
International Journal of Computer Applications (0975 – 8887)  

Volume 3 – No.8, June 2010 

34 

 

Real Time Application of Ants Colony Optimization 

 
Dr.S.M.GiriRajkumar 

Senior Assistant Professor 
School of Electrical & Electronics 

Engineering 
SASTRA University, Thanjavur 

Tamilnadu-613402 

 

Dr.K.Ramkumar 
Senior Assistant Professor 

School of Electrical & Electronics 
Engineering 

SASTRA University, Thanjavur 
Tamilnadu-613402 

 

Sanjay Sarma O.V 
Department of Mechatronics  

School of Mechanical Engineering 
SASTRA University, Thanjavur 

Tamilnadu-613402 

 

 

ABSTRACT 

Automatic control has played a vital role in the advancement of 

engineering and science. It is also essential in such industrial 

operations as controlling pressure, temperature, humidity, 

viscosity and flow in the process industries. Proportional Integral 

Differential (PID) controllers marked its place in many of the 

industrial processes. Tuning a controller is the adjustment of its 

control parameters. Computational Intelligence (CI) an off shoot 

of Artificial Intelligence relies on heuristic algorithms mainly 

evolutionary computation. Swarm intelligence (SI) a derivative of 

CI, describes the collective behaviour of decentralized, self-

organized systems. Ant behaviour was the inspiration for the Meta 

heuristic optimization technique. This paper presents an 

application of an Ant Colony Optimization (ACO) algorithm to 

optimize the parameters in the design of a (PID) controller for a 

highly nonlinear conical tank system. The proposed work 

discusses in detail, the ACO, a CI technique, and its application 

over the parameter tuning of a PI controller in a real time process. 

The designed controller‟s ability in tracking a given set point is 

compared with an Internal Model Control (IMC) tuned controller. 

Keywords: PID controllers, Computational Intelligence, Ants 

Colony Optimization, Internal Modal Control, Meta heuristic 

optimization. 

1. INTRODUCTION 
The widely used PID industrial controller uses a combination of 

proportional, integral and derivative action on the control error to 

regulate its output. Owing to its simple structure, easy tuning and 

effectiveness, this technology has been a mainstay for long among 

practicing engineers [1]. PID control is a generic feedback control 

technology and it makes up 90% of automatic controllers in 

industrial control systems. The PID control was first placed in the 

market in 1939 and has remained the most widely used controller 

in process control until today. The basic function of the controller 

is to execute an algorithm based on the control engineer‟s input 

and hence to maintain the output at or around the set point [2]. 

The popularity of PID controllers is due to their functional 

simplicity, reliability and cost effectiveness. They provide robust 

and reliable performance for most systems and the PID parameters 

i.e. the proportional, integral and differential constants are tuned 

to ensure a satisfactory closed loop performance [3]. A PID 

controller improves the transient response of a system by reducing 

the overshoot, and by shortening the settling time of a system [4]. 

The PID control algorithm is used to control almost all loops in 

process industries and is also the cornerstone for many advance 

control algorithms and strategies [2]. For this control loop to 

function properly, the PID loop must be properly tuned. Standard 

methods for tuning include Ziegler-Nichols Ultimate-cycle tuning 

[5], Astrom and Hagglund [6], Cohen-Coon‟s method [7], and 

many other traditional techniques. Although new methods are 

proposed for tuning the PID controller, their usage is limited due 

to the complexities arising at the time of implementation and their 

incompetence towards nonlinear systems. 

However, despite decades of development work, 

surveys indicating the state of the art of control industrial practice 

report sobering results. For example, Ender (1993) states that, in 

his testing of thousands of control loops in hundreds of plants, it 

has been found that more than 30% of installed controllers are 

operating in manual mode and 65% of loops operating in 

automatic mode poorly tuned. The Handbook of PI and PID 

controller Tuning Rules by Aidan O.Dwyer has recorded 408 

separate sources of tuning rules since the first such rule which was 

published by Callender et al. in 1935. In a striking statistic, 293 

sources of tuning rules have been recorded since 1992 reflecting 

the upsurge of interest in the use of the PID controller recently.  

