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ABSTRACT 

A distributed system is a collection of independent entities that 

cooperate to solve a problem that cannot be individually solved. 

A mobile computing system is a distributed system where some 

of processes are running on mobile hosts (MHs), whose location 

in the network changes with time. Mobile distributed 

systems raise new issues such as mobility, low 

bandwidth of wireless channels, disconnections, limited 

battery power and lack of reliable stable storage on 

mobile nodes. This paper addresses the problem of fault 

tolerant computing in mobile distributed systems. The techniques 

described are based on checkpointing and roll back recovery.  
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1. INTRODUCTION 
Distributed computing or cluster computing is being used 

extensively as they are cost-effective and scalable, and are able 

to meet the demands of high performance computing. With the 

increase in the number of components there is a increase in the 

failure probability. To provide fault tolerance it is essential to 

understand the nature of the faults that occur in these systems. 

There are mainly two kinds of faults: permanent and transient. 

Permanent faults are caused by permanent damage to one or 

more components and transient faults are caused by changes in 

environmental conditions. Permanent faults can be rectified by 

repair or replacement of components. Transient faults remain for 

a short duration of time and are difficult to detect and deal with. 

Thus becomes necessary to provide fault tolerance particularly 

for transient failures in distributed computers. Fault-tolerant 

techniques enable a system to perform tasks in the presence of 

faults and involves fault detection, fault location, fault 

containment and fault recovery. Fault Tolerance Techniques 

enable systems to perform tasks in the presence of faults. The 

likelihood of faults grows as systems are becoming more 

complex and applications are requiring more resources, including 

execution speed, storage capacity and communication bandwidth. 

Reliability and resilience are critical issues in parallel and 

distributed systems [8]. These systems comprise of various 

computing devices and communication and storage resources. 

There are a number of fault sources in a system, including 

physical failure of components, environmental interference, 

software errors, security violations, and operator errors. Faults 

can be classified into two types: permanent and transient faults. 

Permanent faults are faults that cause a permanent damage to 

some part of the system. Recovery from permanent faults must 

include replacement of the damaged part and reconfiguration of 

the system. Transient faults are short-lived and do not lead to 

permanent damage. Recovery from transient faults is 

comparatively simple as compared to the permanent faults, 

because reconfiguration of the system is not needed. Generally, 

the detection of the transient faults is more difficult, because they 

may disappear without a detectable effect of the system [8].     

   Fault tolerance can be achieved through some kind of 

redundancy. Redundancy can be temporal or spatial. In temporal 

redundancy, i.e., checkpoint-restart, an application is restarted 

from an earlier checkpoint or recovery point after a fault. This 

may result in the loss of some processing and applications may 

not be able to meet strict timing targets. In spatial redundancy, 

many copies of the application execute on different processors 

concurrently and strict timing constraints can be met. But the 

cost of providing fault tolerance using spatial redundancy is quite 

high and may require extra hardware.  

In scientific and commercial applications, in case of a detection 

of a transient fault, the execution of the program needs to be 

interrupted and resumed from beginning. As a result, the big 

applications are completed only if a sufficiently long fault-free 

interval of time exists in the system. In the presence of faults, the 

average execution of the program may grow exponentially with 

the length of the program. Checkpointing is primarily used to 

avoid losing all the useful processing done before a fault has 

occurred. Checkpointing consists of intermittently saving the 

state of a program in a reliable storage medium. Upon detection 

of a fault, previous consistent state is restored. In case of a fault, 

checkpointing enables the execution of a program to be resumed 

from a previous consistent state rather than resuming the 

execution from the beginning. In this way, the amount of useful 

processing lost because of the fault is significantly reduced. With 

checkpointing, the average execution of a program grows only 

linearly with the length of the program [8].       

Checkpoint-Restart or Backward error recovery is quite 

inexpensive and does not require extra hardware in general. 

Besides providing fault tolerance, checkpointing can be used for 

process migration, debugging distributed applications, job 

swapping, postmortem analysis and stable property detection 

[95].  

There are two approaches for error recovery: 

In forward error recovery techniques, the nature of errors and 

damage caused by faults must be completely and accurately 

assessed and so it becomes possible to remove those errors in the 
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process state and enable the process to move forward [70]. In 

distributed system, accurate assessment of all the faults may not 

be possible. 

In backward error recovery techniques, the nature of faults 

need not be predicted and in case of error, the process state is 

restored to previous error-free state. It is independent of the 

nature of faults. Thus, backward error recovery is more general 

recovery mechanism [14], [56]. 

There are three steps involved in backward-error recovery. These 

are: 

Checkpointing the error-free state periodically, Restoration in 

case of failure and Restart from the restored state. 

Backward error recovery is also known as checkpoint-restore-

restart (CRR) or checkpoint-restart (CR). The checkpointing 

process is executed periodically to advance the recovery line. 

2. CHECKPOINTING 
A checkpoint is a local state of a process saved on stable storage 

necessary to allow resumption of processing at a later time. 

