
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

30

Design and Implementation of Cover Tree Algorithm on

CUDA-Compatible GPU

Mukesh Sharma
Department of Electronics & Computer Engineering

IIT Roorkee, Uttarakhand, India

R. C. Joshi
Department of Electronics & Computer Engineering

IIT Roorkee, Uttarakhand, India

ABSTRACT
Recently developed architecture such as Compute Unified

Device Architecture (CUDA) allows us to exploit the

computational power of Graphics Processing Units (GPU). In

this paper we propose an algorithm for implementation of Cover

tree, accelerated on the graphics processing unit (GPU). The

existing algorithm for Cover Tree implementation is for single

core CPU and is not suitable for applications with large data set

such as phylogenetic analysis in bioinformatics, in order to find

nearest neighbours in real time. As far as we know this is first

attempt made ever to implement the cover tree on GPU. The

proposed algorithm has been implemented using compute

unified device architecture (CUDA), which is available on the

NVIDIA GPU. The proposed algorithm efficiently uses on chip

shared memory in order to reduce the data amount being

transferred between offchip memory and processing elements in

the GPU. Furthermore our algorithm presents a model to

implement other distance trees on the GPU. We show some

experimental results comparing the proposed algorithm with it's

execution on pre-existing single core architecture. The results

show that the proposed algorithm has a significant speedup as

compare to the single core execution of this code.

General Terms
Algorithms

Keywords

Cover Tree, CUDA, GPU, Parallel Algorithm, Multicore

architectures.

1. INTRODUCTION
Finding the nearest neighbor of a point in a given metric is a

classical algorithmic problem which has many practical

applications such as database queries, in particular for complex

data such as multimedia, phylogenetic tree analysis [1] for the

study of evolutionary relatedness among various groups of

organisms in biology. There are many data structures and

methods to find the nearest neighbor such as naive

implementation, methods given in [2], [3], and [4], Navigating

Nets [5], Cover Tree [6]. The Cover Tree data structure is

relatively new and it was introduced first by A. Beygelzimer et

al. [6] and was proved to be efficient in terms of space

complexity as well as time complexity for constructing the tree

(preprocessing) and nearest neighbor search as compared to

other data structures and methods.

Most personal computer workstations today contain hardware

for 3D graphics acceleration called Graphics Processing Units

(GPUs). Recently, GPUs feature hardware optimized for

simultaneously performing many independent floating-point

arithmetic operations for displaying 3D models and other

graphics tasks. Thus, GPGPU programming has been successful

primarily in the scientific computing disciplines which involve a

high level of numeric computation. However, other applications

could be successful, provided those applications feature

significant parallelism. As the GPU has become increasingly

more powerful and ubiquitous, researchers have begun

exploring ways to tap its power for non-graphics, or general-

purpose (GPGPU) applications [7]. These recently developed

architectures such as NVIDIA Compute Unified Device

Architecture (CUDA) has not been explored for several bio-

informatics problems. This architecture is very cheap and

requires parallel algorithms.

The cover tree construction is a pre-requirement to find the

nearest neighbours. Since in many applications the dataset is

very large and the tree construction consumes time therefore in

all such cases the speedup in tree construction is highly required

to find the closest points in real time. As far as we know this is

vary first attempt to make the cover tree insertion algorithm

parallel in order to use the processing power of GPUs but many

other algorithms have been parallelized in different fields on

CUDA and IBM Cell architectures. K. Zhou et. al [8]

implemented real time KD-Tree construction algorithm on

GPUs and achieved significant speedup. Similar attempt has

been made by M. Schatz et. al [9] to implement sequence

alignment algorithm to achieve speedup over the well-optimized

single core CPU algorithm.

Serialization has a limit and it cannot be improved further but

parallelization is a way to make computationally intensive

algorithm more efficient. Cover Tree is one of the data structures

which has not been parallelized to exploit the computation

power of GPUs. With this, the existing algorithm for cover tree

implementation was having recursion and no previous attempts

were made to remove the recursion. We have removed the

recursion from the existing algorithm for single core CPU and

also proposed an algorithm for cover tree to construct it on using

graphics hardware. The algorithm has been tested on NVIDIA

graphics card.

