b-Colouring of Central Graphs

Dr.K.Thilagavathi Associate Professor, Department of Mathematics, Kongunadu Arts \& Science College, Coimbatore-641 029, India.

Mrs. D.Vijayalakshmi
Assistant Professor and Head, Department of Mathematics CA, Kongunadu Arts \& Science College, Coimbatore-641 029, India.

Mr. N.Roopesh
Research Scholar, Department of Mathematics, Kongunadu Arts \& Science College, Coimbatore-641 029, India.

Abstract

In this paper we discuss about the b-colouring and b-chromatic number of $C\left(C_{n}\right), C\left(K_{m, n}\right)$ and $C(P n)$.

Keywords

Central graph, b-colouring and b-chromatic number.

1. INTRODUCTION

Let G be a finite undirected graph with no loops and multiple edges. The central graph $\mathrm{C}(\mathrm{G})$ [10] of a graph G is obtained by subdividing each edge of G exactly once and joining all the non-adjacent vertices of G. By definition $P_{C}(G)=p+q$. For any (p, q), graph there exists exactly p vertices of degree $(p-1)$ and q vertices of degree 2 in $C(G)$.

The b-chromatic number [6] of a graph was introduced by R.W.Irving and D.F.Manlove when considering minimal proper colouring with respect to a Partial order defined on the set of all partition of vertices of graph. The b-chromatic number of a graph G, denoted by $\varphi(\mathrm{G})$, is the largest positive integer t such that there exists a proper coloring for G with t colors in which every color class contains at least one vertex adjacent to some vertex in all the other colour classes such a colouring is called a b-colouring.

2. THE b-COLOURING OF $\mathbf{C}\left(K_{m, n}\right)$

2.1 Theorem

For any complete bipartite graph $\mathrm{C}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right), \varphi\left(\mathrm{C}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)\right)=$ $\mathrm{n}+\left[\frac{m}{2}\right]$ where $\mathrm{m} \leq 6$.

Proof

Consider the complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ with bipartation (X,Y) where $X=\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ and $Y=\left\{u_{1}, u_{2}, \ldots . ., u_{n}\right\}$ in $C\left(K_{m, n}\right)$. Let $v_{i, j}$ represents the newly introduced vertex in the edge joining v_{i} and u_{j}. Now assign a colouring to the vertices of $C\left(K_{m, n}\right)$ as follows. Assign the colour c_{i} to v_{i} for $\mathrm{i}=1,2, \ldots, \mathrm{n}$. since $\left\langle v_{i}, i=1,2, \ldots, n\right\rangle$ is a complete graph, this colouring will be a bcolouring. Give the colour $\mathrm{c}_{\mathrm{n}+\mathrm{i}}$ to u_{i} for $\mathrm{i}=1,2, \ldots .,\left[\frac{m}{2}\right]$, now the vertex which has been coloured as $\mathrm{c}_{\mathrm{n}+\mathrm{i}}$ cannot realises the colour c_{n+i} to u_{i}. In order to overcome this, we should colour the $v_{i, j}{ }^{\prime} s$,
$\mathrm{i} \neq \mathrm{n}$ as $\mathrm{c}_{\mathrm{i}+1}$ and $\mathrm{v}_{\mathrm{i}, \mathrm{j}}$'s, $\mathrm{i}=\mathrm{n}$ as c_{1} where $\mathrm{j} \leq\left[\frac{m}{2}\right]$. Again the introduction of new colours, namely c_{n+i} made the colouring of v_{i}, $\mathrm{i}=1,2, \ldots ., \mathrm{n}$ is no more b -chromatic. To make this colouring a b chromatic one, we should colour $\mathrm{v}_{\mathrm{i}, \mathrm{j},} \mathrm{j}=\left[\frac{m}{2}\right]+\mathrm{k}, \mathrm{k}=1,2$, $\ldots . .\left[\frac{m}{2}\right]$ as $\mathrm{c}_{\mathrm{n}+\mathrm{k}}$. Thus to colour the remaining vertices in $\mathrm{u}_{\mathrm{i}, \mathrm{i}}$ > $\left[\frac{m}{2}\right]$, for this vertices we cannot assign any new colours because all the v_{ij} 's which are adjacent to any u_{i} is of same colour and those u_{i} 's are not at all adjacent with any of the c_{i} coloured vertices. Hence, by colouring procedure the above said colouring is a b-chromatic colouring and furthermore it is the maximum colouring possible. Hence $\varphi\left(\mathrm{C}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)\right)=\mathrm{n}+\left[\frac{m}{2}\right]$.