Checkpointing is the process of saving the status information. In 

a distributed system, since the processes in the system do not 

share memory, a global state of the system is defined as a set of 

local states, one from each process. The state of channels 

corresponding to a global state is the set of messages sent but not 

yet received. A lost or in-transit message is one, the sending of 

which has been recorded by the sender but whose receiving could 

not be recorded by the receiving process. An orphan message is a 

message whose receive event is recorded, but its send event is 

lost.  A global state is said to be “consistent” if it contains no 

orphan message and all the in-transit messages are logged. In 

Figure 1.1, the initial global state {C10, C20, C30, C40, C50} is 

consistent. It should be noted that initial global state is always 

consistent, because, it can not contain any orphan message. The 

Global State {C11, C21, C31, C41, C51} is also consistent, 

because, it does not possess any orphan message. It needs to be 

noted that by definition, m0 is not an orphan message but in-

transit message. The Global State {C12, C22, C32, C42, C52} is 

inconsistent because it includes the orphan message m8. By 

definition, m8 is an orphan message. To recover from a failure, 

the system restarts its execution from a previous consistent 

global state saved on the stable storage during fault-free 

execution. This saves all the computation done up to the last 

checkpointed state and only the computation done thereafter 

needs to be redone [8], [77], [78]. 

 After a failure, a system must be restored to a 

consistent system state. Essentially, a system state is consistent if 

it could have occurred during the preceding execution of the 

system from its initial state, regardless of the relative speeds of 

individual processes. This assumes that the total execution of the 

system is equivalent to some fault free execution [8]. It has been 

shown that two local checkpoints being causally unrelated is a 

necessary but not sufficient condition for them to belong to the 

same consistent global checkpoint. This problem was first 

addressed by Netzer and Xu who introduced the notion of a Z-

path between local checkpoints to capture both their causal and 

hidden dependencies [62]. Considering a checkpoint and 

communication pattern, the rollback dependency trackability 

property stipulates that there is no hidden dependency between 

local checkpoints [11].  To be able to recover a system state, all 

of its individual process states must be able to be restored. A 

consistent system state in which each process state can be 

restored is thus called a recoverable system state.  

 Processes in a distributed system communicate by 

sending and receiving messages. A process can record its own 

state and messages it sends and receives; it can record nothing 

else. To determine a global system state, a process Pi must enlist 

the cooperation of other processes that must record their own 

local states and send the recorded local states to Pi. All processes 

cannot record their local states at precisely the same instant 
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unless they have access to a common clock. We assume that 

processes do not share clocks or memory. The problem is to 

devise algorithms by which processes record their own states and 

the states of communication channels so that the set of process 

and channel states recorded form a global system state. The 

global state detection algorithm is to be superimposed on the 

underlying computation; it must run concurrently with, but not 

alter, this underlying computation [22].  

The state detection algorithm plays the role of a group of 

photographers observing a panoramic, dynamic scene, such as a 

sky filled with migrating birds- a scene so vast that it cannot be 

captured by a single photograph. The photographers must take 

several snapshots and piece the snapshots together to form a 

picture of the overall scene. All snapshots cannot be taken at 

precisely the same instant because of synchronization problems. 

Furthermore, the photographers should not disturb the process 

that is being photographed. Yet, the composite picture should be 

meaningful. The problem before us is to define meaningful and 

then to determine how the photographs should be taken [22].     

The problem of taking a checkpoint in a message passing 

distributed system is quite complex because any arbitrary set of 

checkpoints cannot be used for     recovery [22], [77], [78]. This 

is due to the fact that the set of checkpoints used for recovery 

must form a consistent global state.  

In backward error recovery, depending on the programmer‟s 

intervention in process of checkpointing, the classification can 

be: 

User-Triggered checkpointing 

Transparent Checkpointing 

User triggered checkpointing schemes require user interaction 

and are useful in reducing the stable storage requirement [27]. 

These are generally employed where the user has the knowledge 

of the computation being performed and can decide the location 

of the checkpoints. The main problem is the identification of the 

checkpoint location by a user.  

The transparent checkpointing techniques do not require user 

interaction and can be classified into following categories: 

2.1 Uncoordinated Checkpointing 
In uncoordinated or independent checkpointing, processes do not 

coordinate their checkpointing activity   and each process records 

its local checkpoint independently [14], [86], [96]. It allows each 

process the maximum autonomy in deciding when to take 

checkpoint, i.e., each process may take a checkpoint when it is 

most convenient. It eliminates coordination overhead all together 

and forms a consistent global state on recovery after a fault [14].  

After a failure, a consistent global checkpoint is established by 

tracking the dependencies. It may require cascaded rollbacks that 

may lead to the initial state due to domino-effect [44], [77], [78].  

It requires multiple checkpoints to be saved for each process and 

periodically invokes garbage collection algorithm to reclaim the 

checkpoints that are no longer needed. In this scheme, a process 

may take a useless checkpoint that will never be a part of global 

consistent state. Useless checkpoints incur overhead without 

advancing the recovery line [27].  