2. BACKGROUND
Before proceeding further, we give a brief introduction about

cover tree. A cover tree T on a dataset S is a leveled tree. Each

level is index by an integer scale i which decreases as the tree is

descended. A node in the tree may have many children node but

it can have only one parent node. Let Ci denote the set of points

in S associated with the nodes at level i. The cover tree obeys

the following invariants for all i:

(1) Ci ⊂ Ci−1 (nesting)

(2) ∀p ∈ Ci−1, there exists a q Ci such that d(p, q) ≤ 2i and

there is exactly one q that is a parent of p. (covering tree)

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

31

(3) ∀p, q ∈ Ci, d(p, q) > 2i (separation)

In a cover tree each level is a cover for the level above it i.e.

if a point is present in level Ci, then it will also be in all the

levels below it. This is the first property nesting (see Figure 1).

Figure 1 Graphical representation of Nesting Property

[10]

Each node has only one parent and it’s distance from parent

node is less than 2i. This is called covering property (see Figure

2).

Figure 2 Graphical representation of covering tree

Property [10]

At each level i, the points at that level are 2i distance apart

from each other (see Figure 3).

Figure 3 Graphical representation of separation Property

[10]

3. RELATED WORK
Many parallel algorithms have been designed to gain speed up

over their single core implementations.

3.1 Batched GPU algorithm for set

intersection
Di Wu et. al [11] implemented the parallel algorithm to find

intersection of inverted lists . The algorithm feeds queries to

GPU in batches, thus it takes full advantage of GPU processor

cores even if problem size is small. The algorithm also proposes

an input preprocessing method which alleviate load imbalance

effectively. Their experimental results show that the batched

algorithm is much faster than the fastest CPU algorithm and

plain GPU algorithm. In order to make hundreds of GPU

shaders busy the algorithm pumps the query to GPU in batches

instead of sending them one by one. CPU is in charge of only

task scheduling and data transferring. All calculative tasks are

offloaded to GPU.

3.2 Sequences alignment using GPU
M. Schatz et. al [9] proposed an algorithm MUMmerGPU to

implement high-throughput sequence alignment algorithm

mummer on GPU. The algorithm performs parallelized exact

string alignment on the GPU. First a suffix tree is created on

CPU and of the reference sequence is constructed on the CPU

and transferred to the GPU. Then the query sequences are

transferred to the GPU, and are aligned to the tree on the GPU

using an alignment algorithm. Alignment results are temporarily

written to the GPU's memory, and then transferred in bulk to

host RAM once the alignment kernel is complete for all queries.

Finally, all maximal alignments longer than a user-supplied

value are reported by post- processing the raw alignment results

on the CPU. Thus by transferring most of the computational

work on GPU the algorithm achieved significant speedup in

performance. The results show that a significant speedup, as

much as a 10-fold, can be achieved through the use of cached

texture memory and data reordering to improve access locality.

The above related works show that many algorithms have

been implemented for execution on GPUs by offloading the

computational part of the algorithm on GPUs and significant

speedup has been achieved.

4. GPU COVER TREE CONSTRUCTION

(GCTC)
The primary task before implementing a parallel algorithm for

cover tree creation is to remove the recursion. We have adopted

a similar approach to BFS to construct the tree iteratively. The

following algorithm 1 shows the procedure:

Algorithm 1: Iterative algorithm for Cover Tree

Construction (CTC)

1) Set Q1 = { q : q ∈ Dataset }

2) Root = first element of Q1

3) Set root as parent for the dataset Q1

4) While there is element in Qi

5) For each dataset Qi

6) For each point in dataset Qi

7) Pick p ∈ Qi : p is the first element

8) Find d(p, Qi)