Although these many tuning rules are available in literature, most 

of the rules are applicable only for a first order system with a time 

delay. So clearly they are not meant to be applied for higher order 

nonlinear systems. In order to apply them we may go for 

approximating the system to a FOPTD (first order with time 

delay).This can primarily be done either using Taylor‟s 

approximation or Skogestad‟s approximation. But the word 

approximation itself suggests that the parameters obtained using 

the application of these traditional tuning rules on the 

approximated system will also be a very big compromise. The 

intensity of compromise depends on the magnitude of degree 

diminution. This approximation could itself fail if the higher order 

system has a complex time constant where it will be a tedious 

process and sometimes impossible.Certain methods are available 

in applying over specific systems. And hence reduces the 

acceptance of the method. 

Tuning a PID controller means setting the proportional, integral 

and derivative constant to get the best possible control for a 

particular process. Adjusting the controller gains, to satisfy the 

performance specifications like margin of stability, transient 

response and bandwidth, improves the system robustness. The 

performance of the tuned controller can be represented as a 

function of error for quantitative analysis. The commonly 

employed performance indices are Integral Absolute Error, 

Integral Squared Error, Integral of time multiplied by absolute 

value of error and Integral of time multiplied by squared error. 
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Control design is called “optimal control” when a predefined 

criterion is optimized .Optimality is just with respect to the 

criterion at hand and the real performance depends on the 

suitability of the chosen criterion. The Ant Colony Optimization 

(ACO) algorithm is a meta-heuristic algorithm for the 

approximate solution of combinatorial optimization problems that 

has been inspired by the foraging behavior of real ant colonies [9-

11]. In this algorithm, computational resources are allocated to a 

set of relatively simple agents that exploit a form of indirect 

communication mediated by the environment to find the shortest 

path from the ant nest to a set target. Ants can follow through to a 

food source because, while walking, they deposit pheromone on 

the ground, and they have a probabilistic preference for paths with 

larger amount of pheromone [12-13].  

The model of the process under study is very important 

for its tuning as the accuracy of the tuned controller parameters is 

greatly dependent upon the degree of accuracy of the system 

model with that of the real system. As per the fundamentals, it is 

possible to approximate the actual input-output mathematical 

model of a very-high order, complex, dynamic process with a 

simple model consisting of a first or second order process 

combined with a dead-time element. Thus, a common practice 

followed in industries for the purpose of control design and 

process analysis is to model the dynamics of the process near the 

operating point by simpler models such as first order process with 

time delay (FOPTD). 

Analysis of the proposed controller design gives a 

satisfactory performance over a wide range of process operations. 

Control design is called “optimal control” when a predefined 

criterion is optimized .Optimality is just with respect to the 

criterion at hand and the real performance depends on the 

suitability of the chosen criterion. Using ACO approach, global 

and local solutions could be simultaneously found for the better 

tuning of the controller parameters. The controller designed is 

independent of the mathematical model of networks, thus getting 

rid of adverse effects. Hence, in industries, the difficulties to 

achieve an optimal PID gain without prior expert knowledge can 

be overcome. 

The proposed work‟s objective is to use Ants Colony 

Optimisation in order to obtain optimal values for control 

parameters, Kp and Ki of a PI controller for a conical tank 

process, which is highly non-linear. The problem of non-linearity 

is overcome by linearizing over four suitable ranges. Hence four 

sets of PI parameters are proposed in this paper. Each of the 

parameters proportionality constant Kp and integral constant Ki 

represents a particle which changes in the search space in order to 

minimize the error function (objective function in this case). The 

error function used here is Integral Time of Absolute Errors 

(IAE). The proposed work deals with the development of the 

mathematical model for the non-linear conical tank process. The 

tuning results of conventional techniques are discussed in section 

3.  Sections 4 deal with the explanation of the ACO algorithm and 

its implementation. The comparative studies and results are given 

in section 5. 

 

 

 

 

2. DEVELOPMENT OF MATHEMATICAL 

MODEL FOR THE REAL TIME PROCESS.      

Feedback control systems are often referred to as closed-loop 

control systems. In a closed-loop control system the actuating 

error signal, which is the difference between the input signal and 

the feedback signal, is fed to the controller so as to reduce the 

error and bring the output of the system to a desired value. 

