
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.10, July 2010

7

Dealing with Frequent Aborts in Minimum-process
Coordinated Checkpointing Algorithm for Mobile

Distributed Systems
 Parveen Kumar Preeti Gupta Anil Kumar Solanki
 MIET Singhania University MIET
 Department of CSE Pacheri Bari (Jhunjhunu) Department of CSE
 Meerut (INDIA)- 250005 Rajasthan (India) Meerut (INDIA)- 250005

ABSTRACT
While dealing with mobile distributed systems, we come
across some issues like: mobility, low bandwidth of wireless
channels and lack of stable storage on mobile nodes,
disconnections, limited battery power and high failure rate of
mobile nodes. In this paper, we design a minimum process
algorithm for Mobile Distributed systems, where no useless
checkpoints are taken and an effort has been made to

optimize the blocking of processes. In order to keep the
blocking time minimum, we collect the dependency vectors
and compute the exact minimum set in the beginning of the
algorithm. In coordinated checkpointing, if a single process
fails to take its checkpoint; all the checkpointing effort goes
waste, because, each process has to abort its tentative
checkpoint. In order to take its tentative checkpoint, an MH
(Mobile Host) needs to transfer large checkpoint data to its
local MSS over wireless channels. The checkpointing effort

may be exceedingly high due to frequent aborts especially in
mobile systems. We try to minimize the loss of
checkpointing effort when any process fails to take its
checkpoint in coordination with others

Key words: Fault tolerance, consistent global state,
coordinated checkpointing and mobile systems.

1.BACKGROUND

A distributed system is one that runs on a collection of
machines that do not have shared memory, yet looks to its
users like a single computer. The term Distributed Systems is
used to describe a system with the following characteristics:
i) it consists of several computers that do not share memory
or a clock, ii) the computers communicate with each other by
exchanging messages over a communication network, iii)

each computer has its own memory and runs its own
operating system. A distributed system consists of a finite set
of processes and a finite set of channels.

In the mobile distributed system, some of the
processes are running on mobile hosts (MHs). An MH
communicates with other nodes of the system via a special
node called mobile support station (MSS) [1]. A cell is a
geographical area around an MSS in which it can support an

MH. An MH can change its geographical position freely
from one cell to another or even to an area covered by no
cell. An MSS can have both wired and wireless links and acts
as an interface between the static network and a part of the
mobile network. Static network connects all MSSs. A static
node that has no support to MH can be considered as an MSS
with no MH.
 Checkpoint is defined as a designated place in a
program at which normal process is interrupted specifically

to preserve the status information necessary to allow

resumption of processing at a later time. Checkpointing is the
process of saving the status information. By periodically
invoking the checkpointing process, one can save the status

of a program at regular intervals. If there is a failure one may
restart computation from the last checkpoints thereby
avoiding repeating computation from the beginning. The
process of resuming computation by rolling back to a saved
state is called rollback recovery. The checkpoint-restart is
one of the well-known methods to realize reliable distributed
systems. Each process takes a checkpoint where the local
state information is stored in the stable storage. Rolling back
a process and again resuming its execution from a prior state

involves overhead and delays the overall completion of the
process, it is needed to make a process rollback to a most
recent possible state. So it is at the desire of the user for
taking many checkpoints over the whole life of the execution
of the process [6].
In a distributed system, since the processes in the system do
not share memory, a global state of the system is defined as a
set of local states, one from each process. The state of

channels corresponding to a global state is the set of
messages sent but not yet received. A global state is said to
be “consistent” if it contains no orphan message; i.e., a
message whose receive event is recorded, but its send event
is lost. To recover from a failure, the system restarts its
execution from a previous consistent global state saved on
the stable storage during fault-free execution. This saves all
the computation done up to the last checkpointed state and

only the computation done thereafter needs to be redone. In
distributed systems, checkpointing can be independent,
coordinated [6, 11, 13] or quasi-synchronous [2]. Message
Logging is also used for fault tolerance in distributed systems
[22].
In coordinated or synchronous checkpointing, processes take
checkpoints in such a manner that the resulting global state is
consistent. Mostly it follows two-phase commit structure [6,

