
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

8

A Review of Fault Tolerant Checkpointing Protocols for

Mobile Computing Systems
Rachit Garg

Singhania University
Dept. of Computer Sc & Engg
Pacheri Bari (Rajasthan), India

Praveen Kumar
Meerut Institute of Engg & Tech.

Dept of Computer Sc. & Engg
Meerut (INDIA)-125005

ABSTRACT

A distributed system is a collection of independent entities that

cooperate to solve a problem that cannot be individually solved.

A mobile computing system is a distributed system where some

of processes are running on mobile hosts (MHs), whose location

in the network changes with time. Mobile distributed

systems raise new issues such as mobility, low

bandwidth of wireless channels, disconnections, limited

battery power and lack of reliable stable storage on

mobile nodes. This paper addresses the problem of fault

tolerant computing in mobile distributed systems. The techniques

described are based on checkpointing and roll back recovery.

Keywords

distributed systems, fault tolerance, checkpointing, mobile

computing systems, backward error recovery

1. INTRODUCTION
Distributed computing or cluster computing is being used

extensively as they are cost-effective and scalable, and are able

to meet the demands of high performance computing. With the

increase in the number of components there is a increase in the

failure probability. To provide fault tolerance it is essential to

understand the nature of the faults that occur in these systems.

There are mainly two kinds of faults: permanent and transient.

Permanent faults are caused by permanent damage to one or

more components and transient faults are caused by changes in

environmental conditions. Permanent faults can be rectified by

repair or replacement of components. Transient faults remain for

a short duration of time and are difficult to detect and deal with.

Thus becomes necessary to provide fault tolerance particularly

for transient failures in distributed computers. Fault-tolerant

techniques enable a system to perform tasks in the presence of

faults and involves fault detection, fault location, fault

containment and fault recovery. Fault Tolerance Techniques

enable systems to perform tasks in the presence of faults. The

likelihood of faults grows as systems are becoming more

complex and applications are requiring more resources, including

execution speed, storage capacity and communication bandwidth.

Reliability and resilience are critical issues in parallel and

distributed systems [8]. These systems comprise of various

computing devices and communication and storage resources.

There are a number of fault sources in a system, including

physical failure of components, environmental interference,

software errors, security violations, and operator errors. Faults

can be classified into two types: permanent and transient faults.

Permanent faults are faults that cause a permanent damage to

some part of the system. Recovery from permanent faults must

include replacement of the damaged part and reconfiguration of

the system. Transient faults are short-lived and do not lead to

permanent damage. Recovery from transient faults is

comparatively simple as compared to the permanent faults,

because reconfiguration of the system is not needed. Generally,

the detection of the transient faults is more difficult, because they

may disappear without a detectable effect of the system [8].

 Fault tolerance can be achieved through some kind of

redundancy. Redundancy can be temporal or spatial. In temporal

redundancy, i.e., checkpoint-restart, an application is restarted

from an earlier checkpoint or recovery point after a fault. This

may result in the loss of some processing and applications may

not be able to meet strict timing targets. In spatial redundancy,

many copies of the application execute on different processors

concurrently and strict timing constraints can be met. But the

cost of providing fault tolerance using spatial redundancy is quite

high and may require extra hardware.

In scientific and commercial applications, in case of a detection

of a transient fault, the execution of the program needs to be

interrupted and resumed from beginning. As a result, the big

applications are completed only if a sufficiently long fault-free

interval of time exists in the system. In the presence of faults, the

average execution of the program may grow exponentially with

the length of the program. Checkpointing is primarily used to

avoid losing all the useful processing done before a fault has

occurred. Checkpointing consists of intermittently saving the

state of a program in a reliable storage medium. Upon detection

of a fault, previous consistent state is restored. In case of a fault,

checkpointing enables the execution of a program to be resumed

from a previous consistent state rather than resuming the

execution from the beginning. In this way, the amount of useful

processing lost because of the fault is significantly reduced. With

checkpointing, the average execution of a program grows only

linearly with the length of the program [8].

Checkpoint-Restart or Backward error recovery is quite

inexpensive and does not require extra hardware in general.

Besides providing fault tolerance, checkpointing can be used for

process migration, debugging distributed applications, job

swapping, postmortem analysis and stable property detection

[95].

There are two approaches for error recovery:

In forward error recovery techniques, the nature of errors and

damage caused by faults must be completely and accurately

assessed and so it becomes possible to remove those errors in the

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

9

process state and enable the process to move forward [70]. In

distributed system, accurate assessment of all the faults may not

be possible.

In backward error recovery techniques, the nature of faults

need not be predicted and in case of error, the process state is

restored to previous error-free state. It is independent of the

nature of faults. Thus, backward error recovery is more general

recovery mechanism [14], [56].

There are three steps involved in backward-error recovery. These

are:

Checkpointing the error-free state periodically, Restoration in

case of failure and Restart from the restored state.

Backward error recovery is also known as checkpoint-restore-

restart (CRR) or checkpoint-restart (CR). The checkpointing

process is executed periodically to advance the recovery line.

2. CHECKPOINTING
A checkpoint is a local state of a process saved on stable storage

necessary to allow resumption of processing at a later time.

Checkpointing is the process of saving the status information. In

a distributed system, since the processes in the system do not

share memory, a global state of the system is defined as a set of

local states, one from each process. The state of channels

corresponding to a global state is the set of messages sent but not

yet received. A lost or in-transit message is one, the sending of

which has been recorded by the sender but whose receiving could

not be recorded by the receiving process. An orphan message is a

message whose receive event is recorded, but its send event is

lost. A global state is said to be “consistent” if it contains no

orphan message and all the in-transit messages are logged. In

Figure 1.1, the initial global state {C10, C20, C30, C40, C50} is

consistent. It should be noted that initial global state is always

consistent, because, it can not contain any orphan message. The

Global State {C11, C21, C31, C41, C51} is also consistent,

because, it does not possess any orphan message. It needs to be

noted that by definition, m0 is not an orphan message but in-

transit message. The Global State {C12, C22, C32, C42, C52} is

inconsistent because it includes the orphan message m8. By

definition, m8 is an orphan message. To recover from a failure,

the system restarts its execution from a previous consistent

global state saved on the stable storage during fault-free

execution. This saves all the computation done up to the last

checkpointed state and only the computation done thereafter

needs to be redone [8], [77], [78].

 After a failure, a system must be restored to a

consistent system state. Essentially, a system state is consistent if

it could have occurred during the preceding execution of the

system from its initial state, regardless of the relative speeds of

individual processes. This assumes that the total execution of the

system is equivalent to some fault free execution [8]. It has been

shown that two local checkpoints being causally unrelated is a

necessary but not sufficient condition for them to belong to the

same consistent global checkpoint. This problem was first

addressed by Netzer and Xu who introduced the notion of a Z-

path between local checkpoints to capture both their causal and

hidden dependencies [62]. Considering a checkpoint and

communication pattern, the rollback dependency trackability

property stipulates that there is no hidden dependency between

local checkpoints [11]. To be able to recover a system state, all

of its individual process states must be able to be restored. A

consistent system state in which each process state can be

restored is thus called a recoverable system state.

 Processes in a distributed system communicate by

sending and receiving messages. A process can record its own

state and messages it sends and receives; it can record nothing

else. To determine a global system state, a process Pi must enlist

the cooperation of other processes that must record their own

local states and send the recorded local states to Pi. All processes

cannot record their local states at precisely the same instant

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

10

unless they have access to a common clock. We assume that

processes do not share clocks or memory. The problem is to

devise algorithms by which processes record their own states and

the states of communication channels so that the set of process

and channel states recorded form a global system state. The

global state detection algorithm is to be superimposed on the

underlying computation; it must run concurrently with, but not

alter, this underlying computation [22].

