
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.11, July 2010

15

Performance Comparison of ICE, HORB, CORBA and Dot

NET Remoting Middleware Technologies
Sumair Khan

Department of Computer science,
COMSATS Institute of Information

Technology,
Abbottabad, Pakistan

Kalim Qureshi
Information Science Department,

Kuwait University,
State of Kuwait

Haroon Rashid
Director of Campuses,

COMSATS Institute of Information
Technology,

Islamabad, Pakistan

ABSTRACT

Distributed computing systems are designed to solve

computationally intensive problems with the help of

convergence of computing resources scattered across the

network. Distributed computing object middleware

technologies have bring revolutionary concepts in the world of

distributed computing and also made the building of

distributed computing applications more efficient and nearer to

real world. But the selection of most efficient distributed

computing object middleware technology on the basis of

different performance metrics is an important research issue.

In this paper we are presenting the performance evaluation and

comparison of distributed computing object middleware

technologies which include Common Object Request Broker

Architecture (CORBA), Internet Communication Engine (ICE),

HORB, and TCP based Dot NET Remoting. Because these

distributed computing object middleware technologies have not

been evaluated and compared collectively on the basis of

performance metrics which include overhead generation and

round trip latency. The results that we have gathered showed

that ICE is showing better performance in terms of overhead

generation. And HORB has showed reduced round trip latency

as compared to other middleware’s.

Keywords

Performance Evaluation, Distributed Computing Object

Middleware technology, CORBA, HORB, ICE, Dot NET

Remoting

1. INTRODUCTION
Nowadays, due to the distributed objects, the possibility to

develop distributed applications with components located on

any machine in a network is a reality with the help of

distributed computing object middleware technologies. Day by

day demand of performance efficient distributed applications is

growing to accomplish different critical tasks related with

distributed computing. To achieve this efficiency in distributed

the applications depends upon the selection of appropriate

distributed computing middleware technology which has better

performance as compared to other distributed computing

middleware technologies available.. Previously researchers

have published done the research work referring to choosing

the most efficient distributed computing object middleware

technology from number of technologies to build the

performance efficient distributed applications. But in this

research work we have selected the four distributed computing

object middleware technologies which include Common Object

Request Broker Architecture (CORBA)[1] to implement

CORBA we have selected its Java IDL[2] implementation of

CORBA because its feature of open source make it prefer

candidate implementation as compared to other

implementations, Internet Communication Engine (ICE)[3] it’s

the product of ZeroC, HORB[4] developed by AIST, and Dot

NET Remoting[6] developed by Microsoft. These selected

technologies are offering the advance features required by

today’s applications. These selected distributed computing

object middleware technologies have not been compared

collectively on the basis of different performance metrics

which include overhead generation and round trip latency.

Most of research work done so far is based on common

distributed computing object middleware technologies which

include CORBA, RMI, and DCOM. In [6] author has compared

the performance of CORBA, RMI and DCOM on the basis of

speed of the message transferred between the applications. In

[7] again authors have compared the performance of CORBA,

DCOM and RMI but using the different performance metrics.

In [8] authors have done the performance analysis, comparison

and optimization of the distributed object middleware

technologies based on Java which include RMI and RMI-IIOP.

In [9] an extensive research has been performed on the

performance efficiency of RMI and then it is compared with

other distributed object middleware’s.

In our research work selected distributed object middleware

technologies have not been compared collectively on the basis

of different performance metrics This research will give us a

clear picture of performance of selected middleware

technologies, so that selection of the most appropriate

middleware technology with respect to different performance

metrics will become easy for developers to develop efficient

distributed applications, because today’ distributed

applications requires low overhead generation generated due to

computation and need low latency to accomplish the required

performance level. To accomplish the objective of this research

work, number of performance evaluation tests has been

performed and there results have been discussed. Rest of the

paper is organized as follows: in next section we will discuss

the selected Distributed Computing Object Middleware

Technologies, after that we will describe the experimental

setup environment, then we will discuss the results in

Performance Evaluation and Comparison section and last will

be the conclusion section.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.11, July 2010

16

2. DISTRIBUTED COMPUTING OBJECT

MIDDLEWARE TECHNOLOGIES
In this section distributed object middleware technologies

which we have selected for the performance evaluation and

comparison will be discussed.