Figure 1: $\varphi[\mathbf{C}(\mathbf{K 4 , 5})]=7$

3.THE b-COLOURING OF [C(Cn)]

3.1 Theorem

For any cycle C_{n} of length $n \geq 5, n=5 x+r$,

$$
\varphi\left[\begin{array}{ll}
C & C_{n}
\end{array}\right]= \begin{cases}n-x+1 & \text { when } \mathrm{r} \neq 0 \\
n-x & \text { when } \mathrm{r}=0\end{cases}
$$

Proof

Let C_{n} be any cycle of length n with vertices $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}$. Let v_{ij} represents the newly introduced vertex in the edge connecting v_{i} and v_{j}. Now in $C\left(C_{n}\right)$ we can note that the vertex v_{i} is adjacent with all the vertices except the vertices except v_{i+1} and v_{i-1} for $i=$ $2,3,4,5, \ldots \mathrm{n}-1 . \mathrm{v}_{1}$ is adjacent with all the vertices except v_{2} and v_{n} and v_{n} is adjacent with all the vertices except v_{n-1} and v_{1}. Consider a blind colouring of $\mathrm{C}\left(\mathrm{C}_{\mathrm{n}}\right)$ as follows. Assign the colour c_{i} to v_{i} for $i=1,2, \ldots ., n$. Due to the above said non-adjacency of $v_{i}^{\prime} \mathrm{s}$ this colouring will not produce a b-colouring. Thus to make it a b-colouring, we should assign a proper colour to v_{ij} 's. Consider an arbitary vertex v_{i}, but v_{i} is not adjacent with v_{i+1} and v_{i-1}. To realize the colour c_{i} we should colour $v_{i, i+1}$ as c_{i-1} and $v_{i, i-1}$ as c_{i+1}. Thus v_{i} will realise the colour c_{i}. Now take the vertex v_{i+1}, which is coloured as c_{i+1}. In order to realise the colour c_{i+1}, we should colour two neighbours of v_{i+1} as c_{i+1} and c_{i} but the previous colouring of v_{i} had left out only one vertex namely $\mathrm{v}_{\mathrm{i}+1, \mathrm{i}+2}$ to be coloured. Thus realisation of $\mathrm{c}_{\mathrm{i}+1}$ is not possible. Similar situation will occur if we are proceeding with $\mathrm{v}_{\mathrm{i}-1}$ too. This shows that assigning different colours to v_{i} 's is not possible. i.e. there should be repetation of colours. A close examination will reveal that there should be minimum of $\left\lceil\frac{n}{5}\right\rceil$ repetations. Thus we will assign a colouring to $\mathrm{C}\left(\mathrm{C}_{\mathrm{n}}\right)$ as follows.

Case: 1

When $\mathrm{r}=0$, assign the colour $\quad c_{i-\left[\frac{i}{5}\right]}$ to the vertex v_{i} for $\mathrm{i}=1,2$,
...., n. Here only the repeated colour vertex realises its own colour but for the remaining vertex it is not possible. So the above colouring does not produce a b-colouring. To make it a bcolouring, we assign a proper colouring $\mathrm{v}_{\mathrm{i}, \mathrm{j}}$'s as follows. For $\mathrm{i}=1$, $2, \ldots, \mathrm{n}-1$ and $\mathrm{i} \equiv 2,3,4(\bmod 5)$ assign the colour $c_{i-\left(\left[\frac{i}{5}\right]-1\right]}$ to the vertex $\mathrm{v}_{\mathrm{i}, \mathrm{i}+1}$ otherwise assign the colour $c_{i-\left(\left[\frac{i}{5}\right]^{+2}\right]}$ to $\mathrm{v}_{\mathrm{i}, \mathrm{i}+1}$. Now all v_{i} 's for $\mathrm{i}=1,2, \ldots ., \mathrm{n}$ realises its own colour c_{i}. Hence by the colouring procedure it is the maximum colouring.