 

The main disadvantage of this approach is the domino-effect 

[Figure 1.2]. In this example, processes P1 and P2 have 

independently taken a sequence of checkpoints. The interleaving 

of messages and checkpoints leave no consistent set of 

checkpoints for P1 and P2, except the initial one at {C10, C20). 

Consequently, after P1 fails, both P1 and P2 must roll back to the 

beginning of the computation [44]. It should be noted that global 

state {C11, C21} is inconsistent due to orphan message m1. 

Similarly, global state {C12, C22} is inconsistent due to orphan 

message m4.  

2.2 Coordinated Checkpointing 
In coordinated or synchronous checkpointing, processes take 

checkpoints in such a manner that the resulting global state is 

consistent. Mostly it follows two-phase commit structure [22], 

[28], [44]. In the first phase, processes take tentative checkpoints 

and in the second phase, these are made permanent. The main 

advantage is that only one permanent checkpoint and at most one 

tentative checkpoint is required to be stored. In case of a fault, 

processes rollback to last checkpointed state. A permanent 

checkpoint can not be undone. It guarantees that the computation 

needed to reach the checkpointed state will not be repeated. A 

tentative checkpoint, however, can be undone or changed to be a 

permanent checkpoint.   

 A straightforward approach to coordinated 

checkpointing is to block communications while the 

checkpointing protocol executes [88]. A coordinator takes a 

checkpoint and broadcasts a request message to all processes, 

asking them to take a checkpoint. When a process receives the 

message, it stops its executions, flushes all the communication 

channels, takes a tentative checkpoint, and sends an 

acknowledgement message back to the coordinator. After the 

coordinator receives acknowledgements from all processes, it 

broadcasts a commit message that completes the two-phase 

checkpoint protocol. On receiving commit, a process converts its 

tentative checkpoint into permanent one and discards its old 

permanent checkpoint, if any. The process is then free to resume 

execution and exchange messages with other processes.  

The coordinated checkpointing protocols can be classified into 

two types: blocking and non-blocking. In blocking algorithms, as 

mentioned above, some blocking of processes takes place during 

checkpointing [44], [88].  In non-blocking algorithms, no 

blocking of processes is required for checkpointing [22], [28]. 

The coordinated checkpointing algorithms can also be classified 

into following two categories: minimum-process and all process 
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algorithms. In all-process coordinated checkpointing algorithms, 

every process is required to take its checkpoint in an initiation 

[22], [28]. In minimum-process algorithms, minimum interacting 

processes are required to take their checkpoints in an initiation 

[44].  

2.3 Quasi-Synchronous or Communication 

Induced Checkpointing 
Communication-induced checkpointing avoids the domino-effect 

without requiring all checkpoints to be coordinated [12], [33], 

[55]. In these protocols, processes take two kinds of checkpoints, 

local and forced.  Local checkpoints can be taken independently, 

while forced checkpoints are taken to guarantee the eventual 

progress of the recovery line and to minimize useless 

checkpoints.  As opposed to coordinated checkpointing, these 

protocols do no exchange any special coordination messages to 

determine when forced checkpoints should be taken. But, they 

piggyback protocol specific information [generally checkpoint 

sequence numbers] on each application message; the receiver 

then uses this information to decide if it should take a forced 

checkpoint. This decision is based on the receiver determining if 

past communication and checkpoint patterns can lead to the 

creation of useless checkpoints; a forced checkpoint is taken to 

break these patterns [27], [55]. 

2.4 Message Logging Based Checkpointing 

Protocols 
Message-logging protocols (for example [3], [4], [5], [6], [9], 

[29], [30], [40], [74], [87], [90], [91], [92], [93], are popular for 

building systems that can tolerate process crash failures. 

Message logging and checkpointing can be used to provide fault 

tolerance in distributed systems in which all inter-process 

communication is through messages. Each message received by a 

process is saved in message log on stable storage. No 

coordination is required between the checkpointing of different 

processes or between message logging and checkpointing. The 

execution of each process is assumed to be deterministic between 

received messages, and all processes are assumed to execute on 

fail stop processes.  

 When a process crashes, a new process is created in its 

place. The new process is given the appropriate recorded local 

state, and then the logged messages are replayed in the order the 

process originally received them. All message-logging protocols 

require that once a crashed process recovers, its state needs to be 

consistent with the states of the other processes [27], [98]. This 

consistency requirement is usually expressed in terms of orphan 

processes, which are surviving processes whose states are 

inconsistent with the recovered states of crashed processes. Thus, 

message- logging protocols guarantee that upon recovery, no 

process is an orphan. This requirement can be enforced either by 

avoiding the creation of orphans during an execution, as 

pessimistic protocols do, or by taking appropriate actions during 

recovery to eliminate all orphans as optimistic protocols do.   Bin 

Yao et al. [98] describes a receiver based message logging 

protocol for mobile hosts, mobile support stations and home 

agents in a Mobile IP environment, which guarantees 

independent recovery. Checkpointing is utilized to limit log size 

and recovery latency.     