2.1 ICE (Internet Communications Engine)
ICE (Internet Communications Engine) has emerged as a new

object-oriented middleware having advance features than

traditional object-oriented such as DCOM and CORBA. With

the evolution of Object-oriented middleware, distributed

applications also entered into new paradigm of computing. ICE

middleware platform care important functionalities provided

by any middleware, such as marshaling and unmarshaling

mapping logical object addresses to physical transport

endpoints, changing the representation of data according to the

native machine architecture of client and server, and

automatically starting servers on demand. ICE architecture

consists of different components which include ICE core, slice,

proxy code, skeleton code, object adapter and ICE Protocol[3].

2.2 Dot NET Remoting
Dot NET Remoting is based on dot NET framework that

enables us to build distributed applications which can solve the

distributed application problems. Dot NET remoting provides

an infrastructure for distributed objects through which we

build applications that use objects to communicate across the

network. Dot Net Remoting architecture consists of

components which include client object, server object, proxy

object, channels and formatters [5].

2.3 CORBA
CORBA (Common Object Request Broker Architecture) is the

standard distributed object architecture developed by the

Object Management Group (OMG). CORBA is a distributed

object-oriented client/server platform used to build the object

based distributed applications. CORBA includes object-

oriented Remote Procedure Call (RPC) mechanism that

provides the basic remote procedure call services. Primary

components in the CORBA architecture include Object

Request Broker (ORB), IDL stubs, ORB interface and object

adapter [1].

2.4 HORB
HORB is light weight distributed computing middleware that

extends the java functionality into the network computing to

facilitate in developing java based distributed applications.

The programs written in HORB can be run on any type of

operating systems. This feature is inherited from Java on which

HORB is based on programs written in Java runs greatly on

many machines without recompilation. Using the HORB

interoperability feature, we can run a HORB program

spreading over many different kind’s of machines. HORB

architecture consists of several components which include

proxy object, skeleton object, Object Request broker (ORB)

[4].

3. EXPERIMENTAL SETUP
To perform the performance evaluation of middleware

technologies, we setup the client-server environment. The test

environment consists of two computers one acting as client

server and the other acting as server and both are connected via

a 100Mbit network connection. Windows XP was chosen as

machine’s operating system because it can host all the

software’s required for the experimentation. The software’s

that were used in experimentation included Sun JDK 1.5 that

was used to implement CORBA, HORB and ICE

implementations, Dot NET framework Platform was used to

test the TCP based Dot Net Remoting, and last profiler were

also used to get the experimental results relevant to overhead

generation which included ethereal [11], hpjmeter profiler [12]

and CLR Profiler [13].

4. PERFORMANCE EVALUATION AND

COMPARISON
In this section we will report the measured results that we have

gathered during our tests performed on our selected

middleware technologies: ICE, CORBA, HORB and Dot Net

Remoting.

4.1 Testing Methodology
The tests we have performed on the middleware’s were

divided into two main categories. First one was Overhead

generation test category and second one was Round Trip

Latency test category. In each test category we have performed

two tests; first was primitive data type test (which was based

on single data value of specific data type) and the second was

the Array based test (which was based on bulk of data was

used in tests).

In Round trip latency primitive data type test we also checked

the round trip latency of the middleware’s under the scalability

factor. Means how the round trip latency is affected by

increasing number of clients accessing the server machine

simultaneously.

In the next sections we will discuss the results of the tests that

we have conducted.

4.2 Overhead Tests
Basic aim of these tests to check how much extra network

traffic is generated by the middleware technologies to transmit

the actual data over the network. As we have stated earlier that

we have performed two tests on each middleware technology,

one was primitive data type test and the second one was array

based test. Now we will discuss the results of each test one by

one.

4.2.1 Primitive Data Type Test
This test was performed to know the behavior middleware

technologies in terms of overhead generation when different

method were executed on the remote machine with the help of

data values of different data type passed to the remote

methods. In Figure 1 we are presenting the results gathered

from overhead measurements for primitive data types and

empty method call. we can observe the overhead results of all

primitive data types in different distributed computing object

middleware technologies are generating overhead according to

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.11, July 2010

17

there size in bits . Long and double primitive data types are

producing higher overhead as compared to other data types in

all distributed computing object middleware technologies;

because long and double have 64-bit representation in all

distributed computing object middleware technologies. If we

compare overall behavior of our selected middleware

technologies we can observe that Java IDL is producing highest

overhead as compared to other middleware technologies. The

most important reason behind this behavior is that the IIOP

Protocol of CORBA uses Common Data Representation

(CDR). The CDR padding rules unfortunately generates higher

level of network overhead.