 The conical tank system, which exhibits the property of non-

linearity, is taken for the real time analysis of the designed 

controllers. The process dynamics are analysed in four segments 

so as to obtain effective models for the operating ranges. The 

operating ranges are concluded for 0-15cm as model-1, 15-27cm 

as model-2, 27-36cm as model-3 and 36-43 cm as model-4. And 

the corresponding mathematical models are obtained for these 

sections. 

2.1. Experimental Setup 

The real time experimental system consisting of a conical tank, 

reservoir and water pump, current to pressure converter, 

compressor, Differential Pressure Transmitter(DPT), ADAM 

module, and a Personal Computer which acts as a controller forms 

a closed loop system. The inflow rate to the conical tank is 

regulated by changing the stem position of the pneumatic valve by 

passing control signal from computer to the I/P converter through 

digital to analog converter (DAC) of ADAM module. The 

operation current for regulating the valve position is 4-20 mA, 

which is converted to 3-15 psi of compressed air pressure. The 

water level inside the tank is measured with the differential 

pressure transmitter which is calibrated for 0-43 cm and is 

converted to an output current range of 4-20 mA. This output 

current from DPT is passed through 1K ohms resistance 

converting it to 1-5V range, which is given to the controller 

through analog to digital converter (ADC) of ADAM module. 

 The ADAM module is used for interfacing the personal 

computer with the conical tank system thus forming a closed loop. 

It has four slots for four converter cards. In the current process, 

two slots are used, one containing Analog to Digital Converter 

(ADC) card and the other containing the Digital to Analog 

Converter (DAC) card. The ADC card has 8 analog input 

channels with a range of 4-20 mA and DAC has 4 analog output 

channels with a range of -10V to +10V accommodating both 

positive and negative terminals. The sampling rate of the module 

is 10 samples/sec and the baud rate is set to 9,600 bytes per sec 

with a 16 bit resolution. The ADAM module is connected to the 

personal computer through RS-232, serial cable. The module can 

be operated manually through console software provided and also 

with programming software like LABVIEW, MATLAB etc., Here 

MATLAB based script files are used in interfacing the controller 

with the real time system. 

MATLAB software gives us the flexibility of interfacing 

the ADAM module with the personal computer. The system is 

prepared to access the module through m-files. The controller 

equation which is discussed further in this paper is accessed 

through this programmed frame work.  

The piping and instrument diagram of the system is shown in 

Figure 1. The system specifications are shown in the Table 1. The 

ADAM interfacing module, control valve, differential pressure 
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transmitter are shown in the Figure 2.The real time system 

developed is shown in the Figure 3. 

 

 

Table 1:  System specifications 

PART NAME DETAILS 

Conical tank Stainless steel body, height – 45 cm, 

Top Diameter – 33.74cm, Bottom Diameter-0.8 cm, α=34.40. 

Differential Pressure Transmitter  Capacitance type, Range 2.5-250 mbar, 

Output 4-20 mA 

Pump Centrifugal 0.5 HP 

Control Valve Size ¼” Pneumatic actuated, 

Type: Air to open, Input 3-15 psi 

Rotameter Range 0-18 lpm 

Air regulator Size 1/4” BSP, Range 0-2.2 bar 

I/P converter Input 4-20 mA, Output 0.2-1 bar 

Pressure gauge Range 0-30 psi 

Compressor 20 psi 

 

 

Figure 1: Piping and instrument diagram of the process system 

    

    

Figure 2: Images of ADAM module, Control valve, 

Differential Pressure Transmitter. 

 

 

Figure 3: Photograph of experimental setup. 

2.2 Process Modeling: 

System identification is normally done by applying step 

response methods. In application of these methods, response of 

the conical tank for a given flow is required. Through this 

response, suitable model and model parameters are estimated. 

model selection is based upon the open loop step response of the 

system, for which the inflow valve is set to different positions by 

manual operation through ADAM console software. Owing to the 

non-linearity in the shape of the conical tank, a single range 

response cannot cover the entire range. 

 So, various trials were conducted for different flow 

ranges and valve openings to obtain a typical response curve. 

Four responses covering the full height of the conical tank were 

obtained for 0-15cm as model-1, 15-27cm as model-2, 27-36cm 

as model-3 and 36-43 cm as model-4. 