3. ASPECTS OF CHECKPOINTING 

3.1 Frequency of Checkpointing 
A checkpointing algorithm executes in parallel with the 

underlying computation. Therefore, the overheads introduced due 

to checkpointing should be minimized. Checkpointing should 

enable a user to recover quickly and not lose substantial 

computation in case of an error, which necessitates frequent 

checkpointing and consequently significant overhead. The 

number of checkpoints initiated should be such that the cost of 

information loss due to failure is small and the overhead due to 

checkpointing is not significant. These depend on the failure 

probability and the importance of computation. For example, in 

transaction processing system when every transaction is 

important and information loss is not permitted, a checkpoint 

may be taken after every transaction, increasing the checkpoint 

overhead significantly [42].  

3.2 Contents of a Checkpoint 
The state of a process has to be saved in stable storage so that the 

process can be restarted in case of an error. The state/context 

includes code, data, and stack segments along with the 

environment and the register contents. Environment has the 

information about the various files currently in use and the file 

pointers. In case of message passing systems, environment 

variables include those messages which are sent and not yet 

received. The information that is necessary to resume a 

computation after it is pre-empted is called the context of that 

computation [42]. 

3.3 Overheads of Checkpointing Algorithm 
During a failure free run, every global checkpoint incurs 

coordination overhead and context saving overhead in a 

multiprocessor system. In parallel/distributed systems, 

coordination among processes is needed to obtain a consistent 

global state. Special messages and piggybacked information with 

regular messages are used to obtain coordination among 

processes.  Coordination overhead is due to special control 

messages and piggybacked information. The book-keeping 

operations necessary to maintain coordination also contribute to 

coordination overhead. The time taken to save the global context 

of a computation is defined as the context saving overhead. If 

stable storage is not available with every node in a 

multiprocessor system, the context is transferred over the 

network. Network transmission delay is also included in the 

overhead [42].   

3.4 Application of Checkpointing 
Besides its use to recover from failures, checkpointing is also 

used in debugging distributed programs and migrating processes 

in multiprocessor system. In debugging distributed programs, 

state changes of a process during execution are monitored at 

various time instances. Checkpoints assist in such monitoring. To 

balance the load of processors in the distributed system, 

processes are moved from heavily loaded processors to lightly 

loaded ones. Checkpointing a process periodically provides the 

information necessary to move it from one processor to another 

[42]. With checkpointing, an arbitrary temporal section of a 

program‟s runtime can be extracted for exhaustive analysis 

without the need to restart the program from beginning [26]. 
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3.5 Checkpointing Issues 
The existence of mobile nodes in a distributed system introduces 

new issues that need proper handling while designing a 

checkpointing algorithm for such systems. These issues are 

mobility, disconnections, finite power source, vulnerable to 

physical damage, lack of stable storage etc. [1], [10].  The 

location of an MH within the network, as represented by its 

current local MSS, changes with time. Checkpointing schemes 

that send control messages to MHs, will need to first locate the 

MH within the network, and thereby incur a search overhead [2]. 

Due to vulnerability of mobile computers to catastrophic failures, 

disk storage of an MH is not acceptably stable for storing 

message logs or local checkpoints. Checkpointing schemes must 

therefore, rely on an alternative stable repository for an MH‟s 

local checkpoint [2]. Disconnections of one or more MHs should 

not prevent recording the global state of an application executing 

on MHs. It should be noted that disconnection of an MH is a 

voluntary operation, and frequent disconnections of MHs is an 

expected feature of the mobile computing environments [2]. The 

battery at the MH has limited life. To save energy, the MH can 

power down individual components during periods of low 

activity [31]. This strategy is referred to as the doze mode 

operation. The MH in doze mode is awakened on receiving a 

message. Therefore, energy conservation and low bandwidth 

constraints require the checkpointing algorithms to minimize the 

number of synchronization messages and the number of 

checkpoints.    

 The new issues make traditional checkpointing 

techniques unsuitable to checkpoint mobile distributed systems 

[1], [20], [57], [72]. Prakash-Singhal [72] proposed that a good 

checkpointing protocol for mobile distributed systems should 

have low memory overheads on MHs, low overheads on wireless 

channels and should avoid awakening of an MH in doze mode 

operation. The disconnection of MHs should not lead to infinite 

wait state. The algorithm should be non-intrusive, coordinated, 

and should force minimum number of processes to take their 

local checkpoints.  

 Minimum-process coordinated checkpointing is an 

attractive approach to introduce fault tolerance in mobile 

distributed systems transparently. It avoids domino-effect, 

minimizes stable storage requirements, and forces only minimum 

interacting processes to checkpoint. To recover from a failure, 

the system simply restarts its execution from a previous 

consistent global checkpoint saved on the stable storage. But, it 

has the following disadvantages. Some blocking of processes 

takes place or some useless checkpoints are taken. In order to 

record a consistent global checkpoint, processes must 

synchronize their checkpointing activities. In other words, when 

a process initiates checkpointing procedure, it asks all relevant 

processes to take their checkpoints. Therefore, coordinated 

checkpointing suffers from high overhead associated with the 

checkpointing process. Sometimes, checkpoint sequence numbers 

are piggybacked along with computation messages. If a single 

process fails to checkpoint, the whole checkpointing effort of the 

particular initiation goes waste.       

