
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

1

An OSCI TLM-2.0 based Platform for Grid Computing
Simulation

Mina Zolfy, Ziaddin Daie Koozehkanani
Faculty of Electrical and Computer Engineering

University of Tabriz
 Tabriz, Iran

Zainalabedin Navabi
Electrical and Computer Engineering Department,

Faculty of Engineering, Campus #2
University of Tehran

Tehran, Iran

ABSTRACT
In this paper a grid computing simulation platform, is

implemented based on the OSCI TLM-2.0 standard. TLM-2.0
standard, offered as a layer on top of the SystemC library, is
becoming a key solution in system level design. The concurrency
facility of TLM-2.0 on one side, and its ease of use on the other
side, makes it an ideal choice for modeling and simulation of
distributed systems. These days, one of the most important
subjects in distributed system researches, is the corresponding
scheduling algorithms. The simulation platform, implemented in

this work can be configured easily for any scheduling algorithm
and provides an opportunity for wide exploration in related
design space.

Keywords
Grid computing, Modeling, Simulation, Transaction level

modeling, SystemC, System level design

1. INTRODUCTION
The rapid growth of computational requirements increases the
role of middleware technologies in current researches. Although,
the processors are developing so fast, these systems cannot meet
the software engineer requirements due to the high growth of

computing. On the other hand, improvement of computer
networks decreases the connectivity latency of individual
connected nodes. Considering the new networking technologies
not only increase the speed of networks, but also make the
established connections more reliable and secure.

The above discussed advancements- utilizing fast computers on
one hand and fast and reliable networks on the other hand-
encouraged software engineers to distribute the processes on the

network of computers. Accordingly,, distributed systems
appeared, in which a group of independent but connected
computers would be responsible for a common computing task
and act as a single powerful computing engine.

The widespread availability of internet all over the world, and the
number of available individual computers, connected to the
internet were the key motivations in introducing grid computing
systems[1]. A grid computing system is an example of distributed

systems, in which, the existent facilities are being used, i.e., in a
grid system, processor nodes are the existing computers that are
connected to each other with an established network – like

internet or intranet. One of the most important related challenges
to grid computing is its modeling and simulation.

In this paper, a grid computing simulation platform is presented,
using which designers would be able to model their design and
explore the design space. The illustrated simulation platform is

implemented using the TLM-2.0 standard of Open SystemC
Initiative (OSCI)[2]. The Open SystemC Initiative works on the
definition and standardization of SystemC, as a system level
language.

Recently, . In the Transaction-Level Modeling (TLM), which is
frequently discussed in system-level design community, the
details of communication and computation components are
separated from each other.

OSCI has released two versions for the TLM standard. In TLM
1.0, channels are the basic communication elements, while in
TLM 2.0 the scheme of the sockets has been introduced as the
communication infrastructure. This new abstraction level brings
some research challenges into hardware design communities
[3][4].

In this paper the TLM-2.0 standard has been used in which the
core interfaces pass transactions between initiators and targets. A

module is named an initiator when it can initiate transactions, i.e,
when it creates new transaction objects and passes them by
calling a method of one of the core interfaces. A target is a
module considered as the final destination for a transaction.
Sockets on both sides assist these connections, i.e,. the initiator
module sends transactions via its initiator socket and the target
module receives transactions with the target socket. The TLM-2.0
classes are layered on top of the SystemC class library.

As discussed above, in this paper we deal with a modeling

methodology for some simple grid computing structures which
provide a flexible simulation environment. First in section 2 some
of the similar projects in grid computing simulation are
introduced. Then section 3illustrates the presented simulation
platform. Section 4 presents the result of an experiment on the
simulation platform. In section 5, the advantages of proposed
modeling methodology is discussed. Finally, section 6 deals with
concluding remarks anmd future works.

2. RELATED WORKS
In this section, we deal with the specification and architecture of
Grid simulation tools[5]. GridSim [6] is a toolkit for modeling

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

2

resources and simulating network connectivity with different
configurations. It is implemented as a Java API and is part of the
GridBus [7] Project. The GridSim toolkit supports the capability
for simulating different classes of heterogeneous resources, users,
applications and resource brokers. OptorSim [8] is also a Java-
based simulator that is mainly used to test data replication
strategies in a generic simulation environment for grid

applications. OptorSim has a modular architecture which is
directly based on the DataGrid project architecture. SimGrid [9]
is another toolkit which provides core functionalities for the
simulation of distributed applications in heterogeneous distributed
environments. The goal of SimGrid is to support research in the
area of distributed and parallel application scheduling on
distributed computing platforms in the range of workstations to
grids. The toolkit is a C API published under the GNU LGPL.
JFreeSim [10], is a grid simulation tool based on the MTMSMR

(Multi Task, Multi Scheduler, Multi Resource) model. JFreeSim
provides a set of universal and extensible modular libraries.
NSGrid [11] is an ns2-based grid simulator which supports
modeling of different types of grid components, resources and
network interconnections. NSGrid can simulate both CPU- and
data-intensive jobs using network-aware scheduling algorithms.
GrenchMark [12] is a Python-based framework for synthetic grid
workload generation and submission. GrenchMark centers on

generating synthetic grid workloads, which can then be used on a
real grid infrastructure or on the simulator. GridNet [13] is a
simulator used to analyze data replication strategies in grids. The
GridNet toolkit focuses on simulating data replication and the
underlying network instead of simulating distributed and parallel
applications. Bricks [14] allows the simulation of various
behaviors such as network topology of client server, resource
scheduling algorithms and processing schemes for network and

servers. It is an event driven simulator built as a framework of a
set of replaceable components. ChicSim [15] (The Chicago Grid
Simulator) is a grid simulator developed using the Parsec
simulation language. ChicSim is useful for evaluating scheduling
and replication algorithms.