The state detection algorithm plays the role of a group of

photographers observing a panoramic, dynamic scene, such as a

sky filled with migrating birds- a scene so vast that it cannot be

captured by a single photograph. The photographers must take

several snapshots and piece the snapshots together to form a

picture of the overall scene. All snapshots cannot be taken at

precisely the same instant because of synchronization problems.

Furthermore, the photographers should not disturb the process

that is being photographed. Yet, the composite picture should be

meaningful. The problem before us is to define meaningful and

then to determine how the photographs should be taken [22].

The problem of taking a checkpoint in a message passing

distributed system is quite complex because any arbitrary set of

checkpoints cannot be used for recovery [22], [77], [78]. This

is due to the fact that the set of checkpoints used for recovery

must form a consistent global state.

In backward error recovery, depending on the programmer‟s

intervention in process of checkpointing, the classification can

be:

User-Triggered checkpointing

Transparent Checkpointing

User triggered checkpointing schemes require user interaction

and are useful in reducing the stable storage requirement [27].

These are generally employed where the user has the knowledge

of the computation being performed and can decide the location

of the checkpoints. The main problem is the identification of the

checkpoint location by a user.

The transparent checkpointing techniques do not require user

interaction and can be classified into following categories:

2.1 Uncoordinated Checkpointing
In uncoordinated or independent checkpointing, processes do not

coordinate their checkpointing activity and each process records

its local checkpoint independently [14], [86], [96]. It allows each

process the maximum autonomy in deciding when to take

checkpoint, i.e., each process may take a checkpoint when it is

most convenient. It eliminates coordination overhead all together

and forms a consistent global state on recovery after a fault [14].

After a failure, a consistent global checkpoint is established by

tracking the dependencies. It may require cascaded rollbacks that

may lead to the initial state due to domino-effect [44], [77], [78].

It requires multiple checkpoints to be saved for each process and

periodically invokes garbage collection algorithm to reclaim the

checkpoints that are no longer needed. In this scheme, a process

may take a useless checkpoint that will never be a part of global

consistent state. Useless checkpoints incur overhead without

advancing the recovery line [27].

The main disadvantage of this approach is the domino-effect

[Figure 1.2]. In this example, processes P1 and P2 have

independently taken a sequence of checkpoints. The interleaving

of messages and checkpoints leave no consistent set of

checkpoints for P1 and P2, except the initial one at {C10, C20).

Consequently, after P1 fails, both P1 and P2 must roll back to the

beginning of the computation [44]. It should be noted that global

state {C11, C21} is inconsistent due to orphan message m1.

Similarly, global state {C12, C22} is inconsistent due to orphan

message m4.

2.2 Coordinated Checkpointing
In coordinated or synchronous checkpointing, processes take

checkpoints in such a manner that the resulting global state is

consistent. Mostly it follows two-phase commit structure [22],

[28], [44]. In the first phase, processes take tentative checkpoints

and in the second phase, these are made permanent. The main

advantage is that only one permanent checkpoint and at most one

tentative checkpoint is required to be stored. In case of a fault,

processes rollback to last checkpointed state. A permanent

checkpoint can not be undone. It guarantees that the computation

needed to reach the checkpointed state will not be repeated. A

tentative checkpoint, however, can be undone or changed to be a

permanent checkpoint.

 A straightforward approach to coordinated

checkpointing is to block communications while the

checkpointing protocol executes [88]. A coordinator takes a

checkpoint and broadcasts a request message to all processes,

asking them to take a checkpoint. When a process receives the

message, it stops its executions, flushes all the communication

channels, takes a tentative checkpoint, and sends an

acknowledgement message back to the coordinator. After the

coordinator receives acknowledgements from all processes, it

broadcasts a commit message that completes the two-phase

checkpoint protocol. On receiving commit, a process converts its

tentative checkpoint into permanent one and discards its old

permanent checkpoint, if any. The process is then free to resume

execution and exchange messages with other processes.

The coordinated checkpointing protocols can be classified into

two types: blocking and non-blocking. In blocking algorithms, as

mentioned above, some blocking of processes takes place during

checkpointing [44], [88]. In non-blocking algorithms, no

blocking of processes is required for checkpointing [22], [28].

The coordinated checkpointing algorithms can also be classified

into following two categories: minimum-process and all process

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

11

algorithms. In all-process coordinated checkpointing algorithms,

every process is required to take its checkpoint in an initiation

[22], [28]. In minimum-process algorithms, minimum interacting

processes are required to take their checkpoints in an initiation

[44].

2.3 Quasi-Synchronous or Communication

Induced Checkpointing
Communication-induced checkpointing avoids the domino-effect

without requiring all checkpoints to be coordinated [12], [33],

[55]. In these protocols, processes take two kinds of checkpoints,

local and forced. Local checkpoints can be taken independently,

while forced checkpoints are taken to guarantee the eventual

progress of the recovery line and to minimize useless

checkpoints. As opposed to coordinated checkpointing, these

protocols do no exchange any special coordination messages to

determine when forced checkpoints should be taken. But, they

piggyback protocol specific information [generally checkpoint

sequence numbers] on each application message; the receiver

then uses this information to decide if it should take a forced

checkpoint. This decision is based on the receiver determining if

past communication and checkpoint patterns can lead to the

creation of useless checkpoints; a forced checkpoint is taken to

break these patterns [27], [55].

2.4 Message Logging Based Checkpointing

Protocols
Message-logging protocols (for example [3], [4], [5], [6], [9],

[29], [30], [40], [74], [87], [90], [91], [92], [93], are popular for

building systems that can tolerate process crash failures.

Message logging and checkpointing can be used to provide fault

tolerance in distributed systems in which all inter-process

communication is through messages. Each message received by a

process is saved in message log on stable storage. No

coordination is required between the checkpointing of different

processes or between message logging and checkpointing. The

execution of each process is assumed to be deterministic between

received messages, and all processes are assumed to execute on

fail stop processes.

 When a process crashes, a new process is created in its

place. The new process is given the appropriate recorded local

state, and then the logged messages are replayed in the order the

process originally received them. All message-logging protocols

require that once a crashed process recovers, its state needs to be

consistent with the states of the other processes [27], [98]. This

consistency requirement is usually expressed in terms of orphan

processes, which are surviving processes whose states are

inconsistent with the recovered states of crashed processes. Thus,

message- logging protocols guarantee that upon recovery, no

process is an orphan. This requirement can be enforced either by

avoiding the creation of orphans during an execution, as

pessimistic protocols do, or by taking appropriate actions during

recovery to eliminate all orphans as optimistic protocols do. Bin

Yao et al. [98] describes a receiver based message logging

protocol for mobile hosts, mobile support stations and home

agents in a Mobile IP environment, which guarantees

independent recovery. Checkpointing is utilized to limit log size

and recovery latency.

3. ASPECTS OF CHECKPOINTING

3.1 Frequency of Checkpointing
A checkpointing algorithm executes in parallel with the

underlying computation. Therefore, the overheads introduced due

to checkpointing should be minimized. Checkpointing should

enable a user to recover quickly and not lose substantial

computation in case of an error, which necessitates frequent

checkpointing and consequently significant overhead. The

number of checkpoints initiated should be such that the cost of

information loss due to failure is small and the overhead due to

checkpointing is not significant. These depend on the failure

probability and the importance of computation. For example, in

transaction processing system when every transaction is

important and information loss is not permitted, a checkpoint

may be taken after every transaction, increasing the checkpoint

overhead significantly [42].