 Acharya, A. [2] cast distributed systems with mobile 

hosts into a two tier structure: 1) a network of fixed hosts with 

more resources in terms of storage, computing, and 

communication, and 2) mobile hosts, which may operate in a 

disconnected, or doze mode, connected by a low bandwidth 

wireless connection to this network. They propose a two tier 

principle for structuring distributed algorithms for this model: 

 To the extent possible, computation and 

communication costs of an algorithm is borne by the static 

network. The core objective of the algorithm is achieved through 

a distributed execution amongst the fixed hosts while performing 

only those operations at the mobile hosts that are necessary for 

the desired overall functionality.    

 In wireless cellular network, mobile computing based 

on a two-tier coordinated checkpointing algorithm reduces the 

number of synchronization messages [46].  

3.6 Related Concepts 
When processes interact with each other by exchanging 

messages, dependency is introduced among the events of 

different processes, making it difficult to have a total ordering of 

events. Lamport [52] pointed out this and he proposed a relation 

called „happened before‟ (denoted by →) to have a partial 

ordering of events in a distributed system. This is an irreflexive, 

anti-symmetric, transitive relation.   

 If a and b are two events occurring in the same process 

and if a occurs before b, then a→b. If a is the event of sending a 

message and b is the event of receiving the same message, then 

a→b. Two events a and b are said to be concurrent if and only if 

a does not happen before b and b does not happen before a. Local 

checkpoint is an event that records the state of a process at a 

processor at a given instant. Global checkpoint is a collection of 

local checkpoints, one from each process. A global state is said to 

be consistent if all the included events form a concurrent set. A 

consistent global checkpoint is a collection of local checkpoints, 

one from each process, such that each local checkpoint is 

concurrent to every other local checkpoint. Rollback recovery is a 

process of resuming/recovering a computation from a consistent 

global checkpoint.  

 The messages generated by the underlying computation 

are referred to as computation messages or simply messages and 

are denoted by mi or m. The processes are denoted by Pi. The ith 

CI of a process denotes all the computation performed between 

its ith and (i+1)th checkpoint, including the ith checkpoint  but not 

the (i+1)th checkpoint.  

 A process Pi directly depends upon Pj only if there exist 

m such that: (i) Pi has processed m sent by Pj (ii) Pi has not taken 

any permanent checkpoint after processing m (iii) Pj has not 

taken any permanent checkpoint after sending m. Direct 

dependencies at Pi can be stored in a bit vector of length n for n 

processes [say ddvi[]]. ddvi[j]=1 implies Pi is directly dependent 

upon Pj. In minimum-process coordinated checkpointing, if Pi 

takes its checkpoint and Pi is dependent upon Pj, then Pj should 

also take its checkpoint. Minimum set is the set of processes 

which need to checkpoint in an initiation. A process is in the 

minimum set only if the initiator process is   transitively 

dependent upon it. A process that initiates checkpointing is 

called initiator process or simply initiator. The minimum-process 

algorithms are generally based on keeping track of direct 
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dependencies among processes and computing minimum set [48], 

[64]. 

 Once the system has rolled back to a consistent state, 

the nodes have to retrace their computation that was undone 

during the rollback. The following types of messages have to be 

handled while retracing the lost computation [72].  

Orphan Messages: Messages whose reception has been recorded, 

but the record of their transmission has been lost. This situation 

arises when the sender node rolls back to a state prior to sending 

the message while the receiver  node still has the  record of its 

reception.     

Lost Messages: Messages whose transmission has been recorded, 

but the record of their reception has been lost. This happens if 

the receiver rolls back to a state prior to the reception of the 

message, while the sender does not roll back to a state prior to 

their sending.  

Duplicate Messages: This happens when more than one copy of 

the same message   arrives at a node; perhaps one corresponding 

to the original computation and one generated during recovery 

phase. If the first copy has been processed, all subsequent copies 

should be discarded.   

 In deterministic systems, if two processes start in the 

same state, and both receive the identical sequence of inputs, 

they will produce the identical sequence outputs and will finish 

in the same state. The state of a process is thus completely 

determined by its starting state and by sequence of messages it 

has received [38], [39].  

 Chandy-Lamport algorithm [22] works with FIFO 

channels only. If a message m1 followed by m2 is sent from Pi to 

Pj, m1 reaches before m2 when the channels are FIFO. Advantage 

of a FIFO channel is that without explicitly sending any message 

sequence numbers with messages, it is possible to arrange the 

messages in a sequence. Non-FIFO channels necessitate headers 

with regular messages to ensure correct ordering of messages 

[85].  Headers should contain sequence numbers of regular 

messages. The possibility of non-FIFO channel is justified in a 

distributed environment, since it is possible for messages to be 

routed through different channels and reach the destination out of 

order.  

