing effort in case of abort of checkpointing 

algorithm in the first phase.  

A non-blocking checkpointing algorithm does not require 

any process to suspend its underlying computation. When 

processes do not suspend their computation, it is possible 

for a process to receive a computation message from 

another process, which is already running in a new 

checkpointing interval. If this situation is not properly dealt 

with, it may result in an inconsistency. During the 

checkpointing procedure, a process Pi may receive m from 

Pj such that Pj has taken its checkpoint for the current 

initiation whereas Pi has not. Suppose, Pi processes m, and 

it receives checkpoint request later on, and then it takes its 

checkpoint. In that case, m will become orphan in the 

recorded global state. We propose that only those 

messages, which can become orphan, should be buffered at 

the sender’s end.  When a process takes its mutable 

checkpoint, it is not allowed to send any message till it 

receives the tentative checkpoint request. However, in this 

duration, the process is allowed to perform its normal 

computations and receive the messages. When a process 

receives the tentative checkpoint request, it is confirmed 

that every concerned process has taken its mutable 

checkpoint. Hence, a message generated for sending by a 

process after taking its mutable checkpoint can not become 

orphan.    

 

 

2.2 THE PROPOSED ALGORITHM  
First phase of the algorithm: When a process, say Pi, 

running on an MH, say MHi, initiates a checkpointing, it 

sends a checkpoint initiation request to its local MSS, 

which will be the proxy MSS (if the initiator runs on an 

MSS, then the MSS is the proxy MSS). The proxy MSS 

maintains the dependency vector of Pi say Ri. On the basis 

of Ri, the set of dependent processes of Pi is formed, say 

Sminset. The proxy MSS broadcasts ckpt (Sminset) to all 

MSSs. When an MSS receive ckpt (Sminset) message, it 

checks, if any processes in Sminset are in its cell. If so, the 

MSS sends mutable checkpoint request message to them. 

Any process receiving a mutable checkpoint request takes a 

mutable checkpoint and sends a response to its local MSS. 

After an MSS received all response messages from the 

processes to which it sent mutable checkpoint request 

messages, it sends a response to the proxy MSS. It should 

be noted that in the first phase, all processes take the 

mutable checkpoints. For a process running on a static host, 

mutable checkpoint is equivalent to tentative checkpoint. 

But, for an MH, mutable checkpoint is different from 

tentative checkpoint. In order to take a tentative 

checkpoint, an MH has to record its local state and has to 

transfer it to its local MSS. But, the mutable checkpoint is 

stored on the local disk of the MH. It should be noted that 

the effort of taking a mutable checkpoint is very small as 

compared to the tentative one[4]. For a disconnected MH 

that is a member of minimum set, the MSS that has its 

disconnected checkpoint, considers its disconnected 

checkpoint as the required come.  

Second Phase of the Algorithm: After the proxy MSS has 

received the response from every MSS, the algorithm 

enters the second phase. If the proxy MSS learns that all 

relevant processes have taken their mutable checkpoints 

successfully, it asks them to convert their mutable 

checkpoints into tentative ones and also sends the exact 

minimum set along with this request. Alternatively, if 

initiator MSS comes to know that some process has failed 

to take its checkpoint in the first phase, it issues abort 

request to all MSS. In this way the MHs need to abort only 

the mutable checkpoints, and not the tentative ones. In this 

way we try to reduce the loss of checkpointing effort in 

case of abort of checkpointing algorithm in first 

phase.When an MSS receives the tentative checkpoint 

request, it asks all the process in the minimum set, which 

are also running in itself, to convert their mutable 

checkpoints into tentative ones. When an MSS learns that 

all relevant process in its cell have taken their tentative 

checkpoints successfully, it sends response to proxy MSS.   

Third Phase of the Algorithm: 

Finally, when the proxy MSS learns that all processes in 

the minimum set have taken their tentative checkpoints 

successfully, it issues commit request to all MSSs. When a 

process in the minimum set gets the commit request, it 

converts its tentative checkpoint into permanent one and 

discards its earlier permanent checkpoint, if any. 
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Message handling during checkpointing:  

When a process takes its mutable checkpoint, it does not 

send any massage till it receives the tentative checkpoint 

request. Suppose, Pi sends m to Pj after taking its mutable 

checkpoint and Pj has not taken its mutable checkpoint at 

the time of receiving m. In this case, if Pj takes its mutable 

checkpoint after processing m, then m will become 

orphan. Therefore, we do not allow Pi to send any 

massage unless and until every process in the minimum 

set have taken its mutable checkpoint in the first phase. Pi 

can send massages when it receives the tentative 

checkpoint request; because, at this moment every 

concerned process has taken its mutable checkpoint and m 

cannot become orphan. The massages to be sent are 

buffered at senders end. In this duration, a process is 

allowed to continue its normal computations and receive 

massages. 