Case: 2

When $\mathrm{r} \neq 0$, for $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$ assign the colour $c_{i-\left[\frac{i}{5}\right]}$ to the vertex v_{i}. Here also only the vertex with repeated colour realises its own colour. Thus to make the colouring a b-chromatic one, we assign a proper colouring to $\mathrm{v}_{\mathrm{i}, \mathrm{j}}$'s as follows. For $\mathrm{i}=1,2, \ldots, \mathrm{n}$ and $\mathrm{i} \equiv 2,3,4,(\bmod 5)$ assign the colour c \square to the vertex $v_{i, i+1}$ otherwise assign the colour $c_{i-\left[\left[\frac{i}{5}\right]+2\right)}$ to $\mathrm{v}_{\mathrm{i}, \mathrm{i}+1 .}$. Now the only vertex remaining to be coloured is v_{n}. Suppose we assign a new colour to the vertex v_{n}, the vertex does not realises the new colour, because v_{n} is not adjacent with $\mathrm{v}_{\mathrm{n}-1}$ and v_{i}. Thus to realise the new colour we should colour the two neighbours of v_{n} as c_{n-1}
and c_{1}, but by previous colouring, no vertex is left to be coloured. Thus introducing a new colour to the vertex v_{n} is not possible. Note that any rearrangement of colours to the graph also fails to accomodate the new colour. Hence by colouring procedure this is a b-chromatic colouring and furthermore it is the maximum colouring possible.

Example

Figure 2: $\varphi\left[\mathrm{C}\left(\mathrm{C}_{9}\right)\right]=7$

$$
\varphi\left[\mathrm{C}\left(\mathbf{C}_{10}\right)\right]=8
$$

4. THE b-COLOURING OF C($\left.P_{n}\right)$

4.1. Theorem

For any path P_{n} of length $\mathrm{n} \geq 5, \mathrm{n}=5 x+\mathrm{r}$

$$
\varphi\left[\begin{array}{ll}
C & P_{n}
\end{array}\right]= \begin{cases}n-x+1 & \text { where } \mathrm{r}=4 \\
\mathrm{n}-x & \text { otherwise }\end{cases}
$$

Proof

Let P_{n} be any path of length $n-1$ with vertices $v_{1}, v_{2}, \ldots, v_{n}$. Let v_{ij} represents the newly introduced vertex in the edge connecting v_{i} and v_{j}. Now in $C\left(P_{n}\right)$ we can see that the vertex v_{i} is adjacent with all the vertices except the vertices v_{i+1} and v_{i-1} for $i=2,3$, $\ldots ., n-1 . v_{n}$ is adjacent with all the vertices except v_{n-1} and v_{1} is adjacent with all the vertices except v_{2}. Now consider a blind colouring of $C\left(P_{n}\right)$ as follows. Assign the colour c_{i} to v_{i} for $i=1$, $2, \ldots$. , n due to the above mentioned non-adjacency of v_{i} 's this colouring will not be a b-colouring. Thus to make it a bcolouring, we should assign a proper colouring to v_{ij} 's. Consider an internal vertex v_{i} of P_{n}, but v_{i} is not adjacent with v_{i+1} and v_{i-1}. Thus to realise the colour c_{i} we should colour $v_{i, i+1}$ as c_{i-1} and $v_{i, i-1}$ as $\mathrm{c}_{\mathrm{i}+1}$. Thus v_{i} will realise the colour c_{i}. Now take the vertex $\mathrm{v}_{\mathrm{i}+1}$, which is coloured as c_{i+1}. In order to realise the colour c_{i+1}, we should colour the two neighbours of $\mathrm{v}_{\mathrm{i}+1}$ as $\mathrm{c}_{\mathrm{i}+2}$ and c_{i}, but by the previous colouring v_{i} had left out only one vertex namely $v_{i+2, i+3}$ to be coloured. Thus realisation of c_{i+1} is not possible. Similarly this will occur for $\mathrm{v}_{\mathrm{i}-1}$ too. This shows that assigning different colours to v_{i} is not possible i.e. there should be repetation of
colours. For $n \equiv 0,1,2,3(\bmod 5)$ there are $\left[\frac{n}{5}\right]+1$ repetitions otherwise $\left\lceil\frac{n}{5}\right\rceil+1$ repetitions.