3.2 Contents of a Checkpoint
The state of a process has to be saved in stable storage so that the

process can be restarted in case of an error. The state/context

includes code, data, and stack segments along with the

environment and the register contents. Environment has the

information about the various files currently in use and the file

pointers. In case of message passing systems, environment

variables include those messages which are sent and not yet

received. The information that is necessary to resume a

computation after it is pre-empted is called the context of that

computation [42].

3.3 Overheads of Checkpointing Algorithm
During a failure free run, every global checkpoint incurs

coordination overhead and context saving overhead in a

multiprocessor system. In parallel/distributed systems,

coordination among processes is needed to obtain a consistent

global state. Special messages and piggybacked information with

regular messages are used to obtain coordination among

processes. Coordination overhead is due to special control

messages and piggybacked information. The book-keeping

operations necessary to maintain coordination also contribute to

coordination overhead. The time taken to save the global context

of a computation is defined as the context saving overhead. If

stable storage is not available with every node in a

multiprocessor system, the context is transferred over the

network. Network transmission delay is also included in the

overhead [42].

3.4 Application of Checkpointing
Besides its use to recover from failures, checkpointing is also

used in debugging distributed programs and migrating processes

in multiprocessor system. In debugging distributed programs,

state changes of a process during execution are monitored at

various time instances. Checkpoints assist in such monitoring. To

balance the load of processors in the distributed system,

processes are moved from heavily loaded processors to lightly

loaded ones. Checkpointing a process periodically provides the

information necessary to move it from one processor to another

[42]. With checkpointing, an arbitrary temporal section of a

program‟s runtime can be extracted for exhaustive analysis

without the need to restart the program from beginning [26].

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

12

3.5 Checkpointing Issues
The existence of mobile nodes in a distributed system introduces

new issues that need proper handling while designing a

checkpointing algorithm for such systems. These issues are

mobility, disconnections, finite power source, vulnerable to

physical damage, lack of stable storage etc. [1], [10]. The

location of an MH within the network, as represented by its

current local MSS, changes with time. Checkpointing schemes

that send control messages to MHs, will need to first locate the

MH within the network, and thereby incur a search overhead [2].

Due to vulnerability of mobile computers to catastrophic failures,

disk storage of an MH is not acceptably stable for storing

message logs or local checkpoints. Checkpointing schemes must

therefore, rely on an alternative stable repository for an MH‟s

local checkpoint [2]. Disconnections of one or more MHs should

not prevent recording the global state of an application executing

on MHs. It should be noted that disconnection of an MH is a

voluntary operation, and frequent disconnections of MHs is an

expected feature of the mobile computing environments [2]. The

battery at the MH has limited life. To save energy, the MH can

power down individual components during periods of low

activity [31]. This strategy is referred to as the doze mode

operation. The MH in doze mode is awakened on receiving a

message. Therefore, energy conservation and low bandwidth

constraints require the checkpointing algorithms to minimize the

number of synchronization messages and the number of

checkpoints.

 The new issues make traditional checkpointing

techniques unsuitable to checkpoint mobile distributed systems

[1], [20], [57], [72]. Prakash-Singhal [72] proposed that a good

checkpointing protocol for mobile distributed systems should

have low memory overheads on MHs, low overheads on wireless

channels and should avoid awakening of an MH in doze mode

operation. The disconnection of MHs should not lead to infinite

wait state. The algorithm should be non-intrusive, coordinated,

and should force minimum number of processes to take their

local checkpoints.

 Minimum-process coordinated checkpointing is an

attractive approach to introduce fault tolerance in mobile

distributed systems transparently. It avoids domino-effect,

minimizes stable storage requirements, and forces only minimum

interacting processes to checkpoint. To recover from a failure,

the system simply restarts its execution from a previous

consistent global checkpoint saved on the stable storage. But, it

has the following disadvantages. Some blocking of processes

takes place or some useless checkpoints are taken. In order to

record a consistent global checkpoint, processes must

synchronize their checkpointing activities. In other words, when

a process initiates checkpointing procedure, it asks all relevant

processes to take their checkpoints. Therefore, coordinated

checkpointing suffers from high overhead associated with the

checkpointing process. Sometimes, checkpoint sequence numbers

are piggybacked along with computation messages. If a single

process fails to checkpoint, the whole checkpointing effort of the

particular initiation goes waste.

 Acharya, A. [2] cast distributed systems with mobile

hosts into a two tier structure: 1) a network of fixed hosts with

more resources in terms of storage, computing, and

communication, and 2) mobile hosts, which may operate in a

disconnected, or doze mode, connected by a low bandwidth

wireless connection to this network. They propose a two tier

principle for structuring distributed algorithms for this model:

 To the extent possible, computation and

communication costs of an algorithm is borne by the static

network. The core objective of the algorithm is achieved through

a distributed execution amongst the fixed hosts while performing

only those operations at the mobile hosts that are necessary for

the desired overall functionality.

 In wireless cellular network, mobile computing based

on a two-tier coordinated checkpointing algorithm reduces the

number of synchronization messages [46].

3.6 Related Concepts
When processes interact with each other by exchanging

messages, dependency is introduced among the events of

different processes, making it difficult to have a total ordering of

events. Lamport [52] pointed out this and he proposed a relation

called „happened before‟ (denoted by →) to have a partial

ordering of events in a distributed system. This is an irreflexive,

anti-symmetric, transitive relation.

 If a and b are two events occurring in the same process

and if a occurs before b, then a→b. If a is the event of sending a

message and b is the event of receiving the same message, then

a→b. Two events a and b are said to be concurrent if and only if

a does not happen before b and b does not happen before a. Local

checkpoint is an event that records the state of a process at a

processor at a given instant. Global checkpoint is a collection of

local checkpoints, one from each process. A global state is said to

be consistent if all the included events form a concurrent set. A

consistent global checkpoint is a collection of local checkpoints,

one from each process, such that each local checkpoint is

concurrent to every other local checkpoint. Rollback recovery is a

process of resuming/recovering a computation from a consistent

global checkpoint.

 The messages generated by the underlying computation

are referred to as computation messages or simply messages and

are denoted by mi or m. The processes are denoted by Pi. The ith

CI of a process denotes all the computation performed between

its ith and (i+1)th checkpoint, including the ith checkpoint but not

the (i+1)th checkpoint.

 A process Pi directly depends upon Pj only if there exist

m such that: (i) Pi has processed m sent by Pj (ii) Pi has not taken

any permanent checkpoint after processing m (iii) Pj has not

taken any permanent checkpoint after sending m. Direct

dependencies at Pi can be stored in a bit vector of length n for n

processes [say ddvi[]]. ddvi[j]=1 implies Pi is directly dependent

upon Pj. In minimum-process coordinated checkpointing, if Pi

takes its checkpoint and Pi is dependent upon Pj, then Pj should

also take its checkpoint. Minimum set is the set of processes

which need to checkpoint in an initiation. A process is in the

minimum set only if the initiator process is transitively

dependent upon it. A process that initiates checkpointing is

called initiator process or simply initiator. The minimum-process

algorithms are generally based on keeping track of direct

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

13

dependencies among processes and computing minimum set [48],

[64].