In a centralized algorithm like Chandy-lamport [22], there is one 

node which always initiates the checkpoints and coordinates the 

participating nodes. The disadvantage of a centralized algorithm 

is that all nodes have to initiate checkpoints whenever the 

centralized node decides to checkpoint. Nodes can be given 

autonomy in initiating checkpoints by allowing any node in the 

system to initiate checkpoints. Such a distributed checkpointing 

algorithm can initiate complete checkpointing [50] or selective 

checkpointing [44].    

4. RELATED WORK 
A survey of the literature on fault tolerant checkpointing shows 

that a large number of papers have been published. A majority of 

them have Checkpointing algorithms for parallel and distributed 

computing  been obtained by relaxing many of the assumptions 

made by Chandy and Lamport (1985); the main aim of improving 

the earlier extensions of the Chandy & Lamport (1985) 

algorithms was to minimize the overhead of coordination 

between processes in a multiprocessor system. Few number of 

algorithms have been proposed to checkpoint shared-memory 

multiprocessors and primarily extend cache coherence protocols 

to maintain a consistent memory. These algorithms assume the 

main memory to be safe and do not save context in disk. More 

recently, algorithms have been proposed for distributed shared-

memory systems. In these systems also maintenance of cache 

coherence of the logical global memory is important for 

checkpoints. As the physical memory is distributed it is 

necessary to save main memory contents in the disk. Thus 

context saving overhead is higher when compared to shared-

memory systems. We also see that most of the algorithms assume 

no prior knowledge on the structure of programs meant for 

execution on multiprocessors. The design of algorithms for 

distributed systems and their communication costs have been 

based on the assumptions that the location of hosts in the 

network do not change and the connectivity amongst the hosts is 

static in the absence of failures. However, with the emergence of 

mobile computing, these assumptions are no longer valid. 

Additionally, mobile hosts have tight constraints on power 

consumption and bandwidth of the wireless links connecting 

MHs to their local MSSs is limited.  

The Chandy-Lamport [22] algorithm is one of the earliest non-

blocking all-process coordinated checkpointing algorithm for 

static nodes. In this algorithm, markers are sent along all 

channels in the network which leads to a message complexity of 

O(N2), and  requires channels to be FIFO. To relax the FIFO 

assumption, Lai and Yang [50] proposed an algorithm. In this 

algorithm, when a process takes a checkpoint, it piggybacks a 

flag to the message it sends out from each channel. The receiver 

checks the piggybacked flag to see if there is a need to take a 

checkpoint before processing the message. If so, it takes a 

checkpoint before processing the message to avoid an 

inconsistency. To record the channel information, each process 

needs to maintain the entire message history on each channel as 

part of the local checkpoint. It requires all processes to take 

checkpoints. Elnozahy et al. [28] proposed an all-process non-

blocking synchronous checkpointing algorithm with a message 

complexity of O(N). They use checkpoint sequence numbers to 

identify orphan messages, thus avoiding the need for processes to 

be blocked during checkpointing. However, this approach 

requires the initiator to communicate with all processes in the 

computation. In the algorithm proposed by Silva and Silva [85], 

the processes which did not communicate with others during the 

previous checkpointing interval do not need to take new 

checkpoints.  Both these algorithms [28], [85], assume that a 

distinguished initiator decides when to initiate checkpointing 

procedure. Therefore, they suffer from the disadvantages of 

centralized algorithms, such as one-site failure, traffic 

bottlenecks etc.  

Leu and Bhargawa [51] proposed an algorithm which is resilient 

to multiple process failures and does not assume that the channel 

is FIFO, which is a requirement in [44]. However, these two 

algorithms [44], [51] do not consider lost messages in 

checkpointing and recovery; they assume a sliding window kind 

of scheme to deal with message loss problem. Dang and Park 
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[25] proposed an algorithm to address both orphan messages and 

lost messages.  

In paper [15], the first coordinated checkpointing protocol was 

proposed. It assumes that all communications are atomic, which 

is too restrictive. Koo-Toeg [44] proposed a minimum-process 

coordinated checkpointing protocol which relaxes the assumption 

that all communications are atomic.  It reduces the number of 

synchronization messages and number of checkpoints.  The 

initiator process sends the checkpoint request to Pi only if it has 

received some m from Pi in the current CI. Similarly, Pi sends the 

checkpoint request to any process Pj only if   Pi has received some 

m from Pj in the current CI. In this way, a checkpointing tree is 

formed and at last leaf node processes of the tree take their 

checkpoints. The time taken to collect coordinated checkpoint in 

mobile systems may be too large due to mobility, disconnections 

and unreliable wireless channels. As the processes are blocked 

during checkpointing and this extensive blocking may degrade 

the systems performance.  

 Cao and Singhal [19] proposed minimum-process 

blocking algorithm for mobile systems. In this algorithm, 

blocking time is significantly reduced as compared to [44]. Every 

process maintains its direct dependencies in a bit array of length 

n for n processes. Initiator process collects the direct dependency 

vectors of all processes, computes minimum set. After that, it 

broadcasts the checkpoint request along with the minimum set to 

all processes. During the period, a process sends its dependency 

vector to the initiator process and receives the minimum set, it 

remains in the blocking period. A process takes its checkpoint if 

it is in the minimum set.    