11, 23]. In the first phase, processes take tentative
checkpoints and in the second phase, these are made
permanent. The main advantage is that only one permanent
checkpoint and at most one tentative checkpoint is required
to be stored. In the case of a fault, processes rollback to last
checkpointed state.
The coordinated checkpointing protocols can be classified
into two types: blocking and non-blocking. In blocking

algorithms, some blocking of processes takes place during
checkpointing [4, 11, 24, 25] In non-blocking algorithms, no
blocking of processes is required for checkpointing [5, 12,
15, 21]. The coordinated checkpointing algorithms can also
be classified into following two categories: minimum-
process and all process algorithms. In all-process coordinated
checkpointing algorithms, every process is required to take
its checkpoint in an initiation [6], [8]. In minimum-process

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.10, July 2010

8

algorithms, minimum interacting processes are required to
take their checkpoints in an initiation [11].

 In minimum-process coordinated checkpointing
algorithms, a process Pi takes its checkpoint only if it a

member of the minimum set (a subset of interacting process).
A process Pi is in the minimum set only if the checkpoint
initiator process is transitively dependent upon it. Pj is
directly dependent upon Pk only if there exists m such that Pj

receives m from Pk in the current checkpointing interval [CI]
and Pk has not taken its permanent checkpoint after sending
m. The ith CI of a process denotes all the computation
performed between its ith and (i+1)th checkpoint, including

the ith checkpoint but not the (i+1)th checkpoint.

 In minimum-process checkpointing protocols,
some useless checkpoints are taken or blocking of processes
takes place. In this paper, we propose a minimum-process
coordinated checkpointing algorithm for non-deterministic
mobile distributed systems, where no useless checkpoints are
taken. An effort has been made to minimize the blocking of

processes and the loss of checkpointing effort when any
process fails to take its checkpoint in coordination with
others.

2. INTRODUCTION

The proposed scheme is based on keeping track of direct
dependencies of processes. Similar to [4], initiator process

collects the direct dependency vectors of all processes,
computes minimum set, and sends the checkpoint request along
with the minimum set to all processes. In this way, blocking
time has been significantly reduced as compared to [11].

 During the period, when a process sends its
dependency set to the initiator and receives the minimum set,
may receive some messages, which may add new members
to the already computed minimum set [25]. In order to keep
the computed minimum set intact, We have classified the

messages, received during the blocking period, into two
types: (i) messages that alter the dependency set of the
receiver process (ii) messages that do not alter the
dependency set of the receiver process. The messages in
point (i) need to be delayed at the receiver side [25]. The
messages in point (ii) can be processed normally. All
processes can perform their normal computations and send
messages during their blocking period. When a process

buffers a message of former type, it does not process any
message till it receives the minimum set so as to keep the
proper sequence of messages received. When a process gets
the minimum set, it takes the checkpoint, if it is in the
minimum set. After this, it receives the buffered messages, if
any. The proposed minimum-process blocking algorithm
forces zero useless checkpoints at the cost of very small
blocking.

 In minimum-process synchronous
checkpointing, the initiator process asks all communicating
processes to take tentative checkpoints. In this scheme, if a
single process fails to take its checkpoint; all the
checkpointing effort goes waste, because, each process has to
abort its tentative checkpoint. In order to take the tentative
checkpoint, an MH needs to transfer large checkpoint data to

its local MSS over wireless channels. Due to frequent aborts,
total checkpointing effort may be exceedingly high, which

may be undesirable in mobile systems due to scarce
resources. Frequent aborts may happen in mobile systems
due to exhausted battery, abrupt disconnection, or bad
wireless connectivity. Therefore, we propose that in the
first phase, all concerned MHs will take mutable checkpoint

only. Mutable checkpoint is stored on the memory of MH
only. In this case, if some process fails to take checkpoint in
the first phase, then MHs need to abort their mutable
checkpoints only. The effort of taking a mutable checkpoint
is negligible as compared to the tentative one. When the
initiator comes to know that all relevant processes have taken
their mutable checkpoints, it asks all relevant processes to
come into the second phase, in which, a process converts its

mutable checkpoint into tentative one. In this way, by
increasing small synchronization message overhead, we try
to reduce the total checkpointing effort.