 Once the system has rolled back to a consistent state,

the nodes have to retrace their computation that was undone

during the rollback. The following types of messages have to be

handled while retracing the lost computation [72].

Orphan Messages: Messages whose reception has been recorded,

but the record of their transmission has been lost. This situation

arises when the sender node rolls back to a state prior to sending

the message while the receiver node still has the record of its

reception.

Lost Messages: Messages whose transmission has been recorded,

but the record of their reception has been lost. This happens if

the receiver rolls back to a state prior to the reception of the

message, while the sender does not roll back to a state prior to

their sending.

Duplicate Messages: This happens when more than one copy of

the same message arrives at a node; perhaps one corresponding

to the original computation and one generated during recovery

phase. If the first copy has been processed, all subsequent copies

should be discarded.

 In deterministic systems, if two processes start in the

same state, and both receive the identical sequence of inputs,

they will produce the identical sequence outputs and will finish

in the same state. The state of a process is thus completely

determined by its starting state and by sequence of messages it

has received [38], [39].

 Chandy-Lamport algorithm [22] works with FIFO

channels only. If a message m1 followed by m2 is sent from Pi to

Pj, m1 reaches before m2 when the channels are FIFO. Advantage

of a FIFO channel is that without explicitly sending any message

sequence numbers with messages, it is possible to arrange the

messages in a sequence. Non-FIFO channels necessitate headers

with regular messages to ensure correct ordering of messages

[85]. Headers should contain sequence numbers of regular

messages. The possibility of non-FIFO channel is justified in a

distributed environment, since it is possible for messages to be

routed through different channels and reach the destination out of

order.

In a centralized algorithm like Chandy-lamport [22], there is one

node which always initiates the checkpoints and coordinates the

participating nodes. The disadvantage of a centralized algorithm

is that all nodes have to initiate checkpoints whenever the

centralized node decides to checkpoint. Nodes can be given

autonomy in initiating checkpoints by allowing any node in the

system to initiate checkpoints. Such a distributed checkpointing

algorithm can initiate complete checkpointing [50] or selective

checkpointing [44].

4. RELATED WORK
A survey of the literature on fault tolerant checkpointing shows

that a large number of papers have been published. A majority of

them have Checkpointing algorithms for parallel and distributed

computing been obtained by relaxing many of the assumptions

made by Chandy and Lamport (1985); the main aim of improving

the earlier extensions of the Chandy & Lamport (1985)

algorithms was to minimize the overhead of coordination

between processes in a multiprocessor system. Few number of

algorithms have been proposed to checkpoint shared-memory

multiprocessors and primarily extend cache coherence protocols

to maintain a consistent memory. These algorithms assume the

main memory to be safe and do not save context in disk. More

recently, algorithms have been proposed for distributed shared-

memory systems. In these systems also maintenance of cache

coherence of the logical global memory is important for

checkpoints. As the physical memory is distributed it is

necessary to save main memory contents in the disk. Thus

context saving overhead is higher when compared to shared-

memory systems. We also see that most of the algorithms assume

no prior knowledge on the structure of programs meant for

execution on multiprocessors. The design of algorithms for

distributed systems and their communication costs have been

based on the assumptions that the location of hosts in the

network do not change and the connectivity amongst the hosts is

static in the absence of failures. However, with the emergence of

mobile computing, these assumptions are no longer valid.

Additionally, mobile hosts have tight constraints on power

consumption and bandwidth of the wireless links connecting

MHs to their local MSSs is limited.

The Chandy-Lamport [22] algorithm is one of the earliest non-

blocking all-process coordinated checkpointing algorithm for

static nodes. In this algorithm, markers are sent along all

channels in the network which leads to a message complexity of

O(N2), and requires channels to be FIFO. To relax the FIFO

assumption, Lai and Yang [50] proposed an algorithm. In this

algorithm, when a process takes a checkpoint, it piggybacks a

flag to the message it sends out from each channel. The receiver

checks the piggybacked flag to see if there is a need to take a

checkpoint before processing the message. If so, it takes a

checkpoint before processing the message to avoid an

inconsistency. To record the channel information, each process

needs to maintain the entire message history on each channel as

part of the local checkpoint. It requires all processes to take

checkpoints. Elnozahy et al. [28] proposed an all-process non-

blocking synchronous checkpointing algorithm with a message

complexity of O(N). They use checkpoint sequence numbers to

identify orphan messages, thus avoiding the need for processes to

be blocked during checkpointing. However, this approach

requires the initiator to communicate with all processes in the

computation. In the algorithm proposed by Silva and Silva [85],

the processes which did not communicate with others during the

previous checkpointing interval do not need to take new

checkpoints. Both these algorithms [28], [85], assume that a

distinguished initiator decides when to initiate checkpointing

procedure. Therefore, they suffer from the disadvantages of

centralized algorithms, such as one-site failure, traffic

bottlenecks etc.

Leu and Bhargawa [51] proposed an algorithm which is resilient

to multiple process failures and does not assume that the channel

is FIFO, which is a requirement in [44]. However, these two

algorithms [44], [51] do not consider lost messages in

checkpointing and recovery; they assume a sliding window kind

of scheme to deal with message loss problem. Dang and Park

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

14

[25] proposed an algorithm to address both orphan messages and

lost messages.

In paper [15], the first coordinated checkpointing protocol was

proposed. It assumes that all communications are atomic, which

is too restrictive. Koo-Toeg [44] proposed a minimum-process

coordinated checkpointing protocol which relaxes the assumption

that all communications are atomic. It reduces the number of

synchronization messages and number of checkpoints. The

initiator process sends the checkpoint request to Pi only if it has

received some m from Pi in the current CI. Similarly, Pi sends the

checkpoint request to any process Pj only if Pi has received some

m from Pj in the current CI. In this way, a checkpointing tree is

formed and at last leaf node processes of the tree take their

checkpoints. The time taken to collect coordinated checkpoint in

mobile systems may be too large due to mobility, disconnections

and unreliable wireless channels. As the processes are blocked

during checkpointing and this extensive blocking may degrade

the systems performance.

 Cao and Singhal [19] proposed minimum-process

blocking algorithm for mobile systems. In this algorithm,

blocking time is significantly reduced as compared to [44]. Every

process maintains its direct dependencies in a bit array of length

n for n processes. Initiator process collects the direct dependency

vectors of all processes, computes minimum set. After that, it

broadcasts the checkpoint request along with the minimum set to

all processes. During the period, a process sends its dependency

vector to the initiator process and receives the minimum set, it

remains in the blocking period. A process takes its checkpoint if

it is in the minimum set.

In algorithm [44], if any of the relevant process is not able to take

its checkpoint in an initiation, the entire checkpointing process of

that particular initiation is aborted. Kim and Park [45] proposed

an improved scheme to address failures during checkpointing. It

allows the new checkpoints in some subtrees to be committed. In

the approach, a process commits its tentative checkpoint if none

of the processes, on which it transitively depends, fails; and the

consistent recovery line is advanced for those processes that

committed their checkpoints. The initiator and other processes

which transitively depend on the failed process have to abort

their tentative checkpoints. Thus, in case of a node failure during

checkpointing, total abort of the checkpointing is avoided.

