
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

32

Client Level Framework for Parallel
Downloading of

Large File Systems

 G.Narasinga Rao Srinivasan Nagaraj
 Asst.Professor Dept.of CSE Asst.Professor Dept.of CSE
 GMR Institute of Technology GMR Institute of Technology
 RAJAM-532127, A.P, India. RAJAM-532127 .AP.India.

 Srikakulam Dist Srikakulam Dist

ABSTRACT

In this paper, Mirror sites enable client requests

to be serviced by any of a number of servers,
reducing load at individual servers and dispersing
network load. Typically a client requests service
from a single mirror site. We suggest a way for
the client to access a file from multiple mirror
sites in parallel to speed up the download. We
have developed a technique that can deliver
dramatic speedups as well as fault tolerance. Our
approach doesn‟t require a feedback from the

client to the servers, thus speeding up the process
even more.

Keywords

Parallel downloading, Large file system, FEC
Codes.

1. INTRODUCTION

Downloading a large file from a heavily loaded
server or through a highly congested link can be a
painfully slow experience. The many proposed

solutions for addressing these problems share a
common theme: improve performance at the
bottleneck. For modem users, there is not much
that can be done: to improve downloading time
they must either upgrade to higher baud rates or
settle for receiving distilled lower bandwidth
versions of the content they wish to access.
However even today, not all modems run at full

speed due to network and servers loads, and
much can be done to solve this problem as well.
For most of us, for whom the last mile is not the
bottleneck, there are a wide variety of techniques
to improve performance in the network and at the

server. The most relevant to
our discussion is the use of mirror sites. The
mirroring approach deploys multiple servers
storing the same data at geographically
distributed locations, in an effort to both
distribute the load of requests across servers and
to make network connections shorter in length,
thereby reducing network traffic. A limitation of
current mirroring technology is that the user must

choose a single mirror site from which to access
data. While the choice of server may appear
obvious when the number of mirror sites is small,
some works indicate that the obvious choice is
not always the best choice and dramatic
performance improvements can result from more
careful selection.

Our first objective is to enable users to
download data from multiple mirror sites in
parallel in order to reduce downloading time.
This technique not only has the potential to
improve performance substantially over a single
server approach, but can eliminate the need for a
complex selection process. We do so, by using
forward error correction codes, as described

below.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

33

2. FORWARD ERROR

CORRECTION CODES

FEC techniques are generally based on the use of
error detection and correction codes. These codes
have been studied for a long time and are widely

used in many fields of information processing,
particularly in telecommunications systems. In
the context of computer communications, error
detection is generally provided by the lower
protocol layers, which use checksums (such as
CRC) to discard corrupted packets.FEC codes
were designed to allow recovery of the original
data from the packets, which have arrived. FEC

codes can be also extended to allow reception of
data from multiple sources.As mentioned above,
Forward Error Correction (FEC) codes allow a
recovery of data sent over an unreliable channel,
where data packets can be received incorrectly or
even lost. Sending a redundant data, which is sent
along with the original data, does this. If the size
of our data is k packets, FEC codes encode the

data in such manner that the original data can be
reconstructed from any k packets received.
Multiple servers can send these packets to the
receiver. A receiver could gather an encoded file
in parallel, from multiple sources .As soon as any
k packets arrive from any combination of the
sources, the original file can be reconstructed.

The scenario of a file download process should

be as follows:
The user wants to download a file, either via

a hyperlink on a web page, or directly (the user
has the URL). The user then clicks on the
hyperlink, or enters the URL in the browser
window. This takes the user to an HTML page,
containing a Java applet, which is responsible to
the download process. The applet downloads the

file, saves it to user‟s hard drive, and optionally
opens it in the browser window (if the browser
can display this media type).