The models were checked with the two point method 

and Sunderesan Kumaraswamy [14] method. The models checked 

with the two point method were not close to the real time response 

where Sundaresan Kumaraswamy method is found to be more 

coinciding. So, in this work we follow the Sunderesan 

Kumarasamy method, with the models obtained as the response 

curves of the open loop response with the time delay inclusion 

directly, instead of Pade‟s approximation techniques. 

As per the structure of the curves, the model is predicted 

to be of the form similar to FOPTD,  

                                 Eq(2.1) 
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Where K= process gain 

=first order time constant 

d = delay time 

The maximum inflow rate to the tank is maintained at 5.467 lpm.  

The comparative response curves between the real time and 

simulated model, with reference to the range 0-15 cm .The model 

was estimated as  

    G(s)model 1            Eq(2.2) 

 

For the region 15-27 cm the mathematical model is given below . 

    G(s)model 2            Eq(2.3) 

For the region 27-36 cm the mathematical model and the 

validation curves are given below . 

     G(s)model 3              Eq(2.4) 

 

For the region 36-43 cm the mathematical model is given below.  

      G(s)model 4            Eq(2.5) 

 

The validation curves for the four models are given in Figures 4-

7. The so framed model is simulated for a step input for the set 

points whose graphs are presented in the figures. The system is 

then subjected to a step input for all the four set points and the 

corresponding real time graphs are presented comparing with the 

simulated graphs. 

 

 

Figure 4: Comparison of real time and simulated responses of 

model 1. 

 

Figure 5: Comparison of real time and simulated responses of 

model 2 

.

 

Figure 6: Comparison of real time and simulated responses of 

model 3. 

 

Figure 7: Comparison of real time and simulated responses of 

model 4. 
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3. CONVENTIONAL DESIGN TECHNIQUE 

The basic PI controller parameters are proportional 

gain, Kp and integral gain Ki. Numerous methods were developed 

over last fifty years for setting the parameters of a PID controller. 

In this paper, it is considered to proceed the tuning with Internal 

Model Control(IMC), a tuning technique proposed by Skogestad 

for PI tuning. 

 The IMC technique is one of the recent traditional 

tuning techniques that yield better values among the techniques 

available for conventional methods [2]. For a FOPTD model of 

the mentioned form in Equation-1, the IMC tuning values based 

on Skogestad proposal is given as  

                     
                Eq(3.1) 

Where τc=τd as per Skogestad, and integral time constant Ti is 

given as, Ti = , and hence, we have Ki=Kp/Ki.  Applying the 

technique for both the models, we get the IMC tuning parameters 

as in Table 2. 

Table 2: Control parameters for PID controller for the four 

models by conventional design technique 

PARAMETERS Model1 Model 2 Model 3 Model 4 

Kp 0.0727 0.1453 0.2456 0.3011 

Ki 0.0171 0.0163 0.0201 0.0193 

 

 

4. ANTS COLONY ALGORITHM 
The Ant System is a new kind of co-operative search 

algorithm inspired by the behavior of colonies of real ants. The 

ants colony algorithm was applied to travelling salesman problem 

[15-17] The blind ants are able to find astonishing good solutions 

to shortest path problems between food sources and their home 

colony. The medium used to communicate information among 

individuals regarding paths, and decide where to go, was the 

pheromone trails. A moving ant lays some pheromone on the path 

they move, thus marking the path by the substance. While an 

isolated ant moves essentially at random, it can encounter a 

previously laid trail and decide with high probability to follow it, 

and also reinforcing the trail with its own pheromone.  The 

collective behavior that emerges in a form of autocatalytic 

behavior where the more the ants following a trail, the more 

attractive that trail becomes for being followed.  

4.1 The Path of Ants 

  There is a path along which ants are walking from nest 

to the food source and vice versa. In the forties and fifties of the 

twentieth century, the French entomologist Pierre-Paul Grass´e 

[18] observed that some species of termites react to what he called 

“significant stimuli”.  If a sudden obstacle appears and the path is 

cut off, the choice is influenced   by the intensity of the 

pheromone trails left by proceeding ants.  On the shorter path 

more pheromone is laid down. The Figure 8 details the behavior 

of ants when faced with an obstacle in its search path.  

 

 

Figure 8: Path traced by ants without and with obstacle 

Ants Colony algorithm can be applied for the 

continuous function optimization problems. Here, the domain has 

to be divided into a specific number of R randomly distributed 

regions. These regions are indeed the trial solutions and act as 

local stations for the ants to move and explore. The fitness of 

these regions are first evaluated and sorted on the basis of fitness. 