 To further reduce the system messages, needed to

synchronize the checkpointing, loosely synchronized clocks are

used [23], [63], [79], [84]. Neves et al. [63] gave a loosely

synchronized coordinated checkpointing protocol that removes

the overhead of synchronization. This approach assumes that the

clocks at the processes are loosely synchronized. Loosely

synchronized clocks can trigger the local checkpoints at all the

processes roughly at the same time without a coordinator. After

taking a checkpoint, a process waits for a period, which is sum of

maximum time to detect a failure of other process in the system

and the maximum deviation between clocks. It is assumed that

all checkpoints belonging to a particular coordination session

have been taken without the need of exchanging any message. If

a failure occurs, it is detected within the specified time and the

protocol is aborted. Sinha and Ren [75] devised a tool-assisted

method for the formal verification of a timestamp-based

checkpointing protocol.

 All the above mentioned algorithms strive to reduce the

overhead associated with coordinated checkpointing. Efforts are

made to reduce the synchronization messages, minimize the

number of processes to checkpoint [19], [44] and to make the

algorithms non-intrusive [22], [28]. The above mentioned

algorithms are either minimum-process or non-intrusive. Prakash

and Singhal [72] were first to give minimum-process non-

intrusive coordinated checkpointing protocol for mobile

distributed systems. But their algorithm may lead to

inconsistencies [19]. In [19], it was proved that there does not

exist a minimum-process non-intrusive coordinated

checkpointing algorithm. Hence, in minimum-process

coordinated checkpointing algorithms, some blocking of the

processes takes place [19], [44], or some useless checkpoints are

taken [20], [48], [64].

 In coordinated checkpointing protocols, we may require

piggybacking of integer csn (checkpoint sequence number) along

with normal messages [20], [21], [28], [64], [48]. L. Kumar et al.

[47] proposed an all-process non-intrusive checkpointing protocol

for distributed systems, where just one bit is piggybacked along

with normal messages. This is done by incurring extra overhead

of vector transfers during checkpointing.

 Cao and Singhal [20] achieved non-intrusiveness in the

minimum-process algorithm by introducing the concept of

mutable checkpoints. In their algorithm, initiator, say Pin, sends

the checkpoint request to any process, say Pj, only if Pin receives

m from Pj in the current CI. Pj takes its tentative checkpoint if Pj

has sent m to Pin in the current CI; otherwise, Pj concludes that

the checkpoint request is a useless one. Similarly, when Pj takes

its tentative checkpoint, it propagates the checkpoint request to

other processes. This process is continued till the checkpoint

request reaches all the processes on which the initiator

transitively depends and a checkpointing tree is formed. During

checkpointing, if Pi receives m from Pj such that Pj has taken

some checkpoint in the current initiation before sending m, Pi

may be forced to take a checkpoint, called mutable checkpoint. If

Pi is not in the minimum set, its mutable checkpoint is useless

and is discarded on commit. The huge data structure MR[] is also

attached with the checkpoint requests to reduce the number of

useless checkpoint requests. The response from each process is

sent directly to initiator.

 The algorithm [20] has been designed to allow its

concurrent executions using the technique proposed in [73]. Ni et

al [61] have shown that the Cao-Singhal algorithm [20] may lead

to inconsistencies during concurrent executions. The authors [61]

also updated the algorithm proposed in [20] to allow concurrent

executions. The number of useless checkpoints in [20] may be

exceedingly high in some situations [48]. L. Kumar et. al [48]

and P. Kumar et. al [64] reduced the height of the checkpointing

tree and the number of useless checkpoints by keeping non-

intrusiveness intact, at the extra cost of maintaining and

collecting dependency vectors, computing the minimum set and

broadcasting it on the static network along with the checkpoint

request. In algorithm [48], after sending the dependency vector

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

15

and before receiving the minimum set, Pi processes m received

from Pj if any of the following conditions is met:

Pi is directly dependent upon Pj and Pj has not taken any

checkpoint for the current initiation before sending m.

Pj has taken some permanent checkpoint after sending m.

Pi has already taken its induced checkpoint for the current

initiation

Pi has not sent any message since last committed checkpoint

Otherwise, Pi takes its induced checkpoint [similar to mutable

checkpoint] before processing m.

On receiving the minimum set, if Pi finds that it is not a member

of the minimum set, it discards its induced checkpoint, if any;

otherwise Pi takes its tentative checkpoint or converts its induced

checkpoints into tentative one. In this algorithm, no

checkpointing tree is formed.

 In algorithm [64], on receiving the minimum set, a

process takes its tentative checkpoint if it is in the minimum set;

otherwise, it ignores the request. When a process Pi takes its

tentative checkpoint, it sends the checkpoint request to Pj if Pi is

directly dependent upon Pj and Pj is not in the computed

minimum set. When Pi receives m from Pj, Pi takes its induced

checkpoint before processing m only if following conditions are

met: (i) Pj has taken some checkpoint in the current initiation

before sending m (ii) Pi has not taken any checkpoint in the

current initiation (iii) Pi has sent at least one message since last

permanent checkpoint. On commit, if Pi finds that it is not a

member of the minimum set, it discards its induced checkpoint,

if any. Basically, the algorithms, proposed in [64] and [48], try to

minimize the period during which a process may be forced to

take its induced/mutable checkpoint. By reducing this period, the

number of useless checkpoints is automatically reduced.

Singh and Cabillic [71] proposed a minimum-process non-

intrusive coordinated checkpointing protocol for deterministic

mobile systems. In the first phase, a process starts checkpointing

as checkpoint initiator by sending requests to processes over

which it directly depends. When a process receives a checkpoint

request, it takes the checkpoint, propagates the checkpoint

request to processes over which it directly depends, and

continues its processing. During the checkpointing, when Pi sends

a computation message to Pj, it also sends id of current

checkpoint initiator, if Pi has taken a checkpoint, otherwise a

NULL value. When Pj receives the message, it checks the value

of checkpoint initiator. If it is not NULL, then Pj knows that

checkpointing is going on and it might receive a checkpoint

request later; thus it saves the anti-message of the received

message before processing it. However, if value of checkpoint

initiator is NULL, it simply processes the message. After taking

its checkpoint, a process stores the messages in the serial order.

An anti-message is also stored for such messages. This storing

is done only during the checkpointing to insure the same

processing in the recovery phase. In the second phase, checkpoint

initiator asks processes to make their checkpoint permanent.

It becomes difficult for multiple MH‟s to checkpoint

synchronously due to disconnections and unreliable wireless

channels [34], [35], [36], [60]. MHs are prone to frequent

failures, which will require frequent rollback of all processes.

Higaki and Takizawa [34] proposed a hybrid checkpointing

protocol, where fixed hosts checkpoint synchronously and MHs

checkpoint independently. Mobile stations use message logging

and checkpointing, while fixed stations use only checkpointing,

to form a consistent global state.

Acharya and Badrinath [1] proposed asynchronous checkpointing

algorithm for distributed applications on mobile distributed

systems. They gave following reasons for neglecting synchronous

checkpointing for mobile systems: 1) high cost of locating MHs

because in the Chandy Lamport [22] kind of algorithm MH has to

receive requests along every incoming link and 2) non-

availability of the local checkpoint of an disconnected MH during

synchronous checkpointing. In [1], an MH has to take its

checkpoint whenever a message reception is preceded by a

message transmission at that node. If the transmission and

reception messages are interleaved, the number local checkpoints

will be equal to half the number of computation messages. This

is likely to impose exceedingly high checkpointing overhead.

