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ABSTRACT  
While dealing with mobile distributed systems, we come 
across some issues like: mobility, low bandwidth of wireless 
channels and lack of stable storage on mobile nodes, 
disconnections, limited battery power and high failure rate of 
mobile nodes.   In this paper, we design a minimum process 
algorithm for Mobile Distributed systems, where no useless 
checkpoints are taken and an effort has been made to 

optimize the blocking of processes. In order to keep the 
blocking time minimum, we collect the dependency vectors 
and compute the exact minimum set in the beginning of the 
algorithm.   In coordinated checkpointing, if a single process 
fails to take its checkpoint; all the checkpointing effort goes 
waste, because, each process has to abort its tentative 
checkpoint. In order to take its tentative checkpoint, an MH 
(Mobile Host) needs to transfer large checkpoint data to its 
local MSS over wireless channels. The checkpointing effort 

may be exceedingly high due to frequent aborts especially in 
mobile systems. We try to minimize the loss of 
checkpointing effort when any process fails to take its 
checkpoint in coordination with others  

Key words: Fault tolerance, consistent global state, 
coordinated checkpointing and mobile systems. 

 

1.BACKGROUND  

A distributed system is one that runs on a collection of 
machines that do not have shared memory, yet looks to its 
users like a single computer. The term Distributed Systems is 
used to describe a system with the following characteristics: 
i) it consists of several computers that do not share memory 
or a clock, ii) the computers communicate with each other by 
exchanging messages over a communication network, iii) 

each computer has its own memory and runs its own 
operating system. A distributed system consists of a finite set 
of processes and a finite set of channels. 

In the mobile distributed system, some of the 
processes are running on mobile hosts (MHs). An MH 
communicates with other nodes of the system via a special 
node called mobile support station (MSS) [1]. A cell is a 
geographical area around an MSS in which it can support an 

MH. An MH can change its geographical position freely 
from one cell to another or even to an area covered by no 
cell. An MSS can have both wired and wireless links and acts 
as an interface between the static network and a part of the 
mobile network. Static network connects all MSSs. A static 
node that has no support to MH can be considered as an MSS 
with no MH.  
 Checkpoint is defined as a designated place in a 
program at which normal process is interrupted specifically 

to preserve the status information necessary to allow 

resumption of processing at a later time. Checkpointing is the 
process of saving the status information. By periodically 
invoking the checkpointing process, one can save the status 

of a program at regular intervals. If there is a failure one may 
restart computation from the last checkpoints thereby 
avoiding repeating computation from the beginning. The 
process of resuming computation by rolling back to a saved 
state is called rollback recovery.  The checkpoint-restart is 
one of the well-known methods to realize reliable distributed 
systems. Each process takes a checkpoint where the local 
state information is stored in the stable storage. Rolling back 
a process and again resuming its execution from a prior state 

involves overhead and delays the overall completion of the 
process, it is needed to make a process rollback to a most 
recent possible state. So it is at the desire of the user for 
taking many checkpoints over the whole life of the execution 
of the process [6]. 
In a distributed system, since the processes in the system do 
not share memory, a global state of the system is defined as a 
set of local states, one from each process. The state of 

channels corresponding to a global state is the set of 
messages sent but not yet received. A global state is said to 
be “consistent” if it contains no orphan message; i.e., a 
message whose receive event is recorded, but its send event 
is lost. To recover from a failure, the system restarts its 
execution from a previous consistent global state saved on 
the stable storage during fault-free execution. This saves all 
the computation done up to the last checkpointed state and 

only the computation done thereafter needs to be redone. In 
distributed systems, checkpointing can be independent, 
coordinated [6, 11, 13] or quasi-synchronous [2]. Message 
Logging is also used for fault tolerance in distributed systems 
[22]. 
In coordinated or synchronous checkpointing, processes take 
checkpoints in such a manner that the resulting global state is 
consistent. Mostly it follows two-phase commit structure [6, 

