
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

13

A New Approach of Prediction of Memory Leak in the
Cluster Computing Applications

R.Kavitha C.Kotteeswari G.Sumathi

Department of Information Technology, Sri Venkateswara College of Engineering

Pennalur, Sriperumbudur.

ABSTRACT
This paper presents a memory leak prediction algorithm for the
cluster computing applications. This proposed algorithm uses
process characteristics to calculate the exact memory
requirement and uniquely identifies maximum memory
utilization of an application before the application starts its
execution. During the appffplication execution phase, memory
leaks in the application processes in the cluster is identified by
existing Dynamic Memory Monitoring Agent (DMMA) gives
information to the end users to make corrective actions and

removes memory leak processes from the affected nodes. This
unified approach increases the reliability and fault tolerant in the
cluster computing.

Keywords
Cluster Computing, Memory Leak, Fault Tolerance, Maximum
memory utilization, Process characteristics.

1. INTRODUCTION
Despite of many advantages provided by the cluster computing it
also have several faults[4].They can be classified as Network
faults, Software faults, Application and OS faults, Response
faults and Timeout faults. The ability of parallel computers to
execute multiple instruction streams [14] simultaneously gives
rise to the problem of partitioning a program into a set of tasks

that can be assigned to different processors. Therefore algorithms
that compute optimal partitions of the program must be used for
execution for increasing the efficiency.

Memory leak is one of the major application faults in
the cluster computing. This can degrade application and overall
system performance and it may eventually lead to program crash.
This memory leak problem often occurs in High Performance
Computing (HPC) systems and this can be solved with the help

of existing Dynamic Memory Leak Detection (DMLD)[1]
technique. HPC Cluster revolution [13] has set the part of the
software stack on a path to become an essential, global binding
agent for today’s sprawling HPC hardware and software
infrastructure.

The algorithm to predict maximum memory utilization

limit of an application makes use of the process characteristics to
calculate the exact memory value. This helps to obtain improved

performance as it provides the maximum memory limit before
the execution starts.

This paper is organized as follows. In section II we
discussed briefly the existing memory leak detection tools.
Section 3 presents the proposed algorithm details and user
application with the help of existing DMMA. Section 4 discusses
the implementation of the algorithm to predict maximum

memory utilization limit of an application and the experimental
evaluation; Finally Section 5 presents the conclusions.

2. EXISTING WORKS

Ccmalloc
CCMALLOC [8] is a memory profiling and malloc

debugging library for C and C++ programs that requires the
GNU debugger, gdb. All tests were run using the GNU C and
C++ compilers. We found CCMALLOC to be easy to install. We

consider the documentation for CCMALLOC to be poorly
written and often difficult to understand (the file ccmalloc.cfg is
the only available user manual). Poor documentation made the
product difficult to use. CCMALLOC was not able to detect
"writing beyond the bounds of the allocated memory block"
errors.

Mss
MSS is free (GPL) software designed to find errors in C and C++
programs caused by the misuse of dynamically allocated
memory. We found MSS to be easy to install. MSS requires
either the statement #include “mss.h” be added to each source

file before compiling or one can simply use the –include option
on the GNU compiler to have the #include “mss.h” automatically
added to each source file. MSS also requires the insertion of
#define MSS into each source file or one can use the –D
compiler option with the gcc compiler and not have to modify
source code.

Mpatrol
MPATROL[8] is a debugging tool for detecting run-time errors
that are caused by the misuse of dynamically allocated memory
for C and C++ programs. MPATROL requires either the

statement #include “mpatrol.h” be added to each source file
before compiling or one can simply use the - include option on
the GNU compiler to have the #include “mpatrol.h”
automatically added to each source file. MPATROL
works well, but not for all our C and C++ tests. We found that
sometimes it was difficult to decide what options to set when
running our various tests.

Memdebug
MEMDEBUG[8] is a debugging tool for the run-time detection
of the following errors in C (and not C++) programs memory
leaks, duplicate de-allocations, de-allocating an illegal pointer,

out-of- bounds pointer references, off-by-one errors in memory
blocks, and unallocated pointer. We found MEMDEBUG to be
easy to install and to use. MEMDEBUG requires the addition of
#include “memdebug.h” to each source file before compiling or
one can simply use the –include memdebug.h option on the GNU

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

14

compiler to have the #include “memdebug.h” automatically
added to each source file. MEMDEBUG also requires the
insertion of #define MEMDEBUG into each source file or one
can use the –D compiler option with the gcc compiler and not
have to modify source code. MEMDEBUG was not able to

detect general out-of-bounds errors but only off-by-one.

