
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

1

An Efficient Web Service Discovery Architecture

Shrabani Mallick, D. S Kushwaha
Dept. of Computer Science & Engineering

Motilal Nehru National Institute of Technology
 Allahabad

ABSTRACT
There is been a continuous effort by the software developers to
reduce cost and time to deliver the software and this has led to
the advancements in service oriented paradigm. Organizations
across all spectra have already deployed their main operations to

the Web, which has brought about a fast growth of various Web
services. This has dramatically increased the need to build a
fundamental infrastructure for efficient deployment and access
of the exponentially growing repository of Web services.
Probably the most important aspect in dynamic web service
access is the web service discovery. The challenge remains in
handling and processing request queries and presenting the
requester the most appropriate set of web service interfaces.

Many approaches and frameworks have been proposed to
discover web services. Some of the approaches assume that the
requests are placed in SOAP compatible formats whereas some
works are based on handling the plain text queries by their
semantics while others focus on key word based query
processing. We have tried to formulate an approach that uses the
Principle of Compositionality of language to derive interface
descriptions and aggregate or filter for their appropriateness.

Going by lexical and syntactic structure of a language, a
skeletally parsed corpus of a written piece of text has been used
to resolve the plain text query. This paper also tries to propose
an architecture based on x-SOA that the organizes the method of
web service discovery in an efficient and structured manner
using a intermediary, requester friendly layer called the Request
Analyzer(abbreviated as RA) between the service provider and
service requester via a service broker. We describe how the RA

facilitates the processing of a plain text request query to finally
being resolved to a most appropriate web service. We propose
an algorithm for a complete cycle of web-service discovery. A
cache based service broker approach has been proposed that
consumes even lesser time towards discovery path. A reputation
based mechanism has also been incorporated for keeping track
of the trustworthiness and type of license of a web service being
used and hence ensuring the authenticity for future use in terms
of their past performances.

Keywords - Web services, Principle of
Compositionality, Request Analyzer (RA), Broker cache,

x-SOA

1. Introduction
Service Oriented Architecture is an architectural paradigm that
is used to build infrastructures enabling those with needs
(consumers) and those with capabilities (providers) to interact
via services across disparate domains of technology and
ownership. Services act as the core facilitator of electronic data
interchanges yet require additional mechanisms in order to
function. Several new trends in the computer industry rely upon

SOA as the enabling foundation. The basic SOA architecture
involves handling service request, service discovery and service

invocation. The success of service invocation depends largely on
efficient analysis of the request query and discovering the most
appropriate set of web service interfaces called as web service
discovery.
Web service discovery is the process of locating, or discovering,
one or more related documents that describe a particular XML
web service using the Web Services Description Language
(WSDL). It is through the discovery process that web service

clients learn that a web service exists and where to find the
XML web service's description document. Three key XML
based standards have been defined to support web service
deployment and use namely SOAP, WSDL and UDDI. SOAP
defines a communication protocol for Web services. WSDL
enables service providers to describe their applications. UDDI
(Universal Description Discovery & Integration) offers a
registry service that allows advertisement and discovery of Web

services. The service consumer or web service client locates
entries in the broker registry using various find operations and
then binds to the service provider in order to invoke one of its
web services. Whichever service the service-consumers need,
they have to take it into the brokers, then bind it with respective
service and then use it. They can access multiple services if the
service provides multiple services. Many approaches and
models have been proposed that describes different

methodologies for efficient discovery of web services using
OWL-S [5], language semantics[3]. Many of them actually don't
talk about a framework for the discovery mechanism [1,3,4,6].
The process of service discovery is not only a step or state but is
actually a process that involves many entities and states. It may
not be necessary that service user or consumer is not
SOAP/XML savvy in that case the discovery of a process
becomes difficult.

There is a growing consensus and significant progress in both
text understanding and spoken language understanding by
investigating those phenomena that occur most centrally in
naturally occurring unconstrained materials and by attempting to
automatically extract information about language from very
large corpora. Such corpora are beginning to serve as important
research tools for investigators in natural language processing
(NLP), speech recognition, and integrated spoken language
systems, as well as in theoretical linguistics.
We have used a lightweight NLP approach by parsing the
request query into constituent parts of speech wherein the verbs
are used to derive the interface names and the set of identified
interface names are analyzed against the nouns and adjectives
for their appropriateness. The Request Anlayzer in between the
Service Requester and Broker is being introduced that will
offload the request pre-processing functionalities of the broker.
The consumer can raise its request in plain text concealing the

fact that in what form it will be published. The RA will act as an
intermediary between the consumer and brokering agent.