In uncoordinated algorithms [14], [86], every process may

accumulate multiple local checkpoints and logs on the stable

storage during normal operation. A checkpoint is discarded if it

is determined that it will no longer be needed for recovery. An

uncoordinated checkpointing approach is not suitable for mobile

systems due to following reasons [20], [72]. If the frequency of

local checkpoints is high, each process will have multiple

checkpoints, which require a large amount of stable storage and

incurs exceedingly high communication overhead. These

overheads can be reduced by taking local checkpoints less

frequently. However, it will increase the recovery time as

greater rollback will be required. Although Some algorithms

were proposed to reduce the number of checkpoints to be saved

on stable storage, yet, to ensure correctness, a process still needs

to keep many more checkpoints in uncoordinated checkpointing

algorithms [55], [58], [59], [97]. Generally speaking,

uncoordinated checkpointing approaches suffer from the

complexities of finding a consistent recovery line after the

failure, domino-effect, high stable storage overhead of saving

multiple checkpoints of each process, and the overhead of

garbage collection. Hence, coordinated checkpointing has many

advantages over uncoordinated checkpointing algorithms,

especially, for mobile distributed systems. Asynchronous

checkpointing with message logging is quite effective for

checkpointing mobile systems [34], [69], [98]. In paper [41], a

causal message logging protocol for mobile nodes in mobile

computing environments has been proposed.

5. REFERENCES
[1] Acharya A. and Badrinath B. R., “Checkpointing

Distributed Applications on Mobile Computers,”

Proceedings of the 3rd International Conference on Parallel

and Distributed Information Systems, pp. 73-80, September

1994.

[2] Acharya A., “Structuring Distributed Algorithms and

Services for networks with Mobile Hosts”, Ph.D. Thesis,

Rutgers University, 1995.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

16

[3] Alvisi, Lorenzo and Marzullo, Keith,“ Message Logging:

Pessimistic, Optimistic, Causal, and Optimal”, IEEE

Transactions on Software Engineering, Vol. 24, No. 2,

February 1998, pp. 149-159.

[4] L. Alvisi, Hoppe, B., Marzullo, K., “Nonblocking and

Orphan-Free message Logging Protocol,” Proc. of 23rd Fault

Tolerant Computing Symp., pp. 145-154, June 1993.

[5] L. Alvisi,“ Understanding the Message Logging Paradigm

for Masking Process Crashes,“ Ph.D. Thesis, Cornell Univ.,

Dept. of Computer Science, Jan. 1996. Available as

Technical Report TR-96-1577.

[6] L. Alvisi and K. Marzullo,“ Tradeoffs in implementing

Optimal Message Logging Protocol”, Proc. 15th Symp.

Principles of Distributed Computing, pp. 58-67, ACM,

June, 1996.

[7] Adnan Agbaria, Wiilliam H Sanders,“ Distributed

Snapshots for Mobile Computing Systems”, IEEE Intl. Conf.

PERCOM‟04, pp. 1-10, 2004.

[8] Avi Ziv and Jehoshua Bruck, “ Checkpointing in Parallel

and Distributed Systems”, Book Chapter from Parallel and

Distributed Computing Handbook edited by Albert Z. H.

Zomaya, pp. 274-302, Mc Graw Hill, 1996.

[9] A. Borg, J. Baumbach, and S. Glazer,“ A Message System

Supporting Fault Tolerance”, Proc. Symp. Operating System

Principles, pp. 90-99, ACM SIG OPS, Oct. 1983.

[10] Adnan Agbaria, William H. Sanders, “ Distributed

Snapshots for Mobile Computing Systems”, Proceedings of

the Second IEEE Annual Conference on Pervasive

Computing and Communications (Percom‟04), pp. 1-10,

2004.

[11] Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M., “

Rollback Dependency Trackability: A Minimial

Characterization and its Protocol”, Information and

Computation, 165, pp. 144-173, 2003.

[12] Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M., “A

Communication- Induced Checkpointing Protocol that

Ensures Rollback-Dependency Trackability,” Proceedings of

the International Symposium on Fault-Tolerant-Computing

Systems, pp. 68-77, June 1997.

[13] Bhagwat P., and Perkins, C.E., “A mobile Networking

System based on Internet Protocol (IP)”,USENIX

Symposium on Mobile and Location-Independent

Computing, August 1993.

[14] Bhargava B. and Lian S. R., “Independent Checkpointing

and Concurrent Rollback for Recovery in Distributed

Systems-An Optimistic Approach,” Proceedings of 17th

IEEE Symposium on Reliable Distributed Systems, pp. 3-

12, 1988.

[15] G. Barigazzi and L. Strigni, “ Application-Transparent

Setting of Recovery Points”, Digest of Papers Fault Tolerant

Computing Systems-13, pp. 48-55, 1983.

[16] Badrinath B. R, Acharya A., T. Imielinski “Structuring

Distributed Algorithms for Mobile Hosts”, Proc. 14th Int.

Conf. Distributed Computing Systems, June 1994.

[17] Badrinath B. R, Acharya A., T. Imielinski “ Designing

Distributed Algorithms for Mobile Computing Networks”,

Computer Communications, Vol. 19, No. 4, 1996.

[18] Cao G. and Singhal M., “On coordinated checkpointing in

Distributed Systems”, IEEE Transactions on Parallel and

Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec

1998.

[19] Cao G. and Singhal M., “On the Impossibility of Min-

process Non-blocking Checkpointing and an Efficient

Checkpointing Algorithm for Mobile Computing Systems,”

Proceedings of International Conference on Parallel

Processing, pp. 37-44, August 1998.

[20] Cao G. and Singhal M., “Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing systems,”

IEEE Transaction On Parallel and Distributed Systems, vol.

12, no. 2, pp. 157-172, February 2001.

[21] Cao G. and Singhal M., “Checkpointing with Mutable

Checkpoints”, Theoretical Computer Science, 290(2003),

pp. 1127-1148.

[22] Chandy K. M. and Lamport L., “Distributed Snapshots:

Determining Global State of Distributed Systems,” ACM

Transaction on Computing Systems, vol. 3, No. 1, pp. 63-

75, February 1985.

[23] F. Cristian and F. Jahanian, “ A timestamp-based

Checkpointing Protocol for Long Lived Distributed

Computations”, Proc IEEE Symp. Reliable Distributed

Systems, pp. 12-20, 1991.

[24] David R. Jefferson, “Virtual Time”, ACM Transactions on

Programming Languages and Systems, Vol. 7, NO.3, pp

404-425, July 1985.

[25] Dang Y., Park, E.K. ,“ Checkpointing and Rollback-

Recovery Algorithms in Distributed Systems”, Journal of

Systems and Software, pp. 59-71, April 1994.

[26] Dieter Kranzlmuller, Nam Thoai, Jens Volkert,“ Error

Detection in Large Scale Parallel Programs with Long

runtimes, Future Generation Computer Systems 19, pp. 689-

700, 2003.

[27] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., “A

Survey of Rollback-Recovery Protocols in Message-Passing

Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-

408, 2002.

[28] Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The

Performance of Consistent Checkpointing,” Proceedings of

the 11th Symposium on Reliable Distributed Systems, pp.

39-47, October 1992.

[29] Elnozahy and Zwaenepoel W, “ Manetho: Transparent

Roll-back Recovery with Low-overhead, Limited Rollback

and Fast Output Commit,” IEEE Trans. Computers, vol. 41,

no. 5, pp. 526-531, May 1992.

[30] Elnozahy and Zwaenepoel W, “ On the Use and

Implementation of Message Logging,” 24th int‟l Symp. Fault

Tolerant Computing, pp. 298-307, IEEE Computer Society,

June 1994.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

17

[31] George H. Forman and John Zahorjan, “The Challenges of

Mobile Computing”, IEEE Computers vol. 27, no. 4, April

1994, pp. 38-47.