 Our system model is similar to [5, 24, 25]. There
are n spatially separated sequential processes P0, P1,.., Pn-1,
running on MHs or MSSs, constituting a mobile distributed
computing system. Each MH/MSS has one process running

on it. The processes do not share memory or clock. Message
passing is the only way for processes to communicate with
each other. Each process progresses at its own speed and
messages are exchanged through reliable channels, whose
transmission delays are finite but arbitrary. An MH sends and
receives application messages that do not contain any
additional information; it is only responsible for
checkpointing its local state appropriately and transferring it

to the local MSS.

3. THE PROPOSED CHECKPOINTING

ALGORITHM

3.1 The Minimum-process Coordinated

Checkpointing Scheme

The initiator MSS sends a request to all MSSs to send the
dd_set vectors of the processes in their cells. All dd_set
vectors are at MSSs and thus no initial checkpointing
messages or responses travels wireless channels. On

receiving the dd_set [] request, an MSS records the identity
of the initiator process (say mss_ida) and initiator MSS,
sends back the dd_set [] of the processes in its cell, and sets
g_chkpt. If the initiator MSS receives a request for dd_set []
from some other MSS (say mss_idb) and mss_ida is lower
than mss_idb,the, current initiation with mss_ida is discarded
and the new one having mss_idb is continued. Similarly, if an
MSS receives dd_set requests from two MSSs, then it

discards the request of the initiator MSS with lower mss_id.
Otherwise, on receiving dd_set vectors of all processes, the
initiator MSS computes min_vect [], sends mutable
checkpoint request along with the min_vect [] to all MSSs.
When a process sends its dd_set [] to the initiator MSS, it
comes into its blocking state. A process comes out of the
blocking state only after taking its mutable checkpoint if it is
a member of the minimum set; otherwise, it comes out of

blocking state after getting the mutable checkpoint request.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.10, July 2010

9

 On receiving the mutable checkpoint request
along with the min_vect [], an MSS, say MSSj, takes the
following actions. It sends the mutable checkpoint request to
Pi only if Pi belongs to the min_vect [] and Pi is running in its
cell. On receiving the checkpoint request, Pi takes its mutable

checkpoint and informs MSSj. On receiving positive
response from Pi, MSSj updates p-csni, resets blockingi, and
sends the buffered messages to Pi, if any. Alternatively, If Pi

is not in the min_vect [] and Pi is in the cell of MSSj, MSSj

resets blockingi and sends the buffered message to Pi, if any.
For a disconnected MH, that is a member of min_vect [], the
MSS that has its disconnected checkpoint, converts its
disconnected checkpoint into the required one.

During blocking period, Pi processes m, received from Pj, if
following conditions are met: (i) (!buferi) i.e. Pi has not
buffered any message (ii) (m.psn <=csn[j]) i.e. Pj has not
taken its checkpoint before sending m (iii) (dd_seti[j]=1) Pi is
already dependent upon Pj in the current CI or Pj has taken
some permanent checkpoint after sending m.
Otherwise, the local MSS of Pi buffers m for the blocking
period of Pi and sets bufferi.

 When an MSS learns that all of its processes in
minimum set have taken their mutable checkpoints or at
least one of its process has failed to checkpoint, it sends the
response message to the initiator MSS. In this case, if some
process fails to take mutable checkpoint in the first phase,
then MHs need to abort their mutable checkpoints only. The
effort of taking a mutable checkpoint is negligible as

compared to the tentative one. When the initiator comes to
know that all relevant processes have taken their mutable
checkpoints, it asks all relevant processes to come into the
second phase, in which, a process converts its mutable
checkpoint into tentative one.

 Finally, initiator MSS sends commit or abort to
all processes. On receiving abort, a process discards its
tentative checkpoint, if any, and undoes the updating of data

structures. On receiving commit, processes, in the min_vect
[], convert their tentative checkpoints into permanent ones.
On receiving commit or abort, all processes update their
dd_set vectors and other data structures.