2. Related Work
A lot of hype around web services and equating them to
software as a service has motivated many works in this field. In

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

2

Service Broker

Broker Cache

Service Requester Service Provider

Request Analyzer

Authentication & Service

type

1/1*

2/2* 3 5*

3*

4*

4 6*

5/7*

6/8*

Figure 1: Proposed Architecture (LWSDM)

[1] it is proposed that Dynamic web Service invocations and
hence selection are not independent operations but rather
composite in nature and impose some form of ordering thus
proposes that reliability is an issue for a composite web service
invocation. It uses a FSM approach to draw the order among the
operations in a given WS. The work mainly addresses the

reliability issue of a composite web service selection, given a set
of available web services.
In [2] a three layer Service brokering architecture for an
underlying transparent web service access to the service client is
presented. An Extended SOA (xSOA) architecture to support
capabilities like service orchestration, “intelligent” routing,
provisioning, and service management. A nice description of
Metadata exchange for discovery of service description directly

from the service is explored. An extension of this architecture is
presented in our work.
In [3] semantics based request query analysis using a tree-form
of data structure to discover the web services by assigning
weight values to each node of the tree is discussed. Based on the
weights assigned, the semantic similarity is computed between
web service requested and web service registered. It cites a
methodology for identifying the most similar web services but
not the most appropriate ones. Moreover the quality of web

services and the service level agreement remains an area of
concern for the requester.
In [4] a keyword based approach is implemented triggered by
the partitioning approach that is used in database design. The
idea is used to cluster relevant and irrelevant services according
to the user query which in turn helps the user to relieve itself
from the burden of selecting web services from a huge set. The
key approach is to cluster the services into a group of learned

latent variables which is achieved by computing the probability.
But plain keyword based search lack semantics and there is an
overhead of high communication cost.
In [5] a web service discovery model, based on abstract and
lightweight semantic web services descriptions, using the
Service Profile ontology of OWL-S is focused. Goal is to
determine an initial set of candidate web services for a specific
request which can then be used for fine-grained discovery

approaches. A web service matchmaking algorithm has been
proposed extending object-based matching techniques allowing
the retrieval of web services based on subsumption relationships
and structural information of OWL ontologies the exploitation
of web services classification in Profile taxonomies, performing
domain-dependent discovery. No proper structured discovery
framework is defined.
In [6] a neural network based approach is used that is best

known for their ability for generalization. A novel neural
network model is proposed that is used for classification of most
suitable web services.
The classification strategy [9] is based on Quality of Web
Services (QWS) parameters. The limitation in this work is that
Suitability classification based only on the QWS parameters of
web services might not suffice to users’ exact requirements.
In [7] an attempt to make web services available to a mobile
client asynchronously that are resource poor has been proposed

so that it need not wait while its request is being processed and
returned. An asynchronous mode of call for the mobile users is
beneficial so that synchronicity does not become a barrier to
them in accessing web services. Since reaching a mobile agent
through HTTP is problematic, SMS protocol is used for sending
back the SOAP response. But the quality of service, trust and
security aspect is not addressed. The discovery is again based on
keyword match approach.

In [8] Multi-agent based approach on semantic web service
discovery and ontology management. An approach for semantic
web service discovery and propagation based on semantic web
services and FIPA multi agents is proposed. The key idea is to
expose the semantic interoperability of web service provider and
agent. Based on the analysis of user request an ontology

management is also proposed. Nothing has been specifically
talked about the type and nature of user request. Moreover it
requires the agent framework to be registered as an agent service
in the FIPA Directory. No methodology has been proposed for
tracking and keeping the trustworthiness of the Semantic web
services.
Most of the work done by the previous researchers have tried to
address the problem of web service discovery problem through

approaches based on key words, semantics, neural networks,
ordered service search, agent based framework etc. But who will
be responsible for the preliminary processing of a service
requests that happen before it is being handovered to the service
broker remains a question. Many of them assume that the user is
aware of the web service interfaces names, which is not always
true. An organized framework which contains a layer
exclusively for processing a simple plain text query based on
their linguistic compositional semantics and getting back the

most appropriate set of web services is what is focused here.

3. Proposed Work
Our proposed architectural framework is inspired by x-SOA for
the web service discovery mechanism based on the linguistic
compositional semantics of a request query. The main highlight

of our framework is the intermediate layer the Request Analyzer
(RA) which provides interoperability between the service
requester and the service broker. We also propose an algorithm
for the various stages involved in the process of service
discovery.

The subsequent section discusses the architecture, algorithm and
the interaction issues of the proposed work.