Valgrind
Memory leaks can be detected with the help of an open source
tool named Valgrind[5]. It can point the errors when used with
the application executables as a command-line argument. The
Valgrind output contains memory leak details that can be viewed
with the help of log file. The major disadvantage of this tool is
when it is made to run along with the application it consumes
more memory.

Detection of heap management

In order to identify memory leaks, all the events where the
components and their memory is either allocated or de-allocated
they are logged. The traces include the heap addresses of the

memory blocks with their identification and size information [9].
This technique is mostly used for component-based embedded
systems.

3. PROPOSED WORK

We propose an algorithm that can predict maximum memory to
be consumed by an application. It also includes effective
scheduling algorithm. Effective scheduling [10] is critical for the
performance of an application launched onto the grid

environment. Once the application is submitted to the cluster, the
maximum memory is calculated using the algorithm which
considers the following details.

The algorithm takes into account the file size. There
are various file systems in UNIX. Each file type consumes
certain amount of memory. On finding the different file types
used by the application their memory is calculated.

The data consumed by the application is predicted on

comparing the input values that the application gets during its
execution. Some application may use the library files and in this
case it uses more data for its execution.

The maximum number of process can be determined
on analyzing the type of application submitted to the cluster. The
application is split into various numbers of processes, each
performing a different task and finally they are combined to get
the end result. The CPU time is predicted based on the
computational complexity of the application.

Stack size specifies the size (in Bytes) of the execution
stacks used by each user process on server. An execution stack is
an area of server memory where user processes keep track of
their process context and store local data.

Working

 As shown in Fig 1.1, in the first stage, the jobs are
submitted to head node of the cluster. DMMA compares the

process memory with the available free memory in each node.
The jobs are allocated to the nodes according to the memory
available in each node and it starts its execution.
According to the DMMA [1] technique, if the memory
consumption of any process exceeds the maximum memory limit
which is predicted by the algorithm, the process is put into a bad
state. If the memory consumption stays high for a certain period
of time then the process goes to peril state. i.e., the process
execution is stopped and it is removed from the affected node.

 No

 Yes

 Good
 State

 No yes

 No

 Peril state
 Yes

Fig 1.1 Working of Dynamic Memory Monitoring Agent in
clusters

In this work proposed algorithm is used along with the existing
DMMA [1] technique to avoid memory leak problems very

effectively. In this proposed algorithm the process characteristics
of an application like file size, data size, CPU time, stack size
and numbers of processes are taken into account for calculating
maximum memory. Once this value is calculated it is given as
one of the input to the DMMA. The proposed algorithm doesn’t
assume virtually the maximum memory as in the case of existing
DMMA. It takes the calculated memory value to execute
DMMA, that inturn improves the efficiency of the DMMA

technique to achieve maximum fault tolerance in clusters.

 Fig 1.1 shows the working of Dynamic Memory Monitoring
Agent in clusters. The implementation of DMMA in clusters
consist 3 sub modules

 Job Submission

 Memory monitoring

 Re-scheduling

Process

complete

Wait for result

 Mem >

Limit

Dispatch job to each
node in cluster

Get the calculated
memory value by

using the algorithm

Execute

process

Dynamic Memory

Monitoring Agent

Bad
state

Mem>

limit

Remove

process

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

15

 Fig 1.2 Calculation of maximum memory utilization

An algorithm which is used to predict the maximum memory
utilization of an application is incorporated along with the
existing DMMA [1]. This helps to achieve greater performance
in the cluster environment. Fig 1.2 explains the algorithm

As given in Fig 1.2, the detail of the process which is submitted
to the head node is taken. This includes the data size which can

be in any range starting from KB to MB. Then the other
parameters taken into account include file size, CPU time, stack
size and the maximum number of process available in that node.

This algorithm doesn’t assume virtually the maximum memory.
It takes the calculated memory value to execute DMMA. So with
the help of this algorithm we can achieve greater tolerance in the
cluster environment.

4. PERFORMANCE STUDY

The algorithm to predict maximum memory utilization limit of
an application is implemented in a cluster. The cluster
configuration steps are done by configuring Domain name
System (DNS) and Network Information Service (NIS) of the
head node and the compute nodes. Then remote shell (rsh) is
used to communicate between the nodes. The first step is to
submit the job to cluster. The number of jobs to be submitted to
the head node of the cluster is given by the user.

We tested our work using Linux cluster having five nodes as
shown in Fig 1.3. Each node in the cluster has two CPUs, 2GB
RAM and 4GHz processor speed.