3.2 An Example

We explain the proposed minimum-process checkpointing
algorithm with the help of an example. In Figure 1, at time t1,
P4 initiates checkpointing process and sends request to all
processes for their dependency vectors. At time t2, P4

receives the dependency vectors from all processes (not

shown in the Figure 1) and computes the minimum set
(min_vect[]) which is {P3, P4, P5}. P4 sends min_vect[]to all
processes and takes its own mutable checkpoint. A process
takes its mutable checkpoint if it is a member of min_vect[].
When P3 and P5 get the min_vect[], they find themselves in
the min_vect[]; therefore, they take their mutable
checkpoints. When P0, P1 and P2 get the min_vect [], they
find that they do not belong to min_vect [], therefore, they do

not take their mutable checkpoints.

 A process comes into the blocking state
immediately after sending the dd_set[]. A process comes out
of the blocking state only after taking its mutable checkpoint
if it is a member of the minimum set; otherwise, it comes out
of blocking state after getting the mutable checkpoint
request. P4 receives m4 during its blocking period. As

dd_set4[5]=1 due to m3, and receive of m4 will not alter
dd_set4[]; therefore P4 processes m4. P1 receives m5 from P2
during its blocking period; dd_set1[2]=0 and the receive of
m5 can alter dd_set1[]; therefore, P1 buffers m5. Similarly, P3
buffers m6. P3 processes m6 only after taking its mutable
checkpoint. P1 process m5 after getting the min_vect [].P2
processes m7 because at this movement it not in the blocking
state. Similarly, P3 processes m8. At time t3, P4 receives

responses to mutable check point requests from all relevant
processes (not shown in the Figure 1) and issues tentative
checkpoint request to all processes. A process in the
minimum set converts its mutable checkpoint into tentative
one. Finally, at time t4, P4 receives responses to tentative
checkpoint requests from all relevant processes (not shown in
the Figure 1) and issues the commit request.

3.3 Handling Node Mobility and

Disconnections
An MH may be disconnected from the network for an
arbitrary period of time. The Checkpointing algorithm may
generate a request for such MH to take a checkpoint.
Delaying a response may significantly increase the
completion time of the checkpointing algorithm. We propose
the following solution to deal with disconnections that may
lead to infinite wait state.

 When an MH, say MHi, disconnects from an
MSS, say MSSk, MHi takes its own checkpoint, say
disconnect_ckpti, and transfers it to MSSk. MSSk stores all the
relevant data structures and disconnect_ckpti of MHi on stable
storage. During disconnection period, MSSk acts on behalf of
MHi as follows. In minimum-process checkpointing, if MHi

is in the minset[], disconnect_ckpti is considered as MHi‟s
checkpoint for the current initiation. In all-process

checkpointing, if MHi‟s disconnect_ckpti is already converted
into permanent one, then the committed checkpoint is
considered as the checkpoint for the current initiation;
otherwise, disconnect_ckpti is considered. On global
checkpoint commit, MSSk also updates MHi‟s data structures,
e.g., ddv[], cci etc. On the receipt of messages for MHi, MSSk

does not update MHi‟s ddv[] but maintains two message

m2

m6

m0

m3 t2

t1

P5

P4

P3

P2

P1

m8

m1

Tentative Checkpoint
Permanent Checkpoint

Control Messages Message processed normally

 Message buffered/delayed

 at receiver end
Mutable Checkpoint

m5

t3

m7

P0

m8

Figure 1 An Example of the proposed Protocol

t4
m4

t2

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.10, July 2010

10

queues, say old_m_q and new_m_q, to store the messages as
described below.

On the receipt of a message m for MHi at MSSk from any

other process:

if((m.cci= = ccii (m.cci= =ncii) (matd[j, m.cci]= =1))

 add (m, new_m_q); // keep the message in new_m_q

else
 add(m, old_m_q);

On all-process checkpoint commit:
Merge new_m_q to old_m_q;
Free(new_m_q);

 When MHi, enters in the cell of MSSj, it is connected
to the MSSj if g_chkptj is reset. Otherwise, it waits for

g_chkptj to be reset. Before connection, MSSj collects MHi‟s
ddv[], cci, new_m_q, old_m_q from MSSk; and MSSk

discards MHi‟s support information and disconnect_ckpti.
MSSj sends the messages in old_m_q to MHi without
updating the ddv[], but messages in new_m_q, update
ddv[] of MHi.