3. OUR SYSTEM CONSISTS OF

SEVERAL PARTS
A distribution center, residing on a dedicated
machine (either as a server or as a local

application). This application will receive the file
from the file creator; encode it using the FEC
algorithm producing „s‟ encoded files, when „s‟ is
the number of data servers (described below).
The original file is divided into several chunks,

and each chunk is encoded separately.
The distribution application will upload the
encoded chunks to the data servers. Each server
will hold a full image of the original file, so the
file can be downloaded even when there is only
one data server available.
The distribution center can work with up to 8 file
servers (imposed by the limitations of the current

implementation of our FEC algorithm).
Data servers, then hold the encoded file chunks.
The client will download the file from these
servers using the HTTP protocol.The client is a
Java applet, which manages the download
process. The applet will initially download the
data server list, containing the locations of all
data chunks. Then, it will download and decode

the chunks in the original chunk order. While the
first chunk is being decoded, the second chunk
will be downloaded in parallel, and so on.
Finally, all the chunks are combined to reproduce
the original file. The whole process is completely
transparent to the user, who will only see a
progress bar and a completion notification.

The distribution server
The distribution server will allow the

content distributor to encode the content and
upload it to a predefined group of servers, which
will be specified as a configuration file. Each
chunk of the encoded data will be stored in a
separate file, since this will make the download
manager implementation simpler. Also not all
servers allow downloading from an arbitrary

position in the file (e.g. some proxy servers don‟t
support it). The names of the encoded files will
be determined by the application based on the
original file name. As mentioned above, there is a
limit of 8 servers at this moment.

The distribution application will also

prepare the HTML page that contains the client

applet, which will manage the download process
on the client machine. The HTML file will also
have an embedded data regarding the locations of
the data (the list of the mirror sites). This data

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

34

will be passed to the applet when the applet is
activated.

The download manager
The user can start the file download either by

following a link from a web page or by entering
the URL of the download manager (the HTML
page). When the user initializes the download
process (by either method) it receives the HTML
page, which was prepared (customized) by the
distribution application for this particular file.

The HTML page contains a Java applet,
which is the download manager and is described

below. First of all, the Java applet will parse the
HTML page and extract the locations of the
mirror sites. Then, we open HTTP connections to
all the mirror sites, and start downloading the
first chunk of data from all mirror sites in
parallel. Now we wait until the download of the
first chunk finishes, and then we start
downloading the second chunk and decoding the

first chunk in parallel. When the last chunk
finishes downloading the user must wait until the
decoding of the last chunk is over. This is the
only time when the user actually feels the price of
the decoding process. We try to minimize this
time by choosing a smaller chunk size, although
it is negligible when using fast CPUs and JVMs
that support Just In Time compiling (JIT). When

the process finishes the downloaded file will be
saved to the disk.

How a chunk is being downloaded?
We receive the data from all the servers and

as soon as we have enough data for the chunk we
abort all existing connections. In order to avoid
unnecessary packets to be sent over the network,
we close all but the fastest connections when the

amount of data we have already received is close
enough to the chunk size. We close the last
connection as soon as the last byte needed for the
decoding arrives. However due to the TCP
limitations more unnecessary data can be
received (due to a large window size or fast
network).

Since the opening of a new connection to a
remote server (the three way handshake and
sending and processing the request header), we
open the connections for the next chunk before

the current chunk is completely downloaded .The
amount of data sent during the setup is not big
and we save precious time which otherwise
would be wasted.If a connection to one of the
servers fails, we try to open another connection to

that server, and resume downloading from the
position we stopped. If resume is not available,
we might consider starting from the beginning, or
give up using this server for the current chunk,
depending on the amount of data we have already
downloaded from this server, and the download
progress on other connections.

The data format
Our basic unit of work is a packet (1KB). A

strip is a sequence of packets, in our case, 32
packets. Therefore, the size of a strip is 32Kb. 32
strips are combined to form a chunk (1Mb).
Strips are the basic units of the
encoding/decoding process, while chunks are the
basic units of the download process. We store

each chunk of encoded data in a separate file.
According to our FEC algorithm, each server
must hold a complete (encoded) copy of data.
Therefore the total size of the encoded data is the
size of the original data multiplied by the number
of the data servers.