 Figure 1. Overhead generation (Primitive Data Types)

On the other hand ICE is showing the better results with

respect to network overhead generation and it is generating

less than 50% of the network overhead as compared to network

overhead generated by CORBA. The reason behind this

behavior is that encoding rules used by ICE are very compact,

which in the result reduce the overhead generation. As we can

observe from the results that HORB is showing better results

than Dot NET Remoting because it doesn’t use any type of

connection multiplexing because connection multiplexing

produces excessive data copying which in result reduces

network overhead but due to encoding rules of HORB behaves

worst as compared to ICE due to which it is showing not the

better results as compared to ICE.

4.2.2 Array based Test
For the array based test, the premises are the same as for the

primitive data type’s test, with the exception that the client

applications are set to different array sizes for the selected

primitive data type. We have selected Double data type for

Array based test because Primitive Data Type Test has shown

us that double primitive data type is showing worst results in

all four middleware technologies as shown in figure 1.

In this test we have evaluated the performance of distributed

computing object middleware technologies on the basis of

different array sizes of double data type. In figure 2 we can

observe the behavior of middleware technologies on the basis

of array passing.

If we compare the measured results in figure 1(Primitive data

type test) and figure 2(Array based test) we can observe that

Dot NET Remoting has taken the position of CORBA in terms

of overhead generation and as graph shows Dot Net Remoting

is generating four times more overhead as compared to ICE

which is showing the best results. Reason behind this behavior

of Dot NET Remoting is its inefficiency of handling large size

data. Therefore as we increase the size of array the Dot NET

Remoting overhead generation also increases as shown in

figure 2.

ICE is showing the best performance than all other distributed

computing object middleware technologies the reason behind

this behavior is that ICE is using more compact encoding

Technique as compared to all other middleware technologies.

Figure 2. Overhead generation (different Array sizes)

4.3 Round Trip Latency Tests
Main Motivation behind these tests to check the round trip

latency in terms of number of milliseconds per call required by

the middleware technology for the complete execution of the

method call. In Primitive Data Type Test we have also checked

the round trip latency on the basis increasing number of

Clients, means how the distributed computing object

middleware technologies give the round trip latency

performance under the load of more than one client. Scalability

is also an important performance metric to check the

performance of middleware technologies.

4.3.1 Primitive Data Type Test

In this test we have send the primitive data type value which

was single double value to check the round trip latency times

of selected middleware technologies. We have tested the

scalability factor of middleware’s with the help of increasing

number of client requests. We can observe from the figure 3

that HORB is showing the best performance as compared to all

other distributed computing object middleware technologies.

As we can observe from the graph in figure 3 that as the

number of clients are increasing the performance difference

between HORB and other middleware technologies is also

increasing. HORB is producing four times less round trip

latency as compared to CORBA which is showing the worst

results. Reason behind this behavior of HORB middleware

technology is that HORB use the system object serializer

which includes ObjectOutputStream and ObjectInputStream.

And ObjectOutputStream does its own buffering.

0 100 200

CORBA

HORB

ICE

Dot NET Remoting

long

char

byte

short

double

int

float

empty

booleanNumber of Bytes Array Size

0

10000

20000

30000

40000

50000

60000

70000

80000

0

1
0

0
0

2
5

0
0

4
0

0
0

5
5

0
0

7
0

0
0

8
5

0
0

1
0

0
0

0

1
1

5
0

0

1
3

0
0

0

1
4

5
0

0

1
6

0
0

0

1
7

5
0

0

1
9

0
0

0

2
1

5
0

0

Dot

NET

Remoti

ng

HORB

ICE

CORBA

B

Y

T

E

S

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.11, July 2010

18

 Figure 3: Round Trip Latency (single data value

passing)

And in result serialization process take less time as compared

to serialization time taken by other middleware’s. On the other

hand Java CORBA is showing worst performance in terms of

Number of milliseconds per call because CORBA uses padding

in the process of CDR, due to which serialization process

slows down. So in result round trip latency of CORBA

becomes worst as compared to all other distributed computing

object middleware’s. ICE is consuming minimum Number of

millisecond per call as compare to Dot NET remoting because

the results we have gathered showed that ICE is consuming

less Time in the process of serialization as compared to Dot

NET remoting. This means that ICE serialization process is

faster than Dot NET Remoting serialization process.