3.1. Architecture
The architectural framework is an enhancement over the

existing 3-tier SOA architecture [2] consisting of: -

 Service Requester

 Request Analyzer

 Service Broker

 Service Provider

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

3

NLT
PK: Name_id
Service_name

ILT
FK: Name_id
Parameter_array

AST
FK: Name_id
Name of Provider
QoS_parameters
Service Type

Figure 2: The Relationship diagram

The new layer RA sits on top of a service requester that
facilitates the preprocessing activities of a request query before
it is being handed over to the broker for discovery. The roles
and functionalities of the Request Analyzer (RA) can be
enumerated as follows:

 The RA shall act as an intermediary between the service

broker and the service requester.

 The RA will accept the request from the Requester and

parse the request query string into the lexical components-
verbs, noun, adjectives and adverbs.

 The RA will generate different data structures for the

constituent verbs, nouns and adjectives+adverbs.

 It follows the Principle of Compositionality (that states

that the meaning of a complex expression is determined by
the meanings of its constituent expressions and the rules
used to combine them)

 The RA will first forward the verb queue to the service
broker which will in turn look up its cache or broadcast on
the cloud whichever is applicable.

 On getting back the list of web service names (WSNs) from
the brokering agent the RA will compare the WSNs with

nouns and adjectives+adverbs that will serve as the
parameters for context based and use-based matching.

 After comparison the most appropriate web service name

will be returned back to the Requester.

 The Requester then invokes the interface.

 In addition, the RA will have a feedback loop from the
Requester that will eventually be used to maintain an
authentication database to know the trustworthiness of the

web services being used and a service type info indicating
their license agreement viz – prototype, free, pay per use or
pay per period. A client might finally bind and acquire
ownership of a web service.

3.2. Proposed Algorithm
The algorithm describes various phases for a complete cycle of a
web service discovery which is interlaced on the proposed
framework. A request query raised will serve as the input, it will
be analyzed for its linguistic composition, the verbs will be
looked up in the broker cache and if matching interface names
are not found then they will be published on the web. The

similarity and appropriateness of the matching service names
will be calculated based on the nouns and adjectives and
appropriate set of web services will be returned. Hence the
overall algorithm can be broken down into 5 phases-

 Raise Request

 Analyze Request

 Lookup

 Publish

 Return Service

Algorithm: Layered Web Service Delivery Mechanism

(LWSDM)
input: Request text

output: Appropriate set of web services

(i) Raise Request
Let R be the request raised
R={w} set of words

(ii) Analyze Request
 [Let V be the set of verbs, N be the set of Nouns, A
be the set of adjectives & adverbs]

count=0;

for each word w in R

 //store the verbs

 //store the nouns

 //store the adjectives & adverbs

 else discard;

(iii) Look up
 The Broker cache has two look table

 NLT (The name Look Up Table)

 NLT{name_id} // containing the web service names
(WSNs)

 ILT (The Interface Look Up Table)

ILT{name_id, parameter_list} // A mapping of the WSNs to
their parameters

for(i=1; i<=count; i++)
 for each entry in NLT

 //the matching WSN

 else

 //names not found in cacheNLT

//for Broadcast

(iv) Publish
while B[i] has entries

publish(B[i]);

return (list) //the list of matching service names
returned by the Provider

(v) Return Service
for all name_id in the list

calculate similarity based on the set of nouns Q2
and set of adjectives Q3 and the parameter_list of
ILT

return(service); //the set of most appropriate WSN to the
Requester

The Broker cache shall have as indicated in the algorithm two
look-up tables namely-

 NLT- The name Look-up table

 ILT-The Interface Look-up table
There will be a one-to-one mapping between the tables see
Figure 2. The AST (Authentication and Service Type) database
will be with the Request Analyzer that will maintain the

reputation and service type information (viz. prototype, pay per
use or pay per period) of the web services used. The requester
may finally bind a service by acquiring ownership of it. The
cache look-up tables will be updated periodically and AST shall
be updated based on the feedback loops.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

4

Service Requester Request Analyzer Service Broker Service Provider

Requests a service
Analyze Request

Parse-verbs/nouns/adjectives

Forwards the verbs

Look up cache

Return list of services

Compare with nouns
Compare with adjectives

Return subset of services

Not in cache multicasts

Returns list of

probable web services

Caches

Forwards the list

Compare with nouns

Compare with adjectives

Return subset of services

Figure 3: Interaction between various layers of architecture (discovery)

3.3. Interaction between layers
The Request analyzer will be built as a middleware on a client
machine. Figure 3 shows the interaction diagram between the
various entities in the framework. In addition to the activities
mentioned in the diagram, a reputation based feedback system
shall be implemented by the Request Analyzer to calculate the
trust values of the web services. The reputation information
will be based on the past performance of a selected web service
that can be used as an inherent aspect in determining its future
behavior.