 Handling Failures during

Checkpointing

Since MHs are prone to failure, an MH may fail during
checkpointing process. Sudden or abrupt disconnection of
an MH is also termed as a fault. Suppose, Pi is waiting for a
message from Pj and Pj has failed, then Pi times out and
detects the failure of Pj. If the failed process is not required to
checkpoint in the current initiation or the failed process has

already taken its tentative checkpoint, the checkpointing
process can be completed uninterruptedly. If the failed
process is not the initiator, one way to deal with the failure is
to discard the whole checkpointing process similar to the
approach in [11, 21]. The failed process will not be able to
respond to the initiator‟s requests and initiator will detect the
failure by timeout and will abort the current checkpointing
process. If the initiator fails after sending commit or abort
message, it has nothing to do for the current initiation.

Suppose, the initiator fails before sending commit or abort
message. Some process, waiting for the checkpoint/commit
request, will timeout and will detect the failure of the
initiator. It will send abort request to all processes discarding
the current checkpointing process.

 The above approach seems to be inefficient, because,
the whole checkpointing process is discarded even when only

one participating process fails. Kim and Park [13] proposed
that a process commits its tentative checkpoints if none of the
processes, on which it transitively depends, fails; and the
consistent recovery line is advanced for those processes that
committed their checkpoints. The initiator and other
processes, which transitively depend on the failed process,
have to abort their tentative checkpoints. Thus, in case of a
node failure during checkpointing, total abort of the

checkpointing is avoided.

 Multiple Concurrent Initiations

We point out the following problems in allowing concurrent
initiations in minimum-process checkpointing protocols,
particularly in case of mobile distributed systems:

 (i) If Pi and Pj concurrently initiate checkpointing
process and Pj belongs to the minimum set of
Pi, then Pj‟s initiation will be redundant. Some
processes, in Pj‟s minimum set, will
unnecessarily take multiple redundant

checkpoints. This will waste the scarce
resources of the mobile distributed system.

(ii) In case of concurrent initiations, multiple
triggers need to be piggybacked on normal
messages [26]. Trigger contains the initiator
process identification and its csn. This leads to
considerable increase in piggybacked
information.

 Concurrent initiations may exhaust the limited
battery life and congest the wireless channels.
Therefore, the concurrent executions of the proposed
protocol are not considered.

 Correctness Proof

The correctness proof for the proposed minimum-process
checkpointing algorithm is as under:
Let GCi ={C1,x, C2,y,............,Cn,z} be some consistent global
state created by our algorithm, where Ci,x is the xth checkpoint
of Pi.

Theorem I: The global state created by the i
th

 iteration of

the checkpointing protocol is consistent.

Proof: Let us consider that the system is in consistent state
when a process initiates checkpointing. The recorded global
state will be inconsistent only if there exists a message m
between two processes Pi and Pj such that Pi sends m after
taking the checkpoint Ci,x, Pj receives m before taking the
checkpoint Cj,y, and both Ci,x and Cj,y are the members of the
new global state. We prove the result by contradiction that no
such message exists. We consider all four possibilities as

follows:

Case I: Pi belongs to minimum set and Pj does not:

 As Pi is in minimum set, Ci,x is the checkpoint taken by Pi

during the current initiation and Cj,y is the checkpoint taken
by Pj during some previous initiation i.e. Cj,y →Ci,x .
Therefore rec(m) →Cj,y and Ci,x →send(m) implies rec(m) →

Cj,y →Ci,x →send(m) implies rec(m) →send(m) which is not
possible. „→‟ is the Lamport‟s happened before relation [17].

Case II: Both Pi and Pj are in minimum set:

Both Ci,x and Cj,y are the checkpoints taken during current
initiation. There are following possibilities:
(a) Pi sends m after taking the tentative/mutable checkpoint

and Pj receives m before receiving request for dependency:
Any process can take the checkpoint only after initiator
receives the dependencies from all processes. Therefore a
message sent from a process after taking the checkpoint can
not be received by other process before getting the
dependency request.