Suppose, Pj gets the mutable checkpoint request at MSSp. 

Now, we find any process Pk such that Pk does not belong 

to Sminset and Pk belongs to Rj[]. In this case, Pk is also 

included in the minimum set; and Pj sends mutable 

checkpoint request to Pk. It should be noted that the Sminset, 

computed on the basis of dependency vector of initiator 

process is only a subset of the minimum set. Due to zigzag   

dependencies, initiator process may be transitively 

dependent upon some more process which is not included 

in the Sminset.    

2.3 AN EXAMPLE  
The proposed Algorithm can be better understood by the 

example shown in    Figure 2.  There are six processes (P0 

to P5) denoted by straight lines. Each process is assumed to 

have initial permanent checkpoints with csn equal to “0”. 

Cix denotes the xth  checkpoints of Pi. Initial dependency 

vectors of P0, P1, P2, P3, P4, P5 are [000001], [000010] 

[000100], [001000], [010000], and [100000], respectively. 

The dependency vectors are maintained as explained in 

Section 2.1. P0 sends m2 to P1 along with its dependency 

vector [000001]. When P1 receives m2, it computes its 

dependency vector by taking bitwise logical OR of 

dependency vectors of P0 and P1, which comes out to be 

[000011]. Similarly, P2 updates its dependency vector on 

receiving m3 and it comes out to be [000111]. At time t1, P2 

initiates checkpointing algorithm with its dependency 

vector is [000111].  At time t1, P2 finds that it is transitively 

dependent upon P0 and P1. Therefore, P2 computes the 

tentative minimum set [Sminset= {P0, P1,  P2}]. P2 sends the 

mutable checkpoint request to  P1 and  P0 and takes its own 

mutable checkpoint C21. For an MH the mutable checkpoint 

is stored on the disk of MH. It should be noted that Sminset is 

only a subset of the minimum set. When P1 takes its 

mutable checkpoint C11, it finds that it is dependent upon P3 

due to m4, but P3 is not a member of Sminset; therefore, P1 

sends mutable checkpoint request to P3. Consequently, P3 

takes its mutable checkpoint C31.    

After taking its mutable checkpoint C21, P2 generates m8 for 

P3. As P2 has already taken its mutable checkpoint for the 

current initiation and it has not received the tentative 

checkpoint request from the initiator; therefore P2 buffers 

m8 on its local disk. We define this duration as the 

uncertainty period of a process during which a process is 

not allowed to send any massage. The massages generated 

for sending are buffered at the local disk of the sender’s 

process. P2 can sends m8 only after getting tentative 

checkpoint request or abort massages from the initiator 

process. Similarly, after taking its mutable checkpoint P0 

buffers m10 for its uncertainty period. It should be noted 

that P1 receives m10 only after taking its mutable 

checkpoint. Similarly, P3 receives m8 only after taking its 

mutable checkpoint C31.A process receives all the massages 

during its uncertainty period for example P3 receives m11. A 

process is also allowed to perform its normal computations 

during its uncertainty period. 

 

At time t2, P2 receives responses to mutable checkpoints 

requests from all process in the minimum set (not shown in 

the Figure 2) and finds that they have taken their mutable 

checkpoints successfully, therefore, P2 issues tentative 

checkpoint request to all processes. On getting tentative 

checkpoint request, processess in the minimum set [ P0, P1, 

P2, P3 ] convert their mutable checkpoints into tentative 

ones and send the response to initiator process P2; these 

process also send the massages, buffered at their local 

disks, to the destination processes For example, P0 sends 

m10 to P1 after getting tentative checkpoint request [not 

shown in the figure]. Similarly, P2 sends m8 to P3 after 

getting tentative checkpoint request. At time t3, P2 receives 

responses from the process in minimum set [not shown in 

the figure] and finds that they have taken their tentative 

checkpoints successfully, therefore, P2 issues commit 

request to all process. A process in the minimum set 

converts its tentative checkpoint into permanent checkpoint 

and discards it old permanent checkpoint if any. 

 

3. CONCLUSION 
In this paper, we have proposed a minimum-process 

checkpointing protocol for deterministic mobile distributed 

systems, where no useless checkpoints are taken and an 

effort has been made to minimize the blocking of 
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processes. We try to reduce the checkpointing time and 

blocking time of processes by limiting checkpointing tree 

which may be formed in other algorithms [4, 9]. We 

captured the transitive dependencies during the normal 

execution by piggybacking dependency vectors onto 

computation messages.  The Z-dependencies are well taken 

care of in this protocol. We also try to reduce the loss of 

checkpointing effort when any process fails to take its 

checkpoint in coordination with others.    
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