
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

39

From Data Handling to Presentation of Data:

Encapsulating the App.config in .NET Applications

through Design Patterns

Swapna S Kolhatkar
Assistant Professor,

MMCOE,

Karvenagar, Pune 411052

ABSTRACT

In todays world, most of the business has become dynamic

and design patterns provide the necessary solutions to recurring

design problems. The .NET environment provides for quick

application building as well as services. This article is about

studying the .NET based application development and the

implementation of the design patterns.

The article further shows how certain database related

processes can be considered as regular patterns in order to

simplify the application development and project management

and concentrate more on logic and presentation layer than the

actual handling of data. We look into the possibility of

developing a service for processes which can be treated as

routine. The overall discussion is divided into 3 parts: -

introduction to design patterns and the .NET environment.

Second part discusses the common problems of data handling

and data operations. Next, we see the possibility of a pattern

or service to manage any type of data for any data files and

lastly, the conclusions, keeping in mind the advantages and

disadvantages of such an application.

General Terms

This article is concerned with the usage of few design patterns to

understand the application development in .NET applications.

Keywords

Design Patterns, .NET Applications, app.config, application

settings, inserting values in database, service, business logic.

1. INTRODUCTION

1.1 Design Patterns
Design Patterns are commonly defined as time-tested

solutions to recurring design problems [Ref 1, 2]. There are 23

design patterns proposed by Erich Gamma, Richard Helm, Ralph

Johnson and John Vlissides (collectively known as the Gang of

Four, or GoF for short. The present Software Engineering

scenario has evolved and now got introduced to many patterns

like .Net patterns, Sun’s J2EE patterns, game design

patterns, architectural patterns, JSP patterns, VB patterns,

implementation patterns, analysis patterns, .Net patterns etc

which discuss problems and their solutions and thus benefit the

process of software design and development.

1.2 .NET Environment
To understand the .NET Environment [Ref 4] according to our

topic of interest, let us consider the following points ie from 1 to

4 as shown in fig 1.

Fig 1. .NET Solution Explorer

1.2.1 Solution Explorer
In case of .NET Environment, there is a concept of solution under

which we can have different projects which are classified as

per their purpose. Generally, the business logic is put under

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

40

one project and user interface in some other project so that it

implements loose coupling.

1.2.2 Project Explorer
Within a project, there can be few given files which are either

C#.NET, VB.NET or ASP.NET based. Other files like xml,

config etc can also be put under a project.

1.2.3 Language Selection
For web based applications, organizations use either VB or C# as

the language with ASP.Net.

1.2.4 Database Connectivity
All the situations described above will require database

connectivity considering an average case. The application

configuration ie app.config file maintains the database

connection string as given in the code below [Ref 6,11]. A

developer has to get the string settings defined in the file and

carry out the database related operations. Sample contents of

app.config file are as shown below.

App.config file :

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key = "Connection_PIS" value = "workstation

id=HP11841122072; packet size=4096; integrated

security=SSPI; data source= HP11841122072; persist security

info=False; initial catalog=DB_PIS">

</add>

</appSettings>

</configuration>

2. PROBLEMS IN THE ABOVE

SITUATION

2.1 Establishing Connection
The developer has to make use of some common statements as

mentioned below in order to carry out the database related

operations [Ref 7, 12].

{

Get connection string …….

Create a command object ………

Open connection ……..

Execute the command ……..

Get confirmation of operation ………

Close the connection ………….

}

2.2 Executing DML Statements
For a given application development, the nature of

Database Manipulation Language (DML) related statements is

repetitive in the sense that these statements are mostly about

insert, update, delete and select.

2.3 Query Builders
For simple queries, the developer hardly makes use of the query

builders.

2.4 Data Insertion Errors
Data manipulation requires the data in proper format as per the

database design. Consider for example, special characters: names

or addresses can have a single quote character as data. This

character and the SQL statements, cause incorrect data to get

inserted into the database. Functions are available for taking

care of such scenario, but they need to be explicitly called.

2.5 Incorrect Data Values
The incidence of committing a syntax error while

writing the data manipulation language is high. Values

may not be written as per the specifications. This leads to a

considerable amount of time being lost in the coding and

debugging process.

The end result that is seen:

“Focus gets shifted from business or presentation to the

handling of data.”

3. POSSIBILITY OF A DESIGN PATTERN /

SERVICE
After the introduction of Object Oriented concepts, systems were

developed keeping in mind not only the data and its behavior but

also laying stress on the object oriented analysis and design

methodologies. Currently, there is a need to have a pattern or a

service based approach to most of the software tools and

applications to introduce loose coupling and ease of maintenance.