4.3.2 Array based Test

Basic aim of this test is to check the performance in terms

number of round trip latency when user wants to send bulk of

data in terms of array passing. In this test we have used Array

of different sizes of Double data type. From figure 4 we can

clearly observe that Dot NET Remoting is showing the worst

performance in handling of large size data because the

serialization process is taking more time according to the

results we have gathered. It has approximately five times worst

round trip latency as compared to HORB. On the other hand

HORB is producing the best results due to its serialization

process efficiency. ICE is showing the better results as

compare to CORBA and Dot NET remoting.

Figure 4: Round Trip Latency (Array Passing)

5. CONCLUSION
In this paper we have done a detailed performance evaluation

and comparison of important distributed computing object

middleware technologies which include ICE, HORB, Dot NET

Remoting and CORBA on the basis of performance metrics

which includes overhead generation and round trip latency.

These performance metrics have been measured under

different test scenarios.

Overhead tests showed that the overhead bottlenecks appeared

in the distributed computing object middleware technologies

were due to many factors which includes excessive data

copying, less compact encoding and complex encoding rules.

ICE showed the better results as compared to other middleware

technologies for the overhead generation tests for any data type

of any data size. In the case of round trip latency tests we have

found that HORB is producing low round trip latency because

it uses external serializer for the process of serialization. The

results which we have gathered with the help of profiler

showed that HORB serialization Process takes less time as

compared to ICE serialization Process.

From the results we can suggest that for the development of

distributed applications ICE is most efficient middleware as

compared to other middleware technologies in terms of

overhead generation. And for time critical distributed

applications, HORB is the best selection for building time

critical distributed applications.

6. REFERNCES
[1] The Common Object Request Broker: Architecture and

Specification, Revision 2.3: June1999;

www.omg.org/docs/formal/99-10-07.pdf

[2] http://www.cs.rug.nl/~gert/docs/java/guide/idl/jidlUsingC

ORBA.html

[3] Distributed Programming with Ice, Michi Henning, Mark

Spruiell; www.zeroc.com/ice.html

[4] http://horb.aist.go.jp/horb/doc/guide

[5] Microsoft® .NET Remoting, Scott McLean, James Naftel,

Kim Williams, Microsoft Press.

[6] Florian Mircea Boain Aan Rares, RMI VERSUS CORBA:

A MessageTransfer SPeed Comparison, Stidia Univ.

Babes{BOLYAI, INFORMATICA, Volume XLIX,

Number 1, 2004

[7] A Bracho, A. Matteo, Ch. Metzner, A Tanxonomy For

Comparing Distributed Object Technologies; CLEI

Electronic Journal 2 (2), 1999.

[8] Matjaz B. Juric, Ivan Rozman, Alan P. Stevens, Marjan

Hericko, Simon Nash, Java 2 Distributed Object Models

Performance Analysis, Comparison and

Optimization;2000 IEEE

[9] Sanjay P. Ahuja, Renato Quintao, “Performance

Evaluation of Java RMI: A Distributed Object

Architecture for Internet Based Applications”, 8th

International Symposium on Modeling, Analysis and

Simulation of Computer Telecommunication Systems,

August, 2000.
Array Size (Number of data values)

Clients

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

50 20
0

35
0

50
0

65
0

80
0

95
0

11
00

12
50

D ot N ET

R emo t ing

IC E

HOR B

C OR B A

Num-

ber

of

Millisec

onds

0

1
2

3
4

5
6

7
8

9
10

11

12
13

14
15

16
17

18
19

20

1 3 5 7 9 11 13 15 17 19 21 23 25

D o t N ET

R emo t in

g

IC E

HOR B

C OR B A

Time

 in

Milli-

Seco-nds

http://www.omg.org/docs/formal/99-10-07.pdf
http://www.cs.rug.nl/~gert/docs/java/guide/idl/jidlUsingCORBA.html
http://www.cs.rug.nl/~gert/docs/java/guide/idl/jidlUsingCORBA.html
http://www.zeroc.com/ice.html
http://horb.aist.go.jp/horb/doc/guide