The encoding procedure

In the encoding procedure we take a file, and split
it to chunks, and then split the chunks to strips.
Let‟s focus on a single chunk. Let „n‟ be the
number of servers. The encoding algorithm
produces „n‟ encoded strips out of one original
strip. Each encoded strip will go to a different
server. Then for each server, we collect all its
strips and store them in an interleaved format
described above. For each packet we must know

few things for the decoding procedure that will
occur at the client:

1. The strip it belongs to.
2. Its index in the strip.
3. The server on which the strip resides.

We don‟t have to specify these details explicitly
for each packet. The client knows exactly, which
server the packet came from, and the strip

number can be calculated from the relative
position of the packet in the chunk.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

35

The decoding procedure
The decoding procedure reconstructs a strip

from a collection of packets belonging to that
strip. As we mentioned above, if the size of a

strip is „k‟ packets, then any „k‟ packets from any
server in any order can be used to reconstruct the
strip (of course only if they belong to that strip).
After all strips are decoded, we combine them
back into a chunk, and append the chunk to the
target file. When the last chunk is written, the
download process is complete.

The FEC Driver API
This API provides an application, the ability to
encode and decode data using the Forward Error
Correction (FEC) Code implementation based on
the Vandermounde matrices. We have
implemented the following classes:

FEC_Math:

This class includes various math functions
necessary for handling matrix algebra over prime
fields, which is necessary to speed up the work of
the FEC core routines.

FEC:
This class contains the core FEC
encoding/decoding routines. An object of this

class can be created based on the following
parameters: the number of packets in the strip (k)
and the number of encoded packets (which in our
case is a multiple of k).

FEC_Driver:

This class implements the required API (the
encode and the decode routines), and provides

our implementation constants – the packet size,
the strips size and the chunk size. It also provides
an interface to asynchronously query the FEC
driver about its progress on encoding and
decoding operations.

Design Description

FEC API: Using the API in order to encode the
chunks.

Parser: Parsing the server configuration file.

ParserHtml Preparing the html file, this will
consist of the download manager applet.

FTP: A class which gets a specific server
configuration and uploads a chunk to this specific
server using FTP. The class extends the Thread
class and can be run in parallel with other tasks.

GuiFrame: The main frame of the application.
This frame provides two file dialog boxes

enabling the user to choose the file to distribute,
and the server configuration file. It also provides
a button that actually starts the procedure and a
progress bar and a status line informing the user
about the progress of the procedure. When the
“start” button is pressed the a thread that will do
all the encoding and uploading procedure is
started.

Encode File: This classs (run as a thread) is
responsible for the distribution process. It gets the
file to encode and the server configuration file
from the main frame (GuiFrame).

It first extracts the server information
(Parser) from the server configuration file. When
start is pressed in the GuiFrame the thread starts

to process the source file chunk after chunk.
After encoding (using the FEC API), it opens
threads (FTP) to handle the uploading procedure
to the servers.

4. SIMULATION RESULTS

Below there are the results of our simulation. In

our simulation we have used 3 servers at
Geocities, Acme city and Fortune city which
provide free homepages for the public. We have
uploaded the encoded file to these servers and
then downloaded the file from these servers using
our demonstration applet.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

36

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

37

If we sum the average download rate of the single
servers we get 24.97334KB/s which are close to
the data transfer rate we receive in our
application. The gain rates we achive in
throughput are 712% compared to Acme city,

389% compared to Geocities and 81% compared
to Fortune City.

5. BENEFITS OF OUR PAPER

In this section we will discuss the benefits of
using our algorithm. The question why use our
algorithm will probably arise since there are other
ways to download data from multiple mirror

sites. The most simple of them is to try
downloading the file from one of the servers. If
the download is slow, stop that download and try
another (hopefully) faster mirror site. Some
programs such as Get Right try to figure out
which server has the highest chances to be fast
and download from that server. However, if the
program is wrong we are stuck with a slow

server. Another approach would be to split the
file into chunks and download every chunk from
another server. The problem with this approach is
that if one of the servers is slow or down, we
cannot receive the file. Our approach eliminates
the difficulties of the methods described above.
The main advantages of our approach are:

1. Using our project we gain better throughput at
the client side, thus gaining more speed than
downloading from a single site. However this is
true only when the bottleneck is at the server side
and the client has available bandwidth that is not
used due to the bottleneck at the server side.
While using our algorithm we use more of the
available bandwidth (since we open connections
to several mirror sites) and therefore improving

throughput when possible.

2. Fault tolerance – using our algorithm allows
the user to download a file even if all the servers
but one is down. As explained before every
server holds a complete image of the file.
Connecting to that sever will accomplish the task
of downloading the file. (This is also true for the

scenario when the server crashes during the
download process). Using the methods described
above when a server fails can result in a lost
download if the servers do not support resuming.