When an algorithm designed for combinatorial optimization is 

used to tackle a continuous problem, the simplest approach would 

be to divide the domain of each variable into a set of intervals. 

However, when the domain of the variables is large and the 

required accuracy is high, this approach is not viable. For this 

reason, ACO algorithms have been developed, which are 

specifically designed for continuous and mixed continuous-

discrete variable       [19-20] Totally a population of ants explores 

these regions; the updating of the regions is done locally and 

globally with the local search and global search mechanism 

respectively. The distribution of local and global ants is illustrated 

in Figure 9 and the flowchart of the Ants Colony algorithm is 

presented in Figure 10. 

 

4.2 Global Search  

 The global search creates G new regions by replacing 

the weaker portions of the existing domain. In the ACO random 

walk and trial diffusion are utilized for global search. By random 

walk procedure, the ants move in new directions in search of 

newer and richer stocks of food source.  In the ACO simulation 

such a global search in the entire domain is done by process 

equivalent to crossover operation and mutation operations in G.A. 

Adding or subtracting with a probability proportional to the 

mutation probability carries out the mutation step in ACO.  The 

mutation step is reduced as per the relation. 

                     

Where „r‟ is a random number from [0, 1] „R‟ is the maximum 

step size.  „T‟ is the ratio of the current iteration number to that of 

the total number of iterations; „b‟ is a positive parameter 

controlling the degree of nonlinearity.  

The mutation radius is nonlinearly reduced with increasing 

iterations. The scaling down enables enhanced probability of 

locating maximum by concentrated search procedure called trial 

diffusion. The trial diffusion is quite similar to arithmetic cross 

over.  In this step two parents are selected at random from the 

parent population space.  The elements of the child‟s vector can 

have either (1) The corresponding element from the first parent, 
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(2) The corresponding element from the second parent and (3) A 

combination arrived from a weighted average of the above.  i.e.  If 

the random number is less than 0.5  

 

 

where α is a uniform random number in the range (0 –1).  

If the random number is in between 0.5 and 0.75 then: 

                               

And if the random number is in between 0.75 and 1.00 then 

 

4.3 Local Search 

In the local search, the ants have the capability of selecting 

regions proportional to the current pheromone values of superior 

and inferior regions.  Local updating is applied only on superior 

regions.  In an ACO, local ants select a region „i‟ given by  

 

where „i‟ is the region index and τi is the pheromone trail on 

region i at time t. After selecting the destination, the ant moves 

through a short distance. The direction of the movement will be 

the same as that of the previous direction if there is an 

improvement in the fitness. It there is no improvement it searches 

in a random direction. If improvement in fitness is found in the 

above procedure, the regions position vector is updated. 

 

 

 

Figure 9: Distribution of Ants for Local and Global search 

 

The Pheromone deposited by the ant is proportional to the 

increase in fitness. The age of the region is another important 

parameter in the ACO algorithm. The size of the ant movement in 

the local search depends on the current age. 

•Initially all the regions are assigned with the pheromone value of 

1.0  

•It better results are obtained the pheromone of region i is 

modified by 

 

•Now again the average pheromone for each region is calculated 

and the procedure is repeated as many number of times as they are 

local ants.  

•The termination criterion is the total number of iterations. 

4.4 IMPLEMENTATION OF ACO 

The parameters Kp and Ki of a PID controller are optimised using 

ACO.  

4.4.1 Selection of ACO parameters 

To start up with ACO, certain parameters need to be defined. 

Selection of these parameters decides, to a great extent, the ability 

of global minimization. The population size balances the 

requirement of global optimization and computational cost. 

Initialising the values of the parameters is as per Table 3. 

 
Figure 10: Flowchart of Ants Colony Optimization algorithm 

 

21)( 1 parentiparentichild XXX
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Table 3: Initial values of the parameters 

Parameter Specification 

Learning constant,c1 2 

Learning constant,c2 2 

 

4.4.2 Performance Index of ACO Algorithm 

The objective function considered is based on the error criterion. 