(b)Pi sends m after taking the mutable checkpoint and Pj

receives m after getting the dependency request but before
taking the checkpoint:

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.10, July 2010

11

In this case, following condition will be true at the time of
receiving m: (blockingj) && (m.p_csn >csn[j])). Therefore,
m will be buffered at Pj, and it will be processed only after Pj

takes the
mutable checkpoint.

 (c) Pi sends m after commit and Pj receives m before taking

tentative checkpoint:
 As Pj is in the minimum set, initiator can issue a commit only

after Pj takes tentative checkpoint and
 informs initiator. Therefore the event rec(m) at Pj cannot take

place before Pj takes the
checkpoint.

Case III: Pi is not in minimum set but Pj is in minimum set:

Checkpoint Cj,y belongs to the current initiation and Ci,x is
from some previous initiation. The
message m can be received by Pj:

(i) before receiving request for
dependency

(ii) after receiving request for
dependency but before taking the
checkpoint Cj,y

If m is received during above (i), Pi will be included in the
minimum set. If m is received during
(ii) above, Pj will process m, before taking the mutable
checkpoint. Otherwise, if any of the following conditions is
true:

a. dd_setj[i]=1. In this case Pi will also be
included in the minimum set.

b. (m.p_csn >csn[i]). This is possible only if
Pi has taken some permanent checkpoint
after sending m. In that case, m is not an
orphan message.

c.
Case IV: Both Pi and Pj are not in minimum set:

Neither Pi nor Pj will take a new checkpoint, therefore, no
such m is possible unless and
until it already exists.
All nodes will complete above steps in finite time unless a
node is faulty. If a node in the minimum set becomes faulty
during checkpointing, the whole of the checkpointing process
is aborted . Hence, it can be inferred that the algorithm
terminates in finite time.

4. CONCLUSION

We have proposed a minimum process coordinated
checkpointing algorithm for mobile distributed system,
where no useless checkpoints are taken and an effort is made
to minimize the blocking of processes. We are able to reduce
the blocking time to bare minimum by computing the exact

minimum set in the beginning. Furthermore, the blocking of
processes is reduced by allowing the processes to perform
their normal computations and send messages during their
blocking period. The number of processes that take
checkpoints is minimized to avoid awakening of MHs in
doze mode of operation and thrashing of MHs with
checkpointing activity. It also saves limited battery life of
MHs and low bandwidth of wireless channels. We try to

reduce the loss of checkpointing effort when any process
fails to take its checkpoint in coordination with others.

5. REFERENCES

 [1] A. Acharya and B. R. Badrinath, Checkpointing

Distributed Applications on Mobile Computers, In
Proceedings of the 3rd International Conference on
Parallel and Distributed Information Systems
(PDIS 1994), 1994, 73-80.

[2] R. Baldoni, J-M Hélary, A. Mostefaoui and M. Raynal,
A Communication-Induced Checkpointing Protocol
that EnsuresRollback-Dependency Tractability, In
Proceedings of the International Symposium on
Fault-Tolerant-Computing Systems, 1997, 68-77.

[3] G. Cao and M. Singhal, On coordinated

checkpointing in Distributed Systems, IEEE

Transactions on Parallel and Distributed Systems,
9 (12), 1998, 1213-1225.

[4] G. Cao and M. Singhal, “On the Impossibility of

Min-process Non-blocking Checkpointing and an
Efficient Checkpointing Algorithm for Mobile
Computing Systems,” In Proceedings of
International Conference on Parallel Processing,
1998, 37-44.

[5] G. Cao and M. Singhal, Mutable Checkpoints: A

New Checkpointing Approach for Mobile
Computing systems, IEEE Transaction On Parallel
and Distributed Systems, 12(2), 2001, 157-172.

[6] K.M. Chandy and L. Lamport, “Distributed

Snapshots: Determining Global State of

Distributed Systems,” ACM Transaction on
Computing Systems, 3(1), 1985, 63-75.

[7] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B.

Johnson, “A Survey of Rollback-Recovery
Protocols in Message-Passing Systems,” ACM
Computing Surveys, 34(3), 2002, 375-408.