3. Trying to minimize the amount of unnecessary
data sent on the network. When using one of the
methods above, if we choose not to use a server
all the data we have received from that server is
lost. In our case, even if a single kilobyte was

received from the server it can be used. Of course
this means that servers send less data, and
therefore the load on the server‟s decrease that in
turn reduces the chances of server crashing down.

4. The download is highly parallel – All the time
we receive data from servers. Using the above
methods is likely to end in waiting for a single

server to send its part of data. Some connection
can be very fast but the slowest connection will
detain the whole downloading process. Using our
algorithm does not have this effect since we
download from all the servers all the time, until
we have enough data to complete the download.
Of course fast servers will contribute more to the
downloaded file. No time wasted on waiting for

“slow” servers.

6. CONCLUSION

In this work we have introduced a new way to
speed up downloads from multiple mirror sites

which dynamically adjust to the network and
server loads. We have implemented the Forward
Error Correcting Code from Luigi in the Java
language and have built a Java applet which
demonstrates our download technique. The
impressive results that we got show that this
technique has a high potential in achieving more
speed from the current network infrastructure.

Parallel downloading (PD) has been adopted
recently in some Internet file downloading
systems, and is expected to be more commonly
adopted with the increasing deployment of CDN
and peer-to-peer networks. The work reported in
this paper was initiated by the lack of an in-depth
analysis of the system performance and the
impact on the whole system of such a popular

scheme. It should be noticed that our conclusions
are drawn based on a homogeneous network
scenario and on the average downloading time.
For heterogeneous scenarios where clients have
different connectivity, average downloading time
may not be a suitable performance metric to

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

38

study. The result shows that PD is not necessarily
such a great scheme to adopt. When the servers
are constrained in terms of number of concurrent
sessions that they can serve, we have shown that
admission control should be deployed to prevent

unnecessary system degradation. We have
presented in this paper that if the number of
servers is limited, the system should limit the
number of users regardless of the downloading
scheme. This admission control process will
prevent the average downloading time from
rising without increasing the blocking rate.

REFERENCES
[1] J. Byers, J. Considine, M. Mitzenmacher, and
S. Rost. Informed Content Delivery Across
Adaptive Overlay Networks. In Proc. of ACM
SIGCOMM, 2002.

[2] J. W. Byers, M. Luby, and M. Mitzenmacher.
Accessing Multiple Mirror Sites in Parallel:
Using Tornado Codes to Speed Up Downloads.
In Proc. of INFOCOM, pages 275– 283, New
York, NY, Mar. 1999.
[3] J. W. Byers, M. Luby, M. Mitzenmacher, and
A. Rege. A Digital Fountain Approach to
Reliable Distribution of Bulk Data. In Proc. of

ACM SIGCOMM, pages 56–67, Vancouver,
Canada, 1998.

[4] R. L. Carter and M. Crovella. Server
Selection Using Dynamic Path Characterization
in Wide-Area Networks. In Proc. of INFOCOM,
volume 3, pages 1014–1021, Kobe, Japan, Apr.
1997.

[5] Digital Fountain Inc. Digital Fountain's Meta-
Content Technology. White Paper.
[6] Z. Fei, S. Bhattacharjee, E. W. Zegura, and
M. H. Ammar. A Novel Server Selection
Technique for Improving the ResponseTime of a
Replicated Service. In Proc. of INFOCOM,
volume 2, pages 783–791, 1998.
[7] L. Kleinrock. Queueing System, volume 2

(Computer Applications). JohnWiley and Sons,
first edition, Apr. 1976.
[8] Y. Liu, W. Gong, and P. Shenoy. On the
Impact of Concurrent Downloads. In 2001
Winter Simulation Conference, Arlington, VA,
2001.
[9] A. Myers, P. A. Dinda, and H. Zhang.
Performance Characteristics of Mirror Servers on

the Internet. In Proc. of INFOCOM, volume 1,
pages 304–312, 1999.
[10] Y. Nebat and M. Sidi. Resequencing
Considerations in Parallel Downloads. In Proc. of
INFOCOM, 2002.