The performance of a controller is best evaluated in terms of error 

criterion. A number of such criteria are available and, in the 

proposed work, the controller‟s performance is evaluated in terms 

of an Integral of Absolute Errors (IAE) criterion, given by 

IIAE =  

The IAE weights the error with time and hence emphasizes the 

error values over a range of 0 to T, where T is the expected 

settling time. 

4.4.3 Termination Criteria 

Genetic Algorithm termination can take place either 

when the maximum numbers of iterations are performed, or when 

a satisfactory fitness value is attained.  The fitness value is the 

reciprocal of the error, since we consider for a minimization of 

objective function. In this work, the termination criterion is 

considered to be the maximum number of iterations. The 

distribution of the values for the first iteration for Kp and Ki are 

given below for all the models as shown in Figures 11 - 18. It is 

clearly seen that the values are well distributed. 

 

Figure 11: Kp distribution for model1 

 

Figure 12: Ki distribution for model 1 

 

Figure 13: Kp distribution for model2 

 

Figure 14: Ki distribution for model2 

 

Figure 15: Kp distribution for model3 

 

Figure 16: Ki distribution for model3 
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Figure 17: Kp distribution for model4 

 

 

Figure 18: Ki distribution for model4 

For each iteration, the best among the 100 particles considered as 

potential solution are chosen. Therefore the best values for 100 

iterations are sketched with respect to iterations for Kp and Ki and 

are shown in Figures 19-26 for all the four models. 

 

Figure 19: Best solutions of Kp to model 1 for 100 iterations 

 

Figure 20: Best solutions of Ki to model 1 for 100 iterations 

 

 

Figure 21: Best solutions of Kp to model 2 for 100 iterations 

 

 

Figure 22: Best solutions of Ki to model 2 for 100 iterations 
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Figure 23: Best solutions of Kp to model 3 for 100 iterations 

 

 

Figure 24: Best solutions of Ki to model 3 for 100 iterations 

 

Figure 25: Best solutions of Kp to model 4 for 100 iterations 

 

Figure 26: Best solutions of Ki to model 4 for 100 iterations 

The PI controller was formed based upon the respective 

parameters for 100 iterations, and the gbest (global best) solution 

was selected for the set of parameters which had minimum error. 

A sketch of the error based on IAE criterion for 100 iterations is 

given in Figures 27 - 30. It is seen that the error value tends to 

decrease for a larger number of iterations. As such, the algorithm 

was restricted to 100 iterations beyond which there was only a 

negligible improvement. Based on the ACO algorithm for the 

application of the PI tuning, we get the PI tuning parameters for 

the model is given in the Table 4.  

 

Figure 27: IAE values for 100 iterations of model 1 

 

Figure 28: IAE values for 100 iterations of model 2 

 

Figure 29: IAE values for 100 iterations of model 3 
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Figure 30: IAE values for 100 iterations of model 4 

 

 Table 4: Control parameters for PI controller for the four 

models got from global best by ACO technique 

PARAMETERS Model1 Model 2 Model 3 Model 4 

Kp 0.21805 0.31813 0.4797 0.5502 

Ki 0.02606 0.02278 0.0264 0.0252 

 

 5. RESULTS AND COMPARISION 

  After the tuning process is done through traditional 

methods and proposed techniques, analysis was done for their 

responses to a unit step input, with the help of real time 

application for the conical tank. The performance index 

comparison for the obtained models with the designed controllers 

is presented in Tables 5-8 for all the four models. 

 Table 5:Comparison of performance index for Model 1 

 

 Table 6: Comparison of performance index for Model 2 

 

 

 

 

Table 7: Comparison of performance index for Model 3 

 

 

Table 8: Comparison of performance index for Model 4 

 

 

 5.1 REAL TIME RESPONSE OF THE 

EXPERIMENTAL SETUP FOR SET POINT 

CONDITIONS 

The parameters designed for the experimental setup were 

implemented for 4 set points. The real time response of the system 

was observed by giving set points of 12cm, 22cm and a servo 

process including the points 32cm and 39 cm. The corresponding 

variation of level from a reference value of zero was recorded. 

The outflow valve of the tank was kept partially open and the 

position was maintained same for the various trails of controller 

settings. The responses of the conical tank for all the set points 

with various controller settings are presented in the figures 31-33. 

 

 

Figure 31: Real time response for a set point of 12 cm. 