Fig 1. Cluster with five nodes

Fig 1.4 Head Node Inputs

As shown in Fig 1.4, the processes to be executed along with the
memory requirements and maximum memory consumption limit

calculated by using the algorithm are given to the head node of
the cluster as the inputs. The memory requirement of each
process is compared with maximum memory available in each
node of the cluster. The processes are allocated to the nodes
according to their memory requirements. At some point of time
during execution when memory is not available for the execution
of the program, then it is given to the node that has enough
memory for its execution. All the processes are scheduled and
executed.

If the application gets the sufficient memory to complete its job,
it finishes its job successfully and this can be visually seen as
shown in Fig 1.5.
If the process is able to finish its execution successfully, then it is
considered to be in good state. The memory consumption value
is monitored at some specific time interval. This is clearly shown
in Fig 1.5 where the memory value gets increased as the
application starts its execution.

Fig 1.5 Successful execution of an application

File Size,

Data size

Get the process

Get the details of process characteristics

CPU time Stack size Max no of

processes

Add all the values to get max memory

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.1, June 2010

16

When the process starts to consume more memory than the
memory available in that node, it enters into a bad state where it
waits for certain amount of time and if it still continues to
consume more memory it enters into peril state. This is shown in

Fig 1.6.

Fig 1.6 Termination of an application

 If the process enters into peril state, the execution is

stopped and it is removed from that node. Once it is removed, re-
scheduling has to be done for that process. A low-complexity
dominant sequence clustering (DSC) algorithm [15] is available
for scheduling parallel tasks on an unbounded number of
completely connected processors. On rescheduling, there may be
many nodes available for executing the application. So, the
rescheduling algorithm is designed based upon certain factors.
The important factors include,

Based upon the type of application, decide the capacity

of hard disk (512MB, 2GB, 4GB) that the application needs and
the job are allocated to the appropriate node.
Check the processor speed of each node. If the application needs
faster performance allocate it to the suitable node.

Since each node can have a different database server,
select the node which has the database which it needs. For
example, if more security is needed in the case of military
application choose the more secure database like Oracle.

5.CONCLUSION
The proposed algorithm detects very efficiently the maximum
memory utilization limit of an application when used along with
the existing DMMA technique helps to achieve greater fault
tolerance, reliability and efficiency of cluster computing.

 REFERENCES

[1]. Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S.,
and Revathi P., “Memory Leak Detection in Distributed

System”, World Academy of Science, Engineering and
Technology 16 2006.

[2] R.Hastings and B.Joyce, “Purify Fast detection of memory
leaks and access errors”, Proceedings of USENIX winter 1992
Technical conference, pages 125-136, Dec 1992.

[3]US-CERT vulnerability notes database
http//www.kb.cert.org/vuls

[4] Mohammad Tanvir Huda, Heinz W.Schimdt, Ian D.Peake,

“An agent oriented dynamic fault tolerant framework for Grid
computing”, 2005, Monash University Melbourne.p.84.

[5] “Valgrind A Program Supervision Framework”, Nicholas
Nethercote and Julian Seward.Electronic Notes in Theoretical

Computer Science 89 No.2, 2003.

[6] “Ramandeeep singh, “Get the better of memory leaks with
Valgrind”, Linux J., February2006 (106), 2006.

[7] J.Seward, N.Nethercote, and Fitzhardinge, “valgrind, an
open–source memory debugger for x86– gnu/Linux”
http//valgrind. Kde.org/.

[8] “Gray Watson, Debug Malloc Library”, Published by Gray
Watson, Version 5.4.2; October 2004.

[9] Heike Verta, T.S. “Detection of heap management flaws in
Component-based software”, In EUROMICRO, 2004, Rennes,

France IEEE.

[10]C. D. Polychronopoulos , D. J. Kuck, Guided self-scheduling
“A practical scheduling scheme for parallel supercomputers,
IEEE Transactions on Computers, v.36 n.12, p.1425-1439”, Dec.
1987
[11]Frank D. Anger , Jing-Jang Hwang , Yuan-Chieh Chow,
“Scheduling with sufficient loosely coupled processors, Journal

of Parallel and Distributed Computing, v.9 n.1, p.87-92”, May
1990.
[12]Glenn R. Luecke, James Coyle, Jim Hoekstra, Marina
Kraeva, Ying Li, Olga Taborskaia, and Yanmei Wang, “A
Survey of Systems for Detecting Serial Run-Time Errors”,2006.

[13]. HPC Management Software “Reducing the Complexity of
HPC Cluster and Grid Resources”.

[14]. M. Girkar C. Polychronopoulos “Partitioning programs for
parallel execution”, Proceedings of the 2nd international
conference on Supercomputing.

 [15] T. Yang A. Gerasoulis “ Scheduling Parallel Tasks on an
Unbounded Number of Processors” IEEE Transactions on
Parallel and Distributed Systems 1994.