9) Split dataset Qi in far and near set according to d(p,

Qi)

10) If Qi is empty then remove Qi

11) If far set is not empty then

12) Insert far set into Q

13) Set parent of first point in far set, the parent of Qi

The complete and detailed algorithm for tree construction is

shown in algorithm 2, and it works as follows

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

32

First of all, a linked list is created in which each node

contains the indexes of the points in data set. Now the data set

and the linked list are copied to the global memory of device

and the distance for each point from the first point is calculated

in order to determine the level at which the root has to be

placed. Since the data sets in such applications are generally too

large and dataset has already been copied on device memory

therefore we are using another kernel to find the distance of

complete data set from the first point, which is shown in

algorithm 3. The first point is inserted as root in the tree and an

additional variable is kept in the data structure Queue, namely

'supernode', which keeps track of the parent node for the list

being processed. The steps from (6) itself are being processed in

GPU kernel. The proposed algorithm needs to synchronize all

the threads at some point (10, 12) in order to make the algorithm

work properly and to avoid any possibility of race conditions.

Now the algorithm maintains the Queue for each level and each

member of Queue is processed by different threads. As the

algorithm goes executing the loop (11), the number of parallel

running threads increases and the algorithm gets the benefit of

parallel processing power of GPU hardware. Now, in each

iteration of loop at line (11) the distance of head node from rest

of all the elements are calculated if not done previously. If the

maximum distance is zero then the data contains only identical

points and in this case all points are inserted as children of super

node. In other case, to maintain the third property of cover tree

(separation), the list is divided into two lists namely the far list

and the near list. The far list contains those elements which has

distance greater than 2i, where ―i‖ is the current level number.

The near list contains the elements having distance less than 2i,

and hence in order to maintain the property now these elements

will be inserted at lower levels as children of the first element.

The first element itself is also inserted as a child to maintain the

covering property of tree.

There are two critical sections in the code at line (19) and

(24), when updating the Queue. We need to make sure that only

one thread executes the code in critical section at a time. When

implementing the code, we have used the Euclidean distance to

find out closeness of points in dataset.

Algorithm 2: Graphics Cover Tree Construction (GCTC)

Algorithm

1) Create a linked list of data-set

2) Copy data-set and linked list on to GPU global memory

3) Find distance of first point with all points in data set and

find maximum distance

4) Calculate the top level to place the root of tree

5) Create a list Queue of lists to be processed at any level

6) Find thread ID (tid)

7) If tid = 1 then

8) Make the first element the root

9) Make the root, the super node for the first member of

list Queue

10) Synchronize all threads

11) While list Queue is not empty

12) Synchronize all threads

13) Calculate tid

14) While tid < elements[Queue]

15) If head node of list in Queue[tid] ≠ super node

for this list

16) Calculate distance of head node of list in

Queue[tid] with rest all elements in list

17) If Maximum distance is zero then

18) Make all elements in list, the children of super

node for this member of Queue

19) Remove this list member from Queue

20) Else

21) Make first element of list, the child of super

node for this list

22) Split the list in far list and near list for this

level

23) Make the super Node for this list the super

node for both the lists

24) Insert the far list in Queue

25) Tid = tid + Total number of threads

26) Copy the tree from device memory to host memory

Algorithm 3: Finding the Distance

1) Find thread ID (tid)

2) Len = Dimension of a point

3) While tid < Total number of points

4) Find c = address of point[tid]

5) Sum = 0 , j = 0

6) While j < Len

7) d1 = point [j] – c [j]

8) d1 *= d1

9) Sum = Sum + d1

10) j = j + 1

11) tid = tid + total number of threads

5. RESULTS
We measured the relative performance of our algorithm of cover

tree code by comparing the execution time of our GPU version

of cover tree code and it's single core version. The test machine

has 8 intel Xeon processors, each working on 2.0 GHz

frequency, having 6144 KB of cache and 3 GB of RAM. The

machine has an NVIDIA fx 4600 graphics card which has 112

cuda cores, and total 768 MB of GPU memory with bandwidth

67.2 GB/sec. The machine was running fedora11. The two

platforms have been taken different intentionally to show the

performance difference in traditional single core machine and

cuda GPU.