[32] Richard C. Gass and Bidyut Gupta,“ An Efficient

Checkpointing Scheme for Mobile Computing Systems”,

European Simulation Symposium, Oct 18-20, 2001, pp. 1-6.

[33] Hélary J. M., Mostefaoui A. and Raynal M.,

“Communication-Induced Determination of Consistent

Snapshots,” Proceedings of the 28th International

Symposium on Fault-Tolerant Computing, pp. 208-217,

June 1998.

[34] Higaki H. and Takizawa M., “Checkpoint-recovery Protocol

for Reliable Mobile Systems,” Trans. of Information

processing Japan, vol. 40, no.1, pp. 236-244, Jan. 1999.

[35] Higaki H. and Takizawa M., “Recovery Protocol for Mobile

Checkpointing”, IEEE 9th International Conference on

Database Expert Systems Applications, Viena, pp. 520-525,

1998

[36] Higaki H. and Takizawa M., “Checkpoint Recovery Protocol

for Reliable Mobile Systems”, 17th Symposium on Reliable

Distributed Systems, pp. 93-99, Oct. 1998.

[37] Ioannidis, J., Duchamp, D., and Maguire, G.Q., “IP-based

protocols for Mobile Internetworking”, In Proc. of ACM

SIGCOMM Symposium on Communications,

Architectures, and Protocols, pp. 235-245, September 1991.

[38] Johnson, D.B., Zwaenepoel, W., “Sender-based message

logging”, In Proceedingss of 17th international Symposium

on Fault-Tolerant Computing, pp 14-19, 1987.

[39] Johnson, D.B., Zwaenepoel, W., “Recovery in Distributed

Systems using optimistic message logging and

checkpointing. In 7th ACM Symposium on Principles of

Distributed Computing, pp 171-181, 1988.

[40] D. Johnson, “Distributed System Fault Tolerance Using

Message Logging and Checkpointing,” Ph.D. Thesis, Rice

Univ., Dec. 1989.

[41] JinHo Ahn, Sung-Gi Min, Chong-Sun Hwang, “A Causal

Message Logging Protocol for Mobile Nodes in Mobile

Computing Environments”, Future Generation Computer

Systems 20, pp 663-686, 2004.

[42] Kalaiselvi, S., Rajaraman, V., “A Survey of Checkpointing

Algorithms for Parallel and Distributed Systems”, Sadhna,

Vol. 25, Part 5, October 2000, pp. 489-510.

[43] Kistler, J., and Satyanaranyan, M., “ Disconnected

Operation in the Coda file system”, ACM Trans. on

Computer Systems 10, 1 (Feb. 1992).

[44] Koo R. and Toueg S., “Checkpointing and Roll-Back

Recovery for Distributed Systems,” IEEE Trans. on

Software Engineering, vol. 13, no. 1, pp. 23-31, January

1987.

[45] J.L. Kim, T. Park, “An efficient Protocol for checkpointing

Recovery in Distributed Systems,” IEEE Trans. Parallel and

Distributed Systems, pp. 955-960, Aug. 1993.

[46] Kyne-Sup BYUN, Sung_Hwa LIM, Jai-Hoon KIM,“ Two-

Tier Checkpointing Algorithm Using MSS in Wireless

Networks”, IEICE Trans. Communications, Vol E86-B, No.

7, pp. 2136-2142, July 2003.

[47] L. Kumar, M. Misra, R.C. Joshi, “Checkpointing in

Distributed Computing Systems” Book Chapter

“Concurrency in Dependable Computing”, pp. 273-92,

2002.

[48] L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal

checkpointing for mobile distributed systems” Proceedings.

19th IEEE International Conference on Data Engineering,

pp 686 – 88, 2003.

[49] Lalit Kumar, Parveen Kumar, R K Chauhan, “Logging

based Coordinated Checkpointing in Mobile Distributed

Computing Systems”, IETE Journal of Research, vol. 51, no.

6, pp. 485-490, 2005.

[50] T.H. Lai and T.H. Yang,“ On Distributed Snapshots”,

Information Processing Letters, vol. 25, pp. 153-158, 1987.

[51] P.J. Leu and B.Bhargawa, “ Concurrent Robust

Checkpointing and Recovery in Distributed Systems”,

Proceeding Fourth Intl Conf. Data Engg. Pp. 154-163, Feb.

1988.

[52] L. Lamport, “Time, clocks and ordering of events in a

distributed system” Comm. ACM, vol.21, no.7, pp. 558-

565, July 1978.

[53] Lalit Kumar, Parveen Kumar, R K Chauhan, “Pitfalls in

Minimum-process Coordinated Checkpointing protocols for

Mobile Distributed”, ACCST Journal of Research, Volume

III, No. 1, 2005 pp. 51-56.

[54] Lalit Kumar, Parveen Kumar, R K Chauhan, “Message

Logging and Checkpointing in Mobile Computing”, Journal

of Multi-disciplinary Engineering Technologies, Vol.1,

No.1, 2005, pp. 61-66.

[55] Manivannan D. and Singhal M., “Quasi-Synchronous

Checkpointing: Models, Characterization, and

Classification,” IEEE Trans. Parallel and Distributed

Systems, vol. 10, no. 7, pp. 703-713, July 1999.

[56] Manivannan D., Netzer R. H. and Singhal M., “Finding

Consistent Global Checkpoints in a Distributed

Computation,” IEEE Transactions on Parallel & Distributed

Systems, vol. 8, no. 6, pp. 623-627, June 1997.

[57] Yoshifumi Manabe,“ A Distributed Consistent Global

Checkpoint Algorithm for Distributed Mobile Systems”, 8th

Int‟l Conference on Parallel and Distributed Systems”, pp.

125-132, 2001.

[58] Mannivannam, D., Singhal, M., “Failure Recovery based on

Quasi-Synchronous Checkpointing in Mobile Computing

Systems”, In TR No. OSU-CISRC-7/96-TR-36, Dept of

Computer and Information Science, The Ohio State

University, 1996.

[59] Mannivannam, D., Singhal, M., “ A Low overhead Recovery

Techniques using Quasi Synchronous Checkpointing”, Proc.

16th int‟l conf. Distributed Computing Systems, pp 100-107,

May 1996.

[60] Yoshinori Morita, Kengo Hiraga and Hiroaki Higaki,“

Hybrid Checkpoint Protocol for Supporting Mobile-to-

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

18

Mobile Communication”, Proc. Of the International

Conference on Information Networking, 2001.

[61] Ni, W., S. Vrbsky and S. Ray, “Pitfalls in Distributed

Nonblocking Checkpointing”, Journal of Interconnection

Networks, Vol. 1 No. 5, pp. 47-78, March 2004.

[62] Netzer, R.H. and Xu,J ,“Necessary and Sufficient

Conditions for Consistent Global Snapshots”, IEEE Trans.

Parallel and Distributed Systems 6,2, pp 165-169, 1995.

[63] Neves N. and Fuchs W. K., “Adaptive Recovery for Mobile

Environments,” Communications of the ACM, vol. 40, no.

1, pp. 68-74, January 1997.

[64] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta “A

Non-Intrusive Minimum Process Synchronous

Checkpointing Protocol for Mobile Distributed Systems”

Proceedings of IEEE ICPWC-2005, January 2005.

