b-Colouring of Central Graphs

Dr.K.Thilagavathi Associate Professor, Department of Mathematics, Kongunadu Arts & Science College, Coimbatore-641 029, India. Mrs. D.Vijayalakshmi Assistant Professor and Head, Department of Mathematics CA, Kongunadu Arts & Science College, Coimbatore-641 029, India. Mr. N.Roopesh Research Scholar, Department of Mathematics, Kongunadu Arts & Science College, Coimbatore-641 029, India.

ABSTRACT

In this paper we discuss about the b-colouring and b-chromatic number of $C(C_n)$, $C(K_{m,n})$ and C(P n).

Keywords

Central graph, b-colouring and b-chromatic number.

1. INTRODUCTION

Let G be a finite undirected graph with no loops and multiple edges. The central graph C(G) [10] of a graph G is obtained by subdividing each edge of G exactly once and joining all the non-adjacent vertices of G. By definition $P_C(G) = p + q$. For any (p,q), graph there exists exactly p vertices of degree (p-1) and q vertices of degree 2 in C(G).

The b-chromatic number [6] of a graph was introduced by R.W.Irving and D.F.Manlove when considering minimal proper colouring with respect to a Partial order defined on the set of all partition of vertices of graph. The b-chromatic number of a graph G, denoted by $\varphi(G)$, is the largest positive integer t

such that there exists a proper coloring for G with t colors in which every color class contains at least one vertex adjacent to some vertex in all the other colour classes such a colouring is called a b-colouring.

2. THE b-COLOURING OF C(K_{m,n})

2.1 Theorem

For any complete bipartite graph $C(K_{m,n})$, $\varphi(C(K_{m,n})) =$

$$n + \left[\frac{m}{2}\right]$$
 where $m \le 6$.

Proof

Consider the complete bipartite graph $K_{m,n}$ with bipartation (X,Y) where $X = \{v_1, v_2,, v_n\}$ and $Y = \{u_1, u_2,, u_n\}$ in $C(K_{m,n})$. Let $v_{i,j}$ represents the newly introduced vertex in the edge joining v_i and u_j . Now assign a colouring to the vertices of $C(K_{m,n})$ as follows. Assign the colour c_i to v_i for i = 1, 2, ..., n. since $\langle v_i, i=1,2,...,n \rangle$ is a complete graph, this colouring will be a b-colouring. Give the colour c_{n+i} to u_i for $i = 1, 2,, \left[\frac{m}{2}\right]$, now the

vertex which has been coloured as c_{n+i} cannot realises the colour c_{n+i} to $u_i.$ In order to overcome this, we should colour the $v_{i,j}^{\;\;,}$ s,

$$i \neq n$$
 as c_{i+1} and v_{i*j} 's, $i = n$ as c_1 where $j \leq \left\lfloor \frac{m}{2} \right\rfloor$. Again the

introduction of new colours, namely c_{n+i} made the colouring of v_i , i = 1, 2, ..., n is no more b-chromatic. To make this colouring a b-

chromatic one, we should colour $v_{i,j}$, $j = \left[\frac{m}{2}\right] + k$, k = 1, 2,

 $\dots \left[\frac{m}{2}\right]$ as c_{n+k} . Thus to colour the remaining vertices in $u_{i, i} > 1$

 $\left\lfloor \frac{m}{2} \right\rfloor$, for this vertices we cannot assign any new colours because

all the v_{ij} 's which are adjacent to any u_i is of same colour and those u_i 's are not at all adjacent with any of the c_i coloured vertices. Hence, by colouring procedure the above said colouring is a b-chromatic colouring and furthermore it is the maximum

colouring possible. Hence
$$\varphi(C(K_{m,n})) = n + \left| \frac{m}{2} \right|$$

3.THE b-COLOURING OF [C(Cn)]

3.1 Theorem

For any cycle C_n of length $n \ge 5, n = 5x + r$,

$$\varphi \begin{bmatrix} C & C_n \end{bmatrix} = \begin{cases} n - x + 1 & \text{when } r \neq 0 \\ n - x & \text{when } r = 0 \end{cases}$$