11, 23]. In the first phase, processes take tentative 
checkpoints and in the second phase, these are made 
permanent. The main advantage is that only one permanent 
checkpoint and at most one tentative checkpoint is required 
to be stored. In the case of a fault, processes rollback to last 
checkpointed state. 
The coordinated checkpointing protocols can be classified 
into two types: blocking and non-blocking. In blocking 

algorithms, some blocking of processes takes place during 
checkpointing [4, 11, 24, 25]  In non-blocking algorithms, no 
blocking of processes is required for checkpointing [5, 12, 
15, 21]. The coordinated checkpointing algorithms can also 
be classified into following two categories: minimum-
process and all process algorithms. In all-process coordinated 
checkpointing algorithms, every process is required to take 
its checkpoint in an initiation [6], [8]. In minimum-process 
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algorithms, minimum interacting processes are required to 
take their checkpoints in an initiation [11].  
 
 In minimum-process coordinated checkpointing 
algorithms, a process Pi takes its checkpoint only if it a 

member of the minimum set (a subset of interacting process). 
A process Pi is in the minimum set only if the checkpoint 
initiator process is transitively dependent upon it. Pj is 
directly dependent upon Pk only if there exists m such that Pj 

receives m from Pk in the current checkpointing interval [CI] 
and Pk has not taken its permanent checkpoint after sending 
m. The ith CI  of a process denotes all the computation 
performed between its ith and (i+1)th checkpoint, including 

the ith checkpoint  but not the (i+1)th checkpoint. 
 
 In minimum-process checkpointing protocols, 
some useless checkpoints are taken or blocking of processes 
takes place. In this paper, we propose a minimum-process 
coordinated checkpointing algorithm for non-deterministic 
mobile distributed systems, where no useless checkpoints are 
taken. An effort has been made to minimize the blocking of 

processes and the loss of checkpointing effort when any 
process fails to take its checkpoint in coordination with 
others.   

 

2. INTRODUCTION  

The proposed scheme  is based on keeping track of direct 
dependencies of processes. Similar to [4], initiator process 

collects the direct dependency vectors of all processes, 
computes minimum set, and sends the checkpoint request along 
with the minimum set to all processes.  In this way, blocking 
time has been significantly reduced as compared to [11]. 

              During the period, when a process sends its 
dependency set to the initiator and receives the minimum set, 
may receive some messages, which may add new members 
to the already computed minimum set [25]. In order to keep 
the computed minimum set intact, We have classified the 

messages, received during the blocking period, into two 
types: (i) messages that alter the dependency set of the 
receiver process (ii) messages that do not alter the 
dependency set of the receiver process. The messages in 
point (i)  need to be delayed at the receiver side [25].  The 
messages in point (ii)  can be processed normally. All 
processes can perform their normal computations and send 
messages during their blocking period. When a process 

buffers a message of former type, it does not process any 
message till it receives the minimum set so as to keep the 
proper sequence of messages received. When a process gets 
the minimum set, it takes the checkpoint, if it is in the 
minimum set. After this, it receives the buffered messages, if 
any. The proposed minimum-process blocking algorithm 
forces zero useless checkpoints at the cost of very small 
blocking. 

 
 In minimum-process synchronous 
checkpointing, the initiator process asks all communicating 
processes to take tentative checkpoints. In this scheme, if a 
single process fails to take its checkpoint; all the 
checkpointing effort goes waste, because, each process has to 
abort its tentative checkpoint. In order to take the tentative 
checkpoint, an MH needs to transfer large checkpoint data to 

its local MSS over wireless channels. Due to frequent aborts, 
total checkpointing effort may be exceedingly high, which 

may be undesirable in mobile systems due to scarce 
resources. Frequent aborts may happen in mobile systems 
due to exhausted battery, abrupt disconnection, or bad 
wireless connectivity.    Therefore, we propose that in the 
first phase, all concerned MHs will take mutable  checkpoint 

only. Mutable checkpoint is stored on the memory of MH 
only. In this case, if some process fails to take checkpoint in 
the first phase, then MHs need to abort their mutable  
checkpoints only. The effort of taking a mutable  checkpoint 
is negligible as compared to the tentative one. When the 
initiator comes to know that all relevant processes have taken 
their mutable  checkpoints, it asks all relevant processes to 
come into the second phase, in which, a process converts its 

mutable  checkpoint into tentative one. In this way, by 
increasing small synchronization message overhead, we try 
to reduce the total checkpointing effort.  
 