In algorithm [44], if any of the relevant process is not able to take 

its checkpoint in an initiation, the entire checkpointing process of 

that particular initiation is aborted. Kim and Park [45] proposed 

an improved scheme to address failures during checkpointing. It 

allows the new checkpoints in some subtrees to be committed. In 

the approach, a process commits its tentative checkpoint if none 

of the processes, on which it transitively depends, fails; and the 

consistent recovery line is advanced for those processes that 

committed their checkpoints. The initiator and other processes 

which transitively depend on the failed process have to abort 

their tentative checkpoints. Thus, in case of a node failure during 

checkpointing, total abort of the checkpointing is avoided.  

  To further reduce the system messages, needed to 

synchronize the checkpointing, loosely synchronized clocks are 

used [23], [63], [79], [84].  Neves et al. [63] gave a loosely 

synchronized coordinated checkpointing protocol that removes 

the overhead of synchronization. This approach assumes that the 

clocks at the processes are loosely synchronized. Loosely 

synchronized clocks can trigger the local checkpoints at all the 

processes roughly at the same time without a coordinator. After 

taking a checkpoint, a process waits for a period, which is sum of 

maximum time to detect a failure of other process in the system 

and the maximum deviation between clocks. It is assumed that 

all checkpoints belonging to a particular coordination session 

have been taken without the need of exchanging any message. If 

a failure occurs, it is detected within the specified time and the 

protocol is aborted. Sinha and Ren [75] devised a tool-assisted 

method for the formal verification of a timestamp-based 

checkpointing protocol.  

 All the above mentioned algorithms strive to reduce the 

overhead associated with coordinated checkpointing. Efforts are 

made to reduce the synchronization messages, minimize the 

number of processes to checkpoint [19], [44] and to make the 

algorithms non-intrusive [22], [28]. The above mentioned 

algorithms are either minimum-process or non-intrusive. Prakash 

and Singhal [72] were first to give minimum-process non-

intrusive coordinated checkpointing protocol for mobile 

distributed systems. But their algorithm may lead to 

inconsistencies [19]. In [19], it was proved that there does not 

exist a minimum-process non-intrusive coordinated 

checkpointing algorithm. Hence, in minimum-process 

coordinated checkpointing algorithms, some blocking of the 

processes takes place [19], [44], or some useless checkpoints are 

taken [20], [48], [64]. 

 In coordinated checkpointing protocols, we may require 

piggybacking of integer csn (checkpoint sequence number) along 

with normal messages [20], [21], [28], [64], [48]. L. Kumar et al. 

[47] proposed an all-process non-intrusive checkpointing protocol 

for distributed systems, where just one bit is piggybacked along 

with normal messages. This is done by incurring extra overhead 

of vector transfers during checkpointing.  

 Cao and Singhal [20] achieved non-intrusiveness in the 

minimum-process algorithm    by introducing the concept of 

mutable checkpoints. In their algorithm, initiator, say Pin,   sends 

the checkpoint request to any process, say Pj, only if Pin receives 

m from Pj in the current CI. Pj takes its tentative checkpoint if Pj 

has sent m to Pin in the current CI; otherwise, Pj concludes that 

the checkpoint request is a useless one. Similarly, when Pj takes 

its tentative checkpoint, it propagates the checkpoint request to 

other processes. This process is continued till the checkpoint 

request reaches all the processes on which the initiator 

transitively depends and a checkpointing tree is formed. During 

checkpointing, if Pi receives m from Pj such that Pj has taken 

some checkpoint in the current initiation before sending m, Pi 

may be forced to take a checkpoint, called mutable checkpoint. If 

Pi is not in the minimum set, its mutable checkpoint is useless 

and is discarded on commit. The huge data structure MR[] is also 

attached with the checkpoint requests to reduce the number of 

useless checkpoint requests. The response from each process is 

sent directly to initiator.   

 The algorithm [20] has been designed to allow its 

concurrent executions using the technique proposed in [73]. Ni et 

al [61] have shown that the Cao-Singhal algorithm [20] may lead 

to inconsistencies during concurrent executions. The authors [61] 

also updated the algorithm proposed in [20] to allow concurrent 

executions.  The number of useless checkpoints in [20] may be 

exceedingly high in some situations [48]. L. Kumar et. al [48] 

and  P. Kumar et. al [64] reduced the height of the checkpointing 

tree and the number of useless checkpoints by keeping non-

intrusiveness intact, at the extra cost of maintaining and 

collecting dependency vectors, computing the minimum set and 

broadcasting it on the static network along with the checkpoint 

request. In algorithm [48], after sending the dependency vector 
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and before receiving the minimum set, Pi processes m received 

from Pj if any of the following conditions is met: 

Pi is directly dependent upon Pj and Pj has not taken any 

checkpoint for the current initiation before sending m.  

Pj has taken some permanent checkpoint after sending m.  

Pi has already taken its induced checkpoint for the current 

initiation  

Pi has not sent any message since last committed checkpoint 

Otherwise, Pi takes its induced checkpoint [similar to mutable 

checkpoint] before processing m. 