Proof

Let C_n be any cycle of length n with vertices $v_1, v_2, ..., v_n$. Let v_{ij} represents the newly introduced vertex in the edge connecting vi and v_i . Now in $C(C_n)$ we can note that the vertex v_i is adjacent with all the vertices except the vertices except v_{i+1} and v_{i-1} for i =2, 3, 4, 5, ... n-1. v_1 is adjacent with all the vertices except v_2 and v_n and v_n is adjacent with all the vertices except v_{n-1} and v_1 . Consider a blind colouring of $C(C_n)$ as follows. Assign the colour c_i to v_i for i = 1, 2, ..., n. Due to the above said non-adjacency of v_i 's this colouring will not produce a b-colouring. Thus to make it a b-colouring, we should assign a proper colour to v_{ii}'s. Consider an arbitrary vertex v_i , but v_i is not adjacent with v_{i+1} and v_{i-1} . To realize the colour c_i we should colour $v_{i,i+1}$ as c_{i-1} and $v_{i,i-1}$ as c_{i+1} . Thus v_i will realise the colour c_i . Now take the vertex v_{i+1} , which is coloured as c_{i+1} . In order to realise the colour c_{i+1} , we should colour two neighbours of \boldsymbol{v}_{i+1} as \boldsymbol{c}_{i+1} and \boldsymbol{c}_i but the previous colouring of vi had left out only one vertex namely $v_{i+1,i+2}$ to be coloured. Thus realisation of c_{i+1} is not possible. Similar situation will occur if we are proceeding with v_{i-1} too. This shows that assigning different colours to v_i's is not possible. i.e. there should be repetation of colours. A close examination $\left|\frac{n}{5}\right|$ repetations.

will reveal that there should be minimum of

Thus we will assign a colouring to $C(C_n)$ as follows.

Case: 1

 $c_{i-\left\lceil \frac{i}{5}\right\rceil}$ to the vertex v_i for i = 1, 2, When r = 0, assign the colour

...., n. Here only the repeated colour vertex realises its own colour but for the remaining vertex it is not possible. So the above colouring does not produce a b-colouring. To make it a bcolouring, we assign a proper colouring $v_{i,j}$'s as follows. For i = 1, 2, ..., n-1 and i = 2, 3, 4(mod 5) assign the colour $c_{i-([\frac{i}{5}]-1)}$ to the

vertex $v_{i, i+1}$ otherwise assign the colour $c_{i-\left(\left\lceil \frac{i}{5} \right\rceil + 2\right)}$ to $v_{i, i+1}$. Now all

 v_i 's for i = 1, 2, ..., n realises its own colour c_i . Hence by the colouring procedure it is the maximum colouring.

Case: 2

When
$$r \neq 0$$
, for $i = 1, 2, ..., n - 1$ assign the colour $c_{i = \lfloor \frac{i}{5} \rfloor}$ to the

vertex vi. Here also only the vertex with repeated colour realises its own colour. Thus to make the colouring a b-chromatic one, we assign a proper colouring to $v_{i,j}$'s as follows. For i = 1, 2, ..., n and $i \equiv 2, 3, 4, \pmod{5}$ assign the colour $c_{i-\left(\left[\frac{1}{5}\right]^{-1}\right)}$ to the vertex $v_{i, i+1}$

otherwise assign the colour $\ c_{i-\left[\left\lceil\frac{i}{5}\right\rceil+2\right]}$ to $v_{i,,i+1.}$ Now the only

vertex remaining to be coloured is vn. Suppose we assign a new colour to the vertex v_n, the vertex does not realises the new colour, because v_n is not adjacent with v_{n-1} and v_i . Thus to realise the new colour we should colour the two neighbours of v_n as c_{n-1}

and c₁, but by previous colouring, no vertex is left to be coloured. Thus introducing a new colour to the vertex v_n is not possible. Note that any rearrangement of colours to the graph also fails to accomodate the new colour. Hence by colouring procedure this is a b-chromatic colouring and furthermore it is the maximum colouring possible.

Example

4. THE b-COLOURING OF C(P_n)

4.1. Theorem

For any path P_n of length $n \ge 5$, n = 5x + r

$$\varphi \begin{bmatrix} C & P_n \end{bmatrix} = \begin{cases} n - x + 1 & \text{where } r = 4 \\ n - x & \text{otherwise} \end{cases}$$

Proof

Let P_n be any path of length n - 1 with vertices $v_1, v_2, ..., v_n$. Let vii represents the newly introduced vertex in the edge connecting v_i and v_i . Now in C(P_n) we can see that the vertex v_i is adjacent with all the vertices except the vertices v_{i+1} and v_{i-1} for i = 2, 3, ..., n - 1. v_n is adjacent with all the vertices except v_{n-1} and v_1 is adjacent with all the vertices except v2. Now consider a blind colouring of $C(P_n)$ as follows. Assign the colour c_i to v_i for i = 1, 2, ..., n due to the above mentioned non-adjacency of vi's this colouring will not be a b-colouring. Thus to make it a bcolouring, we should assign a proper colouring to v_{ii}'s. Consider an internal vertex v_i of P_n , but v_i is not adjacent with v_{i+1} and v_{i-1} . Thus to realise the colour c_i we should colour $v_{i,i+1}$ as c_{i-1} and $v_{i,i-1}$ as c_{i+1} . Thus v_i will realise the colour c_i . Now take the vertex v_{i+1} , which is coloured as c_{i+1} . In order to realise the colour c_{i+1} , we should colour the two neighbours of v_{i+1} as c_{i+2} and c_i , but by the previous colouring v_i had left out only one vertex namely $v_{i+2,i+3}$ to be coloured. Thus realisation of c_{i+1} is not possible. Similarly this will occur for v_{i-1} too. This shows that assigning different colours to v_i is not possible i.e. there should be repetation of colours. For $n \equiv 0, 1, 2, 3 \pmod{5}$ there are $\left\lfloor \frac{n}{5} \right\rfloor + 1$ repetitions otherwise $\left\lceil \frac{n}{5} \right\rceil + 1$ repetitions.