 Our system model is similar to [5, 24, 25]. There 
are n spatially separated sequential processes  P0, P1,.., Pn-1, 
running on MHs or  MSSs, constituting a mobile distributed 
computing system. Each MH/MSS has one process running 

on it.  The processes do not share memory or clock. Message 
passing is the only way for processes to communicate with 
each other. Each process progresses at its own speed and 
messages are exchanged through reliable channels, whose 
transmission delays are finite but arbitrary. An MH sends and 
receives application messages that do not contain any 
additional information; it is only responsible for 
checkpointing its local state appropriately and transferring it 

to the local MSS.  

 

3. THE PROPOSED CHECKPOINTING 

ALGORITHM  

3.1 The Minimum-process Coordinated 

Checkpointing Scheme   

The initiator MSS sends a request to all MSSs to send the 
dd_set vectors of   the processes in their cells. All dd_set 
vectors are at MSSs and thus no initial checkpointing 
messages or responses travels wireless channels. On 

receiving the dd_set [] request, an MSS records the identity 
of the initiator process (say mss_ida) and initiator MSS, 
sends back the dd_set [] of the  processes in its cell, and sets 
g_chkpt. If the initiator MSS receives a request for dd_set [] 
from some other MSS (say mss_idb) and mss_ida is lower 
than mss_idb,the, current initiation with mss_ida is discarded 
and the new one having mss_idb is continued. Similarly, if an 
MSS receives dd_set requests from two MSSs, then it 

discards the request of the initiator MSS with lower mss_id. 
Otherwise, on receiving dd_set vectors of all processes, the 
initiator MSS computes min_vect [], sends mutable 
checkpoint request along with the min_vect []  to all MSSs. 
When a process sends its dd_set [] to the initiator MSS, it 
comes into its blocking state. A process comes out of the 
blocking state only after taking its mutable checkpoint if it is 
a member of the minimum set; otherwise, it comes out of 

blocking state after getting the mutable checkpoint request.    
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 On receiving the mutable checkpoint request 
along with the min_vect [], an MSS, say MSSj, takes the 
following actions. It sends the mutable checkpoint request to 
Pi only if Pi belongs to the min_vect [] and Pi is running in its 
cell. On receiving the checkpoint request, Pi takes its mutable  

checkpoint and informs MSSj. On receiving positive 
response from Pi, MSSj updates p-csni,  resets blockingi,  and 
sends the buffered messages to Pi, if any. Alternatively, If Pi 

is not in the min_vect [] and Pi is in the cell of MSSj, MSSj 

resets blockingi  and sends the buffered message to Pi, if any. 
For a disconnected MH, that is a member of min_vect [], the 
MSS that has its disconnected checkpoint, converts its 
disconnected checkpoint into the required one.  

During blocking period, Pi processes m, received from Pj, if 
following conditions are met: (i) (!buferi) i.e. Pi has not 
buffered any message (ii) (m.psn <=csn[j]) i.e. Pj has not 
taken its checkpoint before sending m (iii) (dd_seti[j]=1) Pi is 
already dependent upon Pj in the current CI or Pj has taken 
some permanent checkpoint after sending m.  
Otherwise, the local MSS of Pi buffers m for the blocking 
period of Pi and sets bufferi.  

 
 When an MSS learns that all of its  processes in 
minimum set  have taken their mutable  checkpoints   or at 
least one of its process has failed to checkpoint, it sends the 
response message to the initiator MSS.  In this case, if some 
process fails to take mutable checkpoint in the first phase, 
then MHs need to abort their mutable  checkpoints only. The 
effort of taking a mutable  checkpoint is negligible as 

compared to the tentative one. When the initiator comes to 
know that all relevant processes have taken their mutable  
checkpoints, it asks all relevant processes to come into the 
second phase, in which, a process converts its mutable  
checkpoint into tentative one. 
 