Case: 1

When $\mathrm{r}=4, \mathrm{i}=1,2, \ldots, \mathrm{n}$ and $\mathrm{i} \equiv 0,1,2(\bmod 5)$ assign the colour $c_{i-\left[\frac{i}{5}\right]}$ to the vertex v_{i} otherwise assign the colour $c_{i-\left(\left[\frac{i}{5}\right]+1\right]}$ to the vertex v_{i}. Here also only the vertex with repeated colours realises its own colour. Thus to make the colouring a b-chromatic one, we assign a proper colouring to v_{ij} 's as follows. For $\mathrm{i}=2,3$, $\ldots, \mathrm{n}-2$ and $\mathrm{i} \equiv 0,1,2,(\bmod 5)$ assign the colour $c_{i-\left(\left[\frac{i}{5}\right]+1\right]}$ to the vertex v_{ij} otherwise assign the colour $c_{i+1-\left[\frac{i}{5}\right]}$ to the vertex v_{ij}. For remaining v_{ij} 's we can assign any already assigned colours. Now all v_{i} 's for $\mathrm{i}=1,2, \ldots$, n realises its own colour c_{i}. Hence by colouring procedure it is the maximum colouring.

Case: 2

When $\mathrm{r} \neq 4$, for $\mathrm{i}=1,2, \ldots, \mathrm{n}$ and $\mathrm{i} \equiv 0,1,2(\bmod 5)$ assign the colour $c_{i-\left[\frac{i}{5}\right]}$ to the vertex v_{i} otherwise assign the colour $C_{i-\left(\left[\frac{i}{5}\right]\right)_{+1}}$ to the vertex v_{i}. Here also only the vertex with repeated colours realises its own colour. Thus to make the colouring a b-chromatic one we assign a proper colouring to v_{ij} 's as follows. For $\mathrm{i}=2,3$, $\ldots, \mathrm{n}-3$ and $\mathrm{i} \equiv 0,1,2(\bmod 5)$ assign the colour $C_{i-\left[\left[\frac{i}{5}\right]+1\right.}$ to the vertex v_{ij} otherwise assign the colour $C_{i+1-\left(\left[\frac{i}{5}\right]\right)}$ to the vertex v_{ij} and the remaining v_{ij} otherwise assign the colour $c_{i+1-\left(\left[\frac{i}{5}\right]\right)}$ to the vertex v_{ij} and the remaining v_{ij} 's can be coloured with already used colours. Now the only vertex remaining is to colour v_{n}. Suppose we assign a new colour to the v_{n}, the vertex does not realises the new colour because u_{n} is not adjacent with v_{n-1}. Thus to realise the new colour we should colour the neighbour of v_{n} as $\mathrm{c}_{\mathrm{n}-1}$, which is not possible by colouring procedure. Thus introducing a new colour to the vertex v_{n} is not possible. Note that any rearrangement of the colours to the graph also fails to accomodate the new colour. Hence by colouring procedure this is a b-chromatic colouring and furthermore it is the maximum colouring possible.

Example

Figure 3 : $\varphi\left[\mathrm{C}\left(\mathbf{P}_{9}\right)\right]=7$

Figure 4 : $\varphi\left[C\left(\mathbf{P}_{\mathbf{1 0}}\right)\right]=7$

REFERENCES

(1) R. Balakrishnan, S. Francis Raj, Bounds for the b-chromatic number of the Mycielskian of some families of graphs, manuscript.
(2) D. Barth, J. Cohen, T. Faik, On the b-continuity property of graphs, Discrete Appl. Math. 155(2007)1761-1768.
(3) S. Corteel. M. Valencia-Pabon, J-C. Vera, On approximating the b-chromatic number. Discrete Appl. Math. 146(2005)106-110.
(4) B. Effantin, The b-chromatic number of-power graphs of complete caterpillars, J. Discrete Math. Sci. Cryptogr. 8(2005)483-502.
(5) C.T. Hoang, M. Kouider, On the b-dominating colouring of graphs, Discrete Appli. Math. 152(2005)176-186.
(6) R.W. Irving, D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91(1999)127-141.
(7) M. Kouider, A. El Sabili, About b-colouring of regular graphs, Rapport de Recherche No 1432, CNRS-Universite Paris Sud-LRI, 02/2006.
(8) K. Thilagavathi and N.Roopesh, "Generalization of Achromatic colouring of Central graphs", Electronic Notes in Discrete Mathematics 147-152, 33, 2009.
(9) K. Thilagavathi and N. Roopesh," Achromatic Colouring of Line graphs of Central graphs", Proceedings of the International Conference on Mathematics and Computer Science, 42-45, 2009.
(10) K. Thilagavathi and N. Roopesh, "Achromatic Colouring of $\mathrm{C}(\mathrm{Cn}), \mathrm{C}(\mathrm{Km}, \mathrm{n}), \mathrm{C}(\mathrm{Kn})$ and Spilt Graphs", Proceedings of the International Conference on Mathematical and Computer Science (ICMCS), 158-161, 2007.