The selected web services can be weighted against their trust
values before usage to reduce the overhead of rejecting a web

service after using it. Common QoS metrics for determining the
reputation may be ABA (abandonment rate) that is the
percentage of calls abandoned while waiting to be answered,
ASA (average speed to answer) means average time it takes for
a call to b answered by the service desk, TSF (time service
factor) implies percentage of calls answered within a definite

timeframe, FCR(first call resolution) states percentage of
incoming calls that can be resolved without the use of a callback
or without having the caller callback to finish resolving the case
and TAT (Turn around time) is the time taken to complete a
certain task.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

5

4. Comparison of our framework with other

agent based models

Table 1. No. of Message exchanges in different

frameworks

Framework No. of Message

Exchanges

LWSDM-with cache 8

LWSDM without cache 6

FIPA based Multi-agent

framework

13

SOA 3-tier architecture 6

A: LWSDM with cache
B : LWDM without cache
C: FIPA based Multi-agent framework
D: SOA 3-tier architecture

The plot shows that our architecture reduces the no. of message
exchanges to approx 60% from C. Also, even though we have
added a new layer for the pre-processing of web requests to the
basic SOA 3-tier architecture yet we are able to achieve equal or
nearly equal message exchanges to the basic SOA 3-tier
architecture, thereby not creating a huge impact on the message
exchange cost and network traffic.

5. Conclusion and Future Work
The service consumer is an application, service, or some other
software module that requires a service. It initiates the locating
of the service in the registry, binding to the service over a
transport link, and executing the service function. This
architecture will help to efficiently discover a set of most

appropriate service for the service consumer. Exploiting the
linguistic semantics instead of plain key word based search will
make the selection of web services more appropriate. The cache
based approach will enable an economic bound on the time and
cost of a fresh web search. In addition it will also serve as a
primary look up for the RA for building the trust database. The
Reputation and service type info shall serve as an aid for the
requester to select a suitable and trustworthy web service in

future.. The architecture helps to reduce the burden of a novice
requester of placing the requests in XML or SOAP formats and
also offloads the message handling and pre-processing
functionalities of the broker. The open source tool SharpNLP is
used to extract parts of speech of the request query. It provides a
collection of Natural Language Processing tools that provides
facilities like a sentence splitter, a tokenizer, a parts of speech
tagger, a parser. It also provides an interface to the WordNet

lexical database. The data stores can be implemented using any
RDBMS. The scope of future work remains in presenting a
complete implementation of the proposed work and enhancing
the strength in the trust aspects of the used web services.

6. References
[1] San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, Cheng-

Hung Chen, On Composing a Reliable Composite Web
Service: A Study of Dynamic Web Service Selection 2007
IEEE International conference on Web Services

[2] Mike P. Papazoglou, Willem-Jan van den Heuvel Service

Oriented Architectures: approaches, technologies and
research Issues, The VLDB Journal (2007), Springer-
Verlag Publication

[3] Wuling Ren, Zhujun Xu, A New Web Service Discovery

Method Based on Semantic, IEEE 2008 Workshop on
Power Electronics and Intelligent Transportation System

[4] Jiangang Ma, Yanchun Zhang, Jing He, Efficiently finding
Web Services Using a Clustering Semantic Approach,
CSSSIA 2008, Copyright ACM

[5] Georgios Meditskos and Nick Bassiliades, Structural and

Role-Oriented Web Service Discovery with Taxonomies in
OWL-S, IEEE Journal Publication, Apr 2009

[6] Eyhab Al-Masri and Qusay H. Mahmoud, Discovering the
Best Web Service: A Neural Network-based Solution,
IEEE Conference on Systems, Man and Cybernetics,

October 2009

[7] Ranjit Singh, Shakti Mishra, Dr. D. S Kushwaha, An
Efficient Asynchronous Mobile Web Service Framework,
December 2009 SIGSOFT Software Engineering Notes ,
Volume 34 Issue 6, Publisher ACM

[8] Azadeh Ghari Neiat, Mehran Mohsenzadeh, Sajjad Haj

Shavalady, Amir Masoud Rahmani, A new approach for
Semantic Web Services Discovery and Propagation based
on Agents, April 2009 IEEE International Conference on
Networking and Services

[9] Che Shin Yeo and Rajkumar Buyya, Service Level

Agreement based Allocation of Cluster Resources:
Handling Penalty to Enhance Utility, 2005, Cluster
Computing, IEEE International Conference

[10] Sun Microsystems Utility Computing,
http://www.sun.com/service/utility, May 2005

A B C D

0

2

4

6

8

10

12

14

N
o
.

o
f

M
es

sa
g
e

E
x
ch

an
g
es

Agent Based Frameworks

Figure 4: Comparison of no. of message
exchanges in various agent based frameworks

http://www.sun.com/service/utility