Case: 1

When r = 4, i = 1, 2, ..., n and $i \equiv 0, 1, 2 \pmod{5}$ assign the colour $c_{i-\left[\frac{i}{5}\right]}$ to the vertex v_i otherwise assign the colour $c_{i-\left[\frac{i}{5}\right]+1}$ to the vertex v_i . Here also only the vertex with repeated colours realises its own colour. Thus to make the colouring a b-chromatic one, we assign a proper colouring to v_{ij} 's as follows. For i = 2, 3, ..., n - 2 and $i \equiv 0, 1, 2, \pmod{5}$ assign the colour $c_{i-\left[\left[\frac{i}{5}\right]+1\right]}$ to the

vertex v_{ij} otherwise assign the colour $c_{i+1-\left[\frac{i}{5}\right]}$ to the vertex v_{ij} . For

remaining v_{ij} 's we can assign any already assigned colours. Now all v_i 's for i = 1, 2, ..., n realises its own colour c_i . Hence by colouring procedure it is the maximum colouring.

Case: 2

When $r \neq 4$, for i = 1, 2, ..., n and $i \equiv 0, 1, 2 \pmod{5}$ assign the colour $c_{i - \lfloor \frac{i}{5} \rfloor}$ to the vertex v_i otherwise assign the colour $C_{i - \lfloor \frac{i}{5} \rfloor}$

to the vertex v_i. Here also only the vertex with repeated colours realises its own colour. Thus to make the colouring a b-chromatic one we assign a proper colouring to v_{ij}'s as follows. For i = 2, 3, ..., n - 3 and $i \equiv 0, 1, 2 \pmod{5}$ assign the colour $C_{i-\left(\left[\frac{i}{5}\right]\right)+1}$ to the

vertex v_{ij} otherwise assign the colour $C_{i+1-\left(\left[\frac{i}{5}\right]\right)}$ to the vertex v_{ij}

and the remaining v_{ij} otherwise assign the colour $c_{i+1-\left(\left[\frac{i}{5}\right]\right)}$ to the

vertex v_{ij} and the remaining v_{ij} 's can be coloured with already used colours. Now the only vertex remaining is to colour v_n . Suppose we assign a new colour to the v_n , the vertex does not realises the new colour because u_n is not adjacent with v_{n-1} . Thus to realise the new colour we should colour the neighbour of v_n as c_{n-1} , which is not possible by colouring procedure. Thus introducing a new colour to the vertex v_n is not possible. Note that any rearrangement of the colours to the graph also fails to accomodate the new colour. Hence by colouring procedure this is a b-chromatic colouring and furthermore it is the maximum colouring possible.

Example

Figure 3 : $\phi[C(P_9)] = 7$

Figure 4 : $\phi[C(P_{10})] = 7$

REFERENCES

- R. Balakrishnan, S. Francis Raj, Bounds for the b-chromatic number of the Mycielskian of some families of graphs, manuscript.
- (2) D. Barth, J. Cohen, T. Faik, On the b-continuity property of graphs, Discrete Appl. Math. 155(2007)1761 – 1768.
- (3) S. Corteel. M. Valencia-Pabon, J-C. Vera, On approximating the b-chromatic number. Discrete Appl. Math. 146(2005)106 - 110.
- (4) B. Effantin, The b-chromatic number of-power graphs of complete caterpillars, J. Discrete Math. Sci. Cryptogr. 8(2005)483 - 502.
- (5) C.T. Hoang, M. Kouider, On the b-dominating colouring of graphs, Discrete Appli. Math. 152(2005)176 – 186.
- (6) R.W. Irving, D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91(1999)127 – 141.
- (7) M. Kouider, A. El Sabili, About b-colouring of regular graphs, Rapport de Recherche No 1432, CNRS-Universite Paris Sud-LRI, 02/2006.
- (8) K. Thilagavathi and N.Roopesh, "Generalization of Achromatic colouring of Central graphs", Electronic Notes in Discrete Mathematics 147-152, 33, 2009.
- (9) K. Thilagavathi and N. Roopesh," Achromatic Colouring of Line graphs of Central graphs", Proceedings of the International Conference on Mathematics and Computer Science, 42-45, 2009.
- (10) K. Thilagavathi and N. Roopesh, "Achromatic Colouring of C(Cn), C(Km,n), C(Kn) and Spilt Graphs", Proceedings of the International Conference on Mathematical and Computer Science (ICMCS), 158-161, 2007.