[65] Parveen Kumar, Lalit Kumar, R K Chauhan, “A low

overhead Non-intrusive Hybrid Synchronous checkpointing

protocol for mobile systems”, Journal of Multidisciplinary

Engineering Technologies, Vol.1, No. 1, pp 40-50, 2005.

[66] Parveen Kumar, Lalit Kumar, R K Chauhan, “Synchronous

Checkpointing Protocols for Mobile Distributed Systems: A

Comparative Study”, International Journal of information

and computing science, Volume 8, No.2, 2005, pp 14-21.

[67] Parveen Kumar, Lalit Kumar, R K Chauhan, “A Hybrid

Coordinated Checkpointing Protocol for Mobile Computing

Systems”, IETE journal of research, Vol 52, No. 2&3, pp

247-254, 2006.

[68] Parveen Kumar, Lalit Kumar, R K Chauhan, “A

Synchronous Checkpointing Protocol for Mobile Distributed

Systems: A Probabilistic Approach, Accepted for

Publication in International Journal of Information and

Computer Security.

[69] Pradhan D.K., Krishana P.P. and Vaidya N.H.,

“Recoverable Mobile Environment: Design and Trade-off

Analysis,” Proceedings 26th International Symposium on

Fault-Tolerant Computing, pp. 16-25, 1996.

[70] Pradhan D.K. and Vaidya N., “Roll-forward Checkpointing

Scheme: Concurrent Retry with Non-dedicated Spares,”

Proceedings of the IEEE Workshop on Fault-Tolerant

Parallel and Distributed Systems, pp. 166-174, July 1992.

[71] Pushpendra Singh, Gilbert Cabillic, “A Checkpointing

Algorithm for Mobile Computing Environment”, LNCS, No.

2775, pp 65-74, 2003.

[72] Prakash R. and Singhal M., “Low-Cost Checkpointing and

Failure Recovery in Mobile Computing Systems,” IEEE

Transaction On Parallel and Distributed Systems, vol. 7, no.

10, pp. 1035-1048, October1996.

[73] Prakash R. and Singhal M., “Maximum Global Snapshot

with Concurrent Initiations”, Proc. Sixth IEEE Symp.

Parallel and Distributed Processing, pp. 344-51, Oct. 1994.

[74] M.L. Powell and D.L. Presotto, “Publishing: A Reliable

Broadcase Communication Mechanism”, Proc. ninth Symp.

Operating System Principles, pp. 100-109, ACM SIGOPS,

Oct. 1983.

[75] Purnendu Sinha, Da Qi Ren, “Formal Verification of

Dependable Distributed Protocols”, Information and

Software Technology, 45, pp. 873-888, 2003.

[76] Quagila, F., Ciciani, R., Baldoni, R., “ Checkpointing

Protocols in Distributed Systems with Mobile Hosts: A

Performance Analysis”, IPPS/SPDP Workshop, pp. 742-755,

1998.

[77] Randall, B, “ System Structure for Software Fault

Tolerance”, IEEE Trans. on Software Engineering, 1,2, 220-

232, 1975.

[78] Russell, D.L., “State Restoration in Systems of

Communicating Processes”, IEEE Trans. Software

Engineering, 6,2. 183-194, 1980.

[79] Ramanathan, P. and K.G. Shin, “Use of Common Time

Base for Checkpointing and Rollback Recovery in a

Distributed System”, IEEE Trans. Software Engg., pp. 571-

583, June 1993.

[80] R K Chauhan, Parveen Kumar, Lalit Kumar, “A coordinated

checkpointing protocol for mobile computing systems”,

International Journal of information and computing science,

Accepted for Publication, Vol 9, No. 1, 2006.

[81] R K Chauhan, Parveen Kumar, Lalit Kumar, “Hybrid and

intrusive synchronous checkpointing protocols for mobile

distributed systems”, Accepted for publication in ACCST

Journal of Research, Volume IV, No. 4, 2006

[82] R K Chauhan, Parveen Kumar, Lalit Kumar, “Non-intrusive

Coordinated Checkpointing Protocols for Mobile Computing

Systems : A Critical Survey, ACCST Journal of Research,

to be published in Volume IV, No. 3, 2006.

[83] R K Chauhan, Parveen Kumar, Lalit Kumar,

“Checkpointing Distributed Applications on Mobile

Computers”, Journal of Multidisciplinary Engineering and

Technologies, Vol. 2 No.1, Jan. 2006.

[84] Ssu K.F., Yao B., Fuchs W.K. and Neves N. F., “Adaptive

Checkpointing with Storage Management for Mobile

Environments,” IEEE Transactions on Reliability, vol. 48,

no. 4, pp. 315-324, December 1999.

[85] Silva, L.M. and J.G. Silva, “Global checkpointing for

distributed programs”, Proc. 11th
 symp. Reliable

Distributed Systems, pp. 155-62, Oct. 1992.

[86] Storm R., and Temini, S., “Optimistic Recovery in

Distributed Systems”, ACM Trans. Computer Systems,

Aug, 1985, pp. 204-226.

[87] A.P. Sistla and J.L. Welch,“ Efficient Distributed Recovery

Using Message Logging”, Proc. 18th Symp. Principles of

Distributed Computing”, pp 223-238, Aug. 1989.

[88] Tamir, Y., Sequin, C.H., “Error Recovery in multi-

computers using global checkpoints”, In Proceedings of the

International Conference on Parallel Processing, pp. 32-41,

1984.

[89] Terakota, F., Yokote, Y., and Tokoro, M., “A Network

Architecture providing host migration transparency”, Proc,

of ACM SIGCOMM 91, September 1991.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.2, June 2010

19

[90] S. Venketasan and T.Y. Juang, “Efficient Algorithms for

Optimistic Crash recovery”, Distributed Computing, vol. 8,

no. 2, pp. 105-114, June 1994.

[91] S. Venketasan, “Message-Optimal Incremental Snapshots”,

Computer and Software Engineering, vol.1, no.3, pp. 211-

231, 1993.

[92] S. Venketasan, “ Optimistic Crash recovery Without Rolling

back Non-Faulty Processors”, Information Sciences, 1993.

[93] S. Venketasan and T.T.Y. Juang, “Low Overhead optimistic

crash Recovery”, Proc. 11th Int. Conf. Distributed

Computing systems, pp. 454-461, 1991.

[94] Wada H., Yozawa, T., Ohnishi, T. and Tanaka, Y., “Mobile

Computing Environment based on internet packet

forwarding”, Winter Usenix, Jan. 1993.

[95] Wang Y. M., Huang Y., Vo K.P., Chung P.Y. and Kintala

C., “Checkpointing and its Applications,” Proceedings of

the 25th International Symposium on Fault-Tolerant

Computing (FTCS-25),pp. 22-31, June 1995.

[96] Wood, W.G., “A Decentralized Recovery Control Protocol”,

1981 IEEE Symposium on Fault Tolerant Computing, 1981.

[97] Wang Y. and Fuchs, W.K., “Lazy Checkpoint Coordination

for Bounding Rollback Propagation,” Proc. 12th Symp.

Reliable Distributed Systems, pp. 78-85, Oct. 1993.

[98] Bin Yao, Kuo-Feng Ssu & W. Kect Fuchs, “Message

Logging in Mobile Computing”, Proceedings of

international conference on FTCS, pp 294-301, 1999.

[99] Yasuro Sato, Michiko Inoue, Toshimitsu Masuzawa, Hideo

Fujiwara, “ A Snapshot Algorithm for Distributed Mobile

Systems” Proceedings of the 16th ICDCS, pp734-743,1996.