[8] E.N. Elnozahy, D.B. Johnson and W. Zwaenepoel,
The Performance of Consistent Checkpointing, In
Proceedings of the 11th Symposium on Reliable
Distributed Systems, 1992, 39-47.

 [9] J.M. Hélary, A. Mostefaoui and M. Raynal,

Communication-Induced Determination of
Consistent Snapshots, In Proceedings of the 28th

International Symposium on Fault-Tolerant
Computing, 1998, 208-217.

[10] H. Higaki and M. Takizawa, Checkpoint-recovery

Protocol for Reliable Mobile Systems,
Transactions of Information processing Japan,
40(1), 1999, 236-244.

 [11] R. Koo and S. Toueg, Checkpointing and Roll-

Back Recovery for Distributed Systems, IEEE
Transactions on Software Engineering, 13(1),
1987, 23-31.

[12] P. Kumar, L. Kumar, R. K. Chauhan and V. K.

Gupta, A Non-Intrusive Minimum Process

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.10, July 2010

12

Synchronous Checkpointing Protocol for Mobile
Distributed Systems, In Proceedings of IEEE
ICPWC-2005, 2005.

[13] J.L. Kim and T. Park, An efficient Protocol for

checkpointing Recovery in Distributed Systems,
IEEE Transactions on Parallel and Distributed
Systems, 1993, 955-960.

[14] L. Kumar, M. Misra, R.C. Joshi, Checkpointing in

Distributed Computing Systems, In Concurrency in
Dependable Computing, 2002, 273-92.

[15] L. Kumar, M. Misra, R.C. Joshi, Low overhead
optimal checkpointing for mobile distributed
systems, In Proceedings of 19th IEEE International
Conference on Data Engineering, 2003, 686 – 88.

[16] L. Kumar and P.Kumar, A Synchronous

Checkpointing Protocol for Mobile Distributed
Systems: Probabilistic Approach, International

Journal of Information and Computer Security,
1(3), 2007, 298-314.

[17] L. Lamport, Time, clocks and ordering of events in

a distributed system, Communications of the ACM,
21(7), 1978, 558-565.

[18] N. Neves and W.K. Fuchs, Adaptive Recovery for

Mobile Environments, Communications of the
ACM, 40(1), 1997, 68-74.

[19] W. Ni, S. Vrbsky and S. Ray, Pitfalls in Distributed

Nonblocking Checkpointing, Journal of
Interconnection Networks, 1(5), 2004, 47-78.

[20] D.K. Pradhan, P.P. Krishana and N.H. Vaidya,

Recovery in Mobile Wireless Environment: Design
and Trade-off Analysis, In Proceedings of 26th
International Symposium on Fault-Tolerant
Computing, 1996, 16-25.

[21] R. Prakash and M. Singhal, Low-Cost
Checkpointing and Failure Recovery in Mobile
Computing Systems, IEEE Transaction On
Parallel and Distributed Systems, 7(10), 1996,
1035-1048.

[22] K.F. Ssu, B. Yao, W.K. Fuchs and N.F. Neves,

Adaptive Checkpointing with Storage Management

for Mobile Environments, IEEE Transactions on
Reliability, 48(4), 1999, 315-324.

[23] L.M. Silva and J.G. Silva, Global checkpointing

for distributed programs, In Proceedings of the
11th

 symposium on Reliable Distributed Systems,
1992, 155-62.

[24] Sunil Kumar, R K Chauhan, Parveen Kumar, “A
 Minimum-process Coordinated Checkpointing
 Protocol for Mobile Computing Systems”,
 International Journal of Foundations of Computer
 science,Vol 19, No. 4, pp 1015-1038 (2008).

 [25] Parveen Kumar, “A Low-Cost Hybrid Coordinated
 Checkpointing Protocol for mobile distributed

 systems”, Mobile Information Systems. pp 13-32,
 Vol. 4, No. 1, 2007.

 [26] W. Ni, S. Vrbsky and S. Ray, Pitfalls in Distributed
 Nonblocking Checkpointing, Journal
 of Interconnection Networks, 1(5), 2004, 47-7