 

METHOD IMC ACO 

IAE 192.3461 145.47 

ISE 156.8276 134.07 

MSE 0.0786 0.0671 

ITAE 2638.9 1258.4 

METHOD IMC ACO 

IAE 235.8107 201.8154 

ISE 208.3621 184.86 

MSE 0.0694 0.0616 

ITAE 4251.3 2885.4 

METHOD IMC ACO 

IAE 249.8921 216.21 

ISE 221.2638 200.1470 

MSE 0.1158 0.1008 

ITAE 6237.9 3905.3 

METHOD IMC ACO 

IAE 305.2351 270.119 

ISE 290.908 268.5775 

MSE 0.0969 0.0895 

ITAE 9469.1 6135.9 
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Figure 32: Real time response for a set point of 22 cm. 

 

Figure 33: Real time servo response for ACO and IMC 

5.2 Robustness Investigation 

The PI controllers tuned by the GA based method is compared 

with the performance index from the four major error criterion 

techniques of Integral Time of Absolute Error (ITAE), Integral of 

Absolute Error (IAE), Integral Square of Error (ISE), and Mean 

Square Error (MSE). Robustness of the controller is defined as its 

ability to tolerate a certain amount of change in the process 

parameters without causing the feedback system to go unstable. In 

order to investigate the robustness of the proposed method in the 

face of model uncertainties, the model parameters were altered. 

Here the values of gain constant K, time constant,  and delay 

time  are deviated by as much as ±15% of nominal values, In 

the proposed models for the experimental setup, the value of K is 

incremented by 15% , the value of  is incremented by 15% and 

that of d is reduced by 15%. Thus, we have the models with the 

proposed uncertainties as, modified model 1 for segment from 0-

15 cm as 

 

G1(s)model 1           Eq(5.1) 

Modified model 2 for segment 15-27 cm as 

G1(s)model 2         Eq(5.2) 

Modified model 3 for segment 27-36 cm as 

G1(s)model 3           Eq(5.3) 

Modified model 4 for segment 36-43 cm as 

G1(s)model 4           Eq(5.4) 

 

Table 9: Comparison of performance index for 15% change in 

Model 1 

 

Table 10: Comparison of performance index for 15% change 

in Model 2 

 

Table 11: Comparison of performance index for 15% change 

in Model 3 

 

 

 

 

 

 

METHOD IMC ACO 

IAE 192.3461 130.984 

ISE 156.8276 260.64 

MSE 0.0786 0.0587 

ITAE 2638.9 1095.9 

METHOD IMC ACO 

IAE 235.8107 180.77 

ISE 208.3621 162.07 

MSE 0.0694 2423.4 

ITAE 4251.3 1095.9 

METHOD IMC ACO 

IAE 249.8921 197.24 

ISE 221.2638 179.14 

MSE 0.1158 0.0908 

ITAE 6237.9 3467.2 
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Table 12: Comparison of performance index for 15% change 

in Model 4 

 

 

Table 13: Comparison of time domain specifications for 12cm 

 

 Table 14: Comparison of time domain specifications for 22cm    

                                           

6. CONCLUSION 

The developed controller tuning for various set points can be 

suitably tracked by providing a program which can allow the 

system to choose that value based on the set point selected. The 

ACO tuning for model 1 will be used for set points between 0-15 

cm, model 2 for set points between 15-27 cm, model 3 for set 

points between 27-36 cm and model 4 for set points between 36 

and 43 cm. The servo response of the system shows its stability 

over continuous change in set points at regular intervals. 

 The various results presented prove the betterness of the 

ACO tuned PI settings than the IMC tuned ones. The simulation 

responses for the models validated reflect the effectiveness of the 

GA based controller in terms of performance index. The 

performance index under the various error criteria for the 

proposed controller is always less than the IMC tuned controller. 

Above all, the real time responses confirm the validity of the 

proposed ACO based tuning for the conical tank. 

 ACO presents multiple advantages to a designer by 

operating with a reduced number of design methods to establish 

the type of the controller, giving a possibility of configuring the 

dynamic behaviour of the control system with ease, starting the 

design with a reduced amount of information about the controller 

(type and allowable range of the parameters), but keeping sight of 

the behaviour of the control system. These features are illustrated 

in this work by considering the problem of designing a control 

system for a plant of a first-order system with a time delay and 

deriving the possible results.  
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