 Finally, initiator MSS sends commit or abort to 
all processes. On receiving abort, a process discards its 
tentative checkpoint, if any, and undoes the updating of data 

structures. On receiving commit, processes, in the min_vect 
[], convert their tentative checkpoints into permanent ones. 
On receiving commit or abort, all processes update their 
dd_set vectors and other data structures.  

 

3.2 An Example     

 

We explain the proposed minimum-process checkpointing 
algorithm with the help of an example. In Figure 1, at time t1, 
P4 initiates checkpointing process and sends request to all 
processes for their dependency vectors. At time t2, P4 

receives the dependency vectors from all processes (not 

shown in the Figure 1) and computes the minimum set 
(min_vect[]) which is   {P3, P4, P5}. P4 sends min_vect[]to all 
processes and takes its own mutable checkpoint. A process 
takes its mutable checkpoint if it is a member of min_vect[]. 
When P3 and P5 get the min_vect[], they find themselves in 
the min_vect[]; therefore, they take their mutable 
checkpoints.   When P0, P1 and P2 get the min_vect [], they 
find that they do not belong to min_vect [], therefore, they do 

not take their mutable checkpoints. 
 
 A process comes into the blocking state 
immediately after sending the dd_set[]. A process comes out 
of the blocking state only after taking its mutable checkpoint 
if it is a member of the minimum set; otherwise, it comes out 
of blocking state after getting the mutable checkpoint 
request. P4 receives m4 during its blocking period. As 

dd_set4[5]=1 due to m3, and receive of m4 will not alter 
dd_set4[]; therefore P4 processes m4. P1 receives m5 from P2 
during its blocking period; dd_set1[2]=0 and the receive of 
m5 can alter dd_set1[]; therefore, P1 buffers m5. Similarly, P3 
buffers m6. P3 processes m6 only after taking its mutable 
checkpoint. P1 process m5 after getting the min_vect [].P2 
processes m7 because at this movement it not in the blocking 
state. Similarly, P3 processes m8. At time t3, P4 receives 

responses to mutable check point requests from all relevant 
processes (not shown in the Figure 1) and issues tentative 
checkpoint request to all processes. A  process in the 
minimum set converts its  mutable checkpoint into tentative 
one. Finally, at time t4, P4 receives responses to tentative 
checkpoint requests from all relevant processes (not shown in 
the Figure 1) and issues the commit request. 

 

3.3 Handling Node Mobility and 

Disconnections  
An MH may be disconnected from the network for an 
arbitrary period of time. The Checkpointing algorithm may 
generate a request for such MH to take a checkpoint. 
Delaying a response may significantly increase the 
completion time of the checkpointing algorithm. We propose 
the following solution to deal with disconnections that may 
lead to infinite wait state.  
 

 When an MH, say MHi, disconnects from an 
MSS, say MSSk, MHi takes its own checkpoint, say 
disconnect_ckpti, and transfers it to MSSk. MSSk  stores all the 
relevant data structures and disconnect_ckpti of MHi on stable 
storage. During disconnection period, MSSk acts on behalf of 
MHi as follows. In minimum-process checkpointing, if MHi 

is in the minset[], disconnect_ckpti is considered as MHi‟s 
checkpoint for the current initiation.  In all-process 

checkpointing, if MHi‟s disconnect_ckpti is already converted 
into permanent one, then the committed checkpoint is 
considered as the checkpoint for the current initiation; 
otherwise, disconnect_ckpti is considered.   On global 
checkpoint commit, MSSk also updates MHi‟s data structures, 
e.g., ddv[], cci etc. On the receipt of messages for MHi, MSSk 

does not update  MHi‟s ddv[] but maintains  two message 

m2 

m6 

m0 

m3 t2 

t1 

P5 

P4 

P3 

P2 

P1 

m8 

m1 

Tentative Checkpoint  
Permanent Checkpoint 

Control Messages   Message processed normally 

  Message buffered/delayed  

 at receiver end  
Mutable Checkpoint  

m5 

t3 

m7 

P0 

m8 

Figure 1 An Example of the proposed Protocol  

t4 
m4 

t2 



International Journal of Computer Applications (0975 – 8887)  

Volume 3 – No.10, July 2010 

10 

 

queues, say old_m_q and new_m_q, to store the messages  as 
described below. 