On receiving the minimum set, if Pi finds that it is not a member 

of the minimum set, it discards its induced checkpoint, if any; 

otherwise Pi takes its tentative checkpoint or converts its induced 

checkpoints into tentative one. In this algorithm, no 

checkpointing tree is formed. 

  In algorithm [64], on receiving the minimum set, a 

process takes its tentative checkpoint if it is in the minimum set; 

otherwise, it ignores the request. When a process Pi takes its 

tentative checkpoint, it sends the checkpoint request to Pj if Pi is 

directly dependent upon Pj and Pj is not in the computed 

minimum set. When Pi receives m from Pj, Pi takes its induced 

checkpoint before processing m only if following conditions are 

met: (i) Pj has taken some checkpoint in the current initiation 

before sending m (ii) Pi has not taken any checkpoint in the 

current initiation (iii) Pi has sent at least one message since last 

permanent checkpoint. On commit, if Pi finds that it is not a 

member of the minimum set, it discards its induced checkpoint, 

if any. Basically, the algorithms, proposed in [64] and [48], try to 

minimize the period during which a process may be forced to 

take its induced/mutable checkpoint. By reducing this period, the 

number of useless checkpoints is automatically reduced.  

Singh and Cabillic [71] proposed a minimum-process non-

intrusive coordinated checkpointing protocol for deterministic 

mobile systems. In the first phase, a process starts checkpointing 

as checkpoint initiator by sending requests to processes over 

which it directly depends. When a process receives a checkpoint 

request, it takes the checkpoint, propagates the checkpoint 

request to processes over which it directly depends, and 

continues its processing. During the checkpointing, when Pi sends 

a computation message to Pj, it also sends id of current 

checkpoint initiator, if Pi has taken a checkpoint, otherwise a 

NULL value. When Pj receives the message, it checks the value 

of checkpoint initiator. If it is not NULL, then Pj knows that 

checkpointing is going on and it might receive a checkpoint 

request later; thus it saves the anti-message of the received 

message before processing it. However, if value of checkpoint 

initiator is NULL, it simply processes the message. After taking 

its checkpoint, a process stores the messages in the serial order.   

An anti-message is also stored   for such messages. This storing 

is done only during the checkpointing to insure the same 

processing in the recovery phase. In the second phase, checkpoint 

initiator asks processes to make their checkpoint permanent.  

It becomes difficult for multiple MH‟s to checkpoint 

synchronously due to disconnections and unreliable wireless 

channels [34], [35], [36], [60].  MHs are prone to frequent 

failures, which will require frequent rollback of all processes.  

Higaki and Takizawa [34] proposed a hybrid checkpointing 

protocol, where fixed hosts checkpoint synchronously and MHs 

checkpoint independently. Mobile stations use message logging 

and checkpointing, while fixed stations use only checkpointing, 

to form a consistent global state.   

Acharya and Badrinath [1] proposed asynchronous checkpointing 

algorithm for distributed applications on mobile distributed 

systems. They gave following reasons for neglecting synchronous 

checkpointing for mobile systems: 1) high cost of locating MHs 

because in the Chandy Lamport [22] kind of algorithm MH has to 

receive requests along every incoming link and 2) non-

availability of the local checkpoint of an disconnected MH during 

synchronous checkpointing. In [1], an MH has to take its 

checkpoint whenever a message reception is preceded by a 

message transmission at that node. If the transmission and 

reception messages are interleaved, the number local checkpoints 

will be equal to half the number of computation messages. This 

is likely to impose exceedingly high checkpointing overhead.  

In uncoordinated algorithms [14], [86], every process may 

accumulate multiple local checkpoints and logs on the stable 

storage during normal operation. A checkpoint is discarded if it 

is determined that it will no longer be needed for recovery. An 

uncoordinated checkpointing approach is not suitable for mobile 

systems due to following reasons [20], [72]. If the frequency of 

local checkpoints is high, each process will have multiple 

checkpoints, which require a large amount of stable storage and 

incurs exceedingly high communication overhead. These 

overheads can be reduced by taking local checkpoints less 

frequently. However, it will   increase the recovery time as 

greater rollback will be required. Although Some algorithms 

were proposed to reduce the number of checkpoints to be saved 

on stable storage, yet, to ensure correctness, a process still needs 

to keep many more checkpoints in uncoordinated checkpointing 

algorithms [55], [58], [59], [97]. Generally speaking, 

uncoordinated checkpointing approaches suffer from the 

complexities of finding a consistent recovery line after the 

failure, domino-effect, high stable storage overhead of saving 

multiple checkpoints of each process, and the overhead of 

garbage collection. Hence, coordinated checkpointing has many 

advantages over uncoordinated checkpointing algorithms, 

especially, for mobile distributed systems. Asynchronous 

checkpointing with message logging is quite effective for 

checkpointing mobile systems [34], [69], [98].  In paper [41], a 

causal message logging protocol for mobile nodes in mobile 

computing environments has been proposed. 
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