In the above mentioned problems related to .NET and database

related operations, there can be a possibility of a pattern or a

service which handles the data. This service can be thought of

as an entity above DAL (Data Access Layer), to relieve the

developer of syntax errors and the data format errors. The service

is as follows:

Service:

public bool insertValues(string []ColumnName, Type []

ColumnType, object [] ColumnValues, string TableName)

{

try

{

strCon = openConnection();

con = new SqlConnection(strCon);

con.Open();

if((ColumnName.Length==ColumnType.Length)&&

(ColumnName.Length == ColumnValues.Length))

{

string strCmd = "insert into " + TableName + "(";

for (int i = 0; i < ColumnName.Length; i++)

{

strCmd += ColumnName[i] + ",";

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

41

}//end of for

strCmd = strCmd.Remove(strCmd.Length-1,1);

strCmd += ") values (";

for (int i = 0; i < ColumnType.Length; i++)

{

if(ColumnType[i].ToString() == "System.String")

{

//code goes here

}

else

{

//code goes her

}

}//end of for

strCmd += "'" + ColumnValues[i].ToString() + "',";

strCmd += ColumnValues[i].ToString() + ",";

strCmd = strCmd.Remove(strCmd.Length-1,1) + ")";

Console.WriteLine(strCmd);

cmd = new SqlCommand(strCmd, con);

cmd.ExecuteNonQuery();

con.Close();

}//end of if else

{

throw new Exception("Number of Arguments do not match.");

}//end of else

}//end of try

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}//end of catch return true;

}//end of function insertValues

Amongst the basic categories of design patterns like

structural, behavioral and creational, there are 23 design

patterns which are used to provide the developer to think more

on presentation than technical matters. Still, there exists a

possibility of enhancing the patterns to move further towards

business operations and presentation rather than the technical

complexities.

3.1 Design Patterns Used
There are 4 design patterns that are of interest in this

case. They are : Adapter, Command, Façade and Iterator [Ref

1,2,5].

3.2 Need for a Service
Combining the features of above mentioned patterns, there

could be a possibility of a more advanced pattern/service

which concentrates more on business operations than data.

Suppose we call this service as the DMLOperation service or

Transaction Service. The functionality of this service is to

encapsulate the basic design patterns for handling of data.

3.3 Abstract Service
The proposed Transaction Service will be abstract by nature in

the sense that the implementation will lie purely with the

developer. The implementation can be done by calling the public

method of the mentioned service.

3.4 App.config Encapsulated
The Transaction Service will have its own class definition in a

different project which will get referenced from the developer’s

project so as to ensure that the developer is not bothered

with the app.config file and SQL statements.

This approach can handle situations related to insert, delete,

select (by using the iterator pattern) and update (by mentioning

the ‘where’ condition). The command pattern can be used to

connect ADO.Net to the Database and the façade pattern will

ensure that right data is getting handled.

There could be a few drawbacks to this line of thought.

3.5 Memory Overhead
For developing any new application, the Transaction Service

project needs to be referenced always which may prove a

deterrent for applications that rely heavily on memory

availability.

3.6 Performance of Database Extensive

Applications
Referencing the Transaction Pattern in database extensive

applications needs to be seen. Its efficiency in such a scenario

needs to be thoroughly looked into.

3.7 Network Traffic
In case of n tier architecture, where there are different servers as

per the structure, communication on the network with respect

to ADO.NET also needs to be investigated.

4. CONCLUSION
The application of design patterns in the application development

is not new but will continue to evolve. Based on previous

work, the developments will lead us to the applicability of

such patterns in .NET as well as many other software tools. We

can say that there could be a possibility of a new service design

to handle such recurring database related operations.

The management of project and its technical details need to

be simplified for the experienced as well as inexperienced

programmers. And when most of the focus desired by the IT

businesses is on the presentation and business components,

the above discussion of encapsulating the application

configuration file by providing a new service, will benefit the

business.

5. ACKNOWLEDGMENTS
I am thankful to the experts who have contributed towards

development of the design patterns and continue to be more

evolving.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

42

6. REFERENCES
[1] Design Patterns in C# and VB.NET - Gang of Four (GOF)

www.dofactory.com/Patterns/Patterns.aspx.

[2] Design Patterns for .Net - www.designpatternsfor.net

[3] ieeexplore.ieee.org/iel4/5805/15482/00713578.pdf

[4] Enterprise Solution Patterns Using Microsoft .NET

msdn.microsoft.com/en-us/library/ms998469.

[5] Structural Design Patterns and .NET Framework 2.0

whitepapers.techrepublic.com.com

[6] .Net Architecture and Design Pattern-

www.theserverside.net

[7] Design Patterns: From Analysis to Implementation

www.netobjectives.com/download/dpmatrix.pdf

[8] Design pattern Resources TechRepublic

search.techrepublic.com.com/search/design+pattern.html

[9] uidesign.net white papers index-

www.uidesign.net/newpapers_index.html

[10] portal.acm.org/citation.cfm?id=1008038

[11] Storing database connection settings in .NET

articles.techrepublic.com.com/5100-10878_11-5779516

[12] CodeGuru: Create a Microsoft Access Database Using

ADOX and Visual Studio

www.codeguru.com/vb/gen/vb_database/microsoftaccess/art

icle.php/c5149/