The dataset for performance measurement was taken from UCI

ML repository [12], and the size of dataset varies from few

hundred KBs to hundred of MBs. Block size has been kept

same in all cases which is 250 and 20 such blocks have been

used. Table 1 shows the results and performance improvement.

From these results, our algorithm is getting approximately up to

three time better performance than the existing algorithm for

single core CPU. Fig 4 shows the graphical representation of

results.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

33

Table 1. Results

File Name File size

(MB)

Dimensions of

point

Number of

points in file

Tree construction

time for serial code

(sec)

Tree construction

time for proposed

Algorithm (sec)

Performance

Improvement (%)

Phy_train.data 48.8 79 50000 1.1313 0.4259 62.35

Phy_test.data 97.3 78 100000 2.3807 0.8112 65.92

Covtype.data 71.1 55 581012 6.3826 1.6718 73.80

Bio_train.data 65 76 135908 7.9179 2.4421 69.16

Bio_test.data 62 74 139658 8.4430 2.4890 70.51

Comparision of Time for serial and parallel algorithms

0

1

2

3

4

5

6

7

8

9

phy_train phy_test covtype bio_train bio_test

File Names

T
im

e

Execution

Time for

single core

CPU

Execution

Time for

GPU

algorithm

Figure 4 Results

6. REFERENCES
[1] Legendre, P. 1986. Reconstructing Biogeographic History

Using Phylogenetic-Tree Analysis of Community Structure.

Systematic Zoology. Vol. 35, pp. 68-80.

[2] Karger, D., Ruhl, M. 2002. Finding Nearest Neighbors in

Growth Restricted Metrics. In Proceedings of 34th annual

ACM symposium on Theory of computing, pp. 74—750.

[3] Bentley, J. L., Weide, B. W., Yao, A. C. 1980. Optimal

Expected-Time Algorithms for Closest Point Problems.

ACM Transactions on Mathematical Software (TOMS).

Vol. 6, pp. 563—580.

[4] Clarkson, K. 1999. Nearest neighbor queries in metric

spaces, Discrete and Computational Geometry. In

Proceedings of 4th annual ACM-SIAM Symposium on

Discrete algorithms, pp. 63–93.

[5] Krauthgamer, R., Lee, J. 2004. Navigating Nets: Simple

Algorithms for Proximity Search. In Proceedings of 15th

Annual Symposium on Discrete Algorithms (SODA), pp.

791-801.

[6] Beygelzimer, A., Kakade, S., Langford, J. 2006. Cover

Trees for Nearest Neighbor. In Proceedings of 23rd

international conference on Machine learning. pp. 97—

104.

[7] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,

Krüger, J., Lefohn, A. E., Purcell, T. 2007. A Survey of

General-Purpose Computation on Graphics Hardware.

Computer Graphics Forum. Vol. 26, pp.80-113.

[8] Zhou, K., Hou, Q., Wang, R., Guo, B. 2008. Real-Time

KD-Tree Construction on Graphics Hardware. ACM

Transactions on Graphics. Vol. 27, article 127.

[9] Schatz, M., Trapnell, C., Delcher, A. L., Varshney, A.

2007. High-throughput sequence alignment using Graphics

Processing Units. BMC bioinformatics. Vol. 8.

[10] Wu, D., Zhang, F., Ao, N., Wang, F., Liu, X., Wang, G.

2009. A Batched GPU Algorithm for Set Intersection. In

Proceedings of 10th International Symposium on Pervasive

Systems, Algorithms, and Networks, pp. 752—756.

[11] Kollar, T. 2006 Fast Nearest Neighbors. Technical report.

Massachusetts Institute of Technology.

[12] UCI Machine Learning Repository, http://archive.ics.uci.

edu/ml