On the receipt of a message m for MHi at MSSk from any 

other process: 

if((m.cci= = ccii   (m.cci= =ncii)  (matd[j, m.cci]= =1))  

   add (m,  new_m_q);   // keep the message in new_m_q 

else  
   add( m, old_m_q); 

On all-process checkpoint commit: 
Merge new_m_q  to  old_m_q; 
Free(new_m_q); 
 
 When MHi, enters in the cell of MSSj, it is connected 
to the MSSj if g_chkptj is reset. Otherwise, it waits for 

g_chkptj to be reset. Before connection, MSSj collects MHi‟s 
ddv[], cci, new_m_q, old_m_q  from MSSk; and MSSk 

discards MHi‟s support information and disconnect_ckpti. 
MSSj sends the messages in old_m_q    to MHi without 
updating the ddv[], but messages in  new_m_q,  update   
ddv[] of MHi.   

 

 Handling Failures during 

Checkpointing   

Since MHs are prone to failure, an MH may fail during 
checkpointing process. Sudden or abrupt   disconnection of 
an MH is also termed as a fault. Suppose, Pi is waiting for a 
message from Pj and Pj has failed, then Pi times out and 
detects the failure of Pj. If the failed process is not required to 
checkpoint in the current initiation or the failed process has 

already taken its tentative checkpoint, the checkpointing 
process can be completed uninterruptedly. If the failed 
process is not the initiator, one way to deal with the failure is 
to discard the whole checkpointing process similar to the 
approach in [11, 21]. The failed process will not be able to 
respond to the initiator‟s requests and initiator will detect the 
failure by timeout and will abort the current checkpointing 
process. If the initiator fails after sending commit or abort 
message, it has nothing to do for the current initiation. 

Suppose, the initiator fails before sending commit or abort 
message. Some process, waiting for the checkpoint/commit 
request, will timeout and will detect the failure of the 
initiator. It will send abort request to all processes discarding 
the current checkpointing process. 
 
 The above approach seems to be inefficient, because, 
the whole checkpointing process is discarded even when only 

one participating process fails. Kim and Park [13] proposed 
that a process commits its tentative checkpoints if none of the 
processes, on which it transitively depends, fails; and the 
consistent recovery line is advanced for those processes that 
committed their checkpoints. The initiator and other 
processes, which transitively depend on the failed process, 
have to abort their tentative checkpoints. Thus, in case of a 
node failure during checkpointing, total abort of the 

checkpointing is avoided.  
 

 Multiple Concurrent Initiations   

We point out the following problems in allowing concurrent 
initiations in minimum-process checkpointing protocols, 
particularly in case of mobile distributed systems:   

       (i)        If Pi and Pj concurrently initiate checkpointing 
process and Pj belongs to the minimum set of 
Pi, then Pj‟s initiation will be redundant. Some 
processes, in Pj‟s minimum set,   will 
unnecessarily take multiple redundant 

checkpoints. This will waste the scarce 
resources of the mobile distributed system.  

(ii) In case of concurrent initiations, multiple 
triggers need to be piggybacked on normal 
messages [26]. Trigger contains the initiator 
process identification and its csn. This leads to 
considerable increase in piggybacked 
information.  

  Concurrent initiations may exhaust the limited 
battery life and congest the wireless channels. 
Therefore, the concurrent executions of the proposed 
protocol are not considered.  
 

 

 Correctness Proof 

The correctness proof for the proposed minimum-process 
checkpointing algorithm is as under: 
Let GCi ={C1,x, C2,y,............,Cn,z} be some consistent global 
state created by our algorithm, where Ci,x is the xth checkpoint 
of Pi. 
 

Theorem I: The global state created by the i
th

 iteration of 

the checkpointing protocol is consistent. 

 
Proof: Let us consider that the system is in consistent state 
when a process initiates checkpointing. The recorded global 
state will be inconsistent only if there exists a message m 
between two processes Pi and Pj such that Pi sends m after 
taking the checkpoint Ci,x, Pj receives m before taking the 
checkpoint Cj,y,  and both Ci,x   and Cj,y are the members of the 
new global state. We prove the result by contradiction that no 
such message exists. We consider all four possibilities as 

follows: 
 
Case I: Pi belongs to minimum set and Pj does not:  
 
 As Pi is in minimum set, Ci,x is the checkpoint taken by Pi 

during the current initiation and Cj,y is the checkpoint taken 
by Pj during some previous initiation i.e. Cj,y →Ci,x . 
Therefore rec(m) →Cj,y  and Ci,x →send(m) implies rec(m) →  

Cj,y →Ci,x →send(m) implies rec(m) →send(m) which is not 
possible. „→‟ is the Lamport‟s happened before relation [17].  
 
Case II:  Both Pi and Pj are in minimum set:  
 
Both Ci,x  and Cj,y  are the checkpoints taken during current 
initiation. There are following possibilities: 
(a) Pi sends m after taking the   tentative/mutable  checkpoint 

and Pj receives m before receiving request for dependency:  
Any process can   take the checkpoint only after initiator 
receives the dependencies from all processes. Therefore a 
message sent from a process after taking the checkpoint can 
not be received by other process before getting the 
dependency request.  
 
(b)Pi sends m after taking the   mutable  checkpoint and Pj 

receives m after getting the    dependency request but before 
taking the checkpoint: 
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In this case, following condition will be true at the time of 
receiving m: (blockingj) && (m.p_csn >csn[j]) ). Therefore, 
m will be buffered at Pj, and it will be processed only after Pj 

takes the   
mutable checkpoint.     

 
        (c) Pi sends m after commit and Pj receives m before taking   

tentative checkpoint:  
        As Pj is in the minimum set, initiator can issue a commit only 

after Pj takes tentative checkpoint and         
        informs initiator. Therefore the event rec(m) at Pj cannot take 

place before Pj takes the              
checkpoint. 

 
Case III: Pi is not in minimum set but Pj is in minimum set:  
 
Checkpoint Cj,y belongs to the current initiation and Ci,x is 
from some previous initiation. The    
message m can be received by Pj: 

(i) before receiving request for 
dependency 

(ii) after receiving request for 
dependency but before taking the 
checkpoint Cj,y  

If m is received during above (i), Pi will be included in the 
minimum set. If m is received during 
(ii) above, Pj will process m, before taking the mutable  
checkpoint. Otherwise,  if any of the following conditions is 
true: 

a. dd_setj[i]=1. In this case Pi will also be 
included in the minimum set. 

b. (m.p_csn >csn[i]). This is possible only if 
Pi has taken some permanent checkpoint 
after sending m. In that case, m is not an 
orphan message.  

c.  
Case IV: Both Pi and Pj are not in minimum set: 
 

Neither Pi nor Pj will take a new checkpoint, therefore, no 
such m is possible unless and  
until it already exists.  
All nodes will complete above steps in finite time unless a 
node is faulty. If a node in the minimum set becomes faulty 
during checkpointing, the whole of the checkpointing process 
is aborted .  Hence, it can be inferred that the algorithm 
terminates in finite time.  

  

4. CONCLUSION 

We have proposed a minimum process coordinated 
checkpointing algorithm for mobile distributed system, 
where no useless checkpoints are taken and an effort is made 
to minimize the blocking of processes. We are able to reduce 
the blocking time to bare minimum by computing the exact 

minimum set in the beginning. Furthermore, the blocking of 
processes is reduced by allowing the processes to perform 
their normal computations and send messages during their 
blocking period.   The number of processes that take 
checkpoints is minimized to avoid awakening of MHs in 
doze mode of operation and thrashing of MHs with 
checkpointing activity. It also  saves limited battery life of 
MHs and low bandwidth of wireless channels. We try to 

reduce the loss of checkpointing effort when any process 
fails to take its checkpoint in coordination with others. 
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