3. SIMULATION PLATFORM
The abstract diagram of the platform, implemented for grid
simulation in this work, is shown in Fig. 1. A grid computing

model must cover some requisites, for being simulated in the
presented platform. Such a model should use a central broker for
managing the clients’ requests on one side and the resources’
services, on the other side. In other words, every request must
pass through the central broker, in order to being processed. In
the presented platform, each grid model consists of three main
modules; a ClientsGroup, a Broker and a ResourcesGroup

ClientsGroup is a module including all of the system’s clients.
Similarly, ResourceGroup includes all of the system’s resources.
Finally, the Broker is a module which manages the entire system.
This module is responsible for assigning resources to clients and
establishing the required connections. The platform modules are
explained in more details in the following sections.

3.1 ClientsGroup
In the SystemC core, presented with OSCI, all module
instantiations and bindings are performed in the elaboration phase

accordingly; no instantiation and dynamic binding are allowed
during the simulation. Therefore, a pool of instantiated clients is
considered inside the ClientsGroup module. Fig. 2 shows the
components of ClientsGroup module. The major components are
discussed below.

3.1.1 ClientsLogFile
ClientsLogFile is a text file, in which the simulation input data –
about client’s requests – is declared. Each line of this file includes
a single request using the format shown below:

RequestID ClientID ClientName RequestTime ServiceTime

3.1.1.1 RequestID
RequestID points to the the unique ID of the request.

3.1.1.2 ClientID
The unique ID of the client, sending the request is shown by the

Client ID. A client may send several requests during the
simulation.

3.1.1.3 AppliedTime
The AppliedTime field indicates the moment in which the request
in sent. The value of the AppliedTime field includes the time
differences between preceding requests.

3.1.1.4 ServiceTime
The ServiceTime field indicates the length of the requested
service.

3.1.2 ClientsEventGenerator

This ClientsEventGenerator component is implemented with a
SC_THREAD SystemC process. ClientsEventGenerator reads the
requests from ClientsLogFile and apply them in the determined

...

ClientsLogFile.txt
...

ConnectionManager

Client1 Client2 Client3 Client4 Clientn

ClientsGroup
ClientsEventGenerator

Figure 2- Block diagram of ClientsGroup module

Broker

ResourcesGroup

ClientsGroup

Figure 1- Abstract diagram of entire Platform

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

3

timing order. Accordingly, ClientEventGenerator activates a
client and oblige it to send the related service request.

3.1.3 ConnectionManager
The ClientsGroup module includes some instances from client
module and also some dedicated TLM-2.0 initiator sockets.
ConnectionManager is responsible for establishing connections
between client modules and initiator sockets.

3.2 ResourcesGroup
Similar to ClientsGroup module, ResourcesGroup includes a pool
of resource instances and a number of dedicated sockets.
However, they are different in terms of socket types. In
ResourceGroup, the sockets are some target-sockets which get
the service requests from the broker. What follows discusses the
main components of ResourcesGroup.

3.2.1 ResourcesLogFile
ResourcesLogFile is a text file including the simulation data
regarding the resources availability. Each line of

ResourcesLogFile contains the fields shown below:

ServiceID ResourceID ResName StartTime StopTime

3.2.1.1 ServiceID
ServiceID is the unique ID of the available service.

3.1.1.2 ResourceID
The unique ID of the resource, which is ready to serve a request is
shown by ResourceID. A resource may offer several services
during the simulation.

3.1.1.3 StartTime
The StartTime field indicates the moment in which the resource is
ready to serve a request of a client. The value of StartTime field
includes the time differences between preceding ready services.

3.1.1.4 StopTime
The StopTime field indicates the moment in which the resource
stops its grid service.

3.3 Broker
The Broker module is the manager of entire system. On one hand,
all of the clients send their requests through initiator sockets of
ClientsGroup module, and on the other hand, resources send their
readiness, to the Broker. The Broker decides about the proper
resource for any request, based on its scheduling algorithm and
sends the corresponding request to its proper resource. The main

components of the broker module are described below:

3.3.1 Memory
The Memory component stores and retrieves the required data of

the available resources and also the information about currently
scheduled requests.

3.3.2 RequestQueue
The RequestQueue is a FIFO (First In First Out) queue, which

contains the unscheduled requests, received from the
ClientsGroup.

3.3.3 Scheduler
The scheduler pops requests from the RequestQueue. Then
considering the available resources and based on the implemented
scheduling algorithm, allocates a resource to the popped requests.
If the scheduling process can not been done successfully, the
scheduler pushes the request back to the RequestQueue.

4. EXPERIMENTAL RESULT
This section presents the result of an experiment on the presented
simulation platform. In this experiment a simple scheduling
algorithm, which is FCFS (First Come First Serve) has been
implemented for the implementation of the scheduling process in
Broker module.

Figure 5 shows the input files of the experiment. The
ClientsLogFile.txt includes the information of the service requests

which is sent by the clients to the broker during the experiment
and ResourcesLogFile.txt includes the information of the
available system resources in the experiment.

...

RequestQueue

Scheduler

...

Memory

Figure 4- Block diagram of Broker module

...

ResourcesLogFile.txt

...

ResourcesEventGenerator

Res1 Res2

Res3

Res4

Resm

ResourcesGroup
ConnectionManager

Figure 3- Block diagram of ResourceGroup module

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

4

In this experiment, 6 different clients have been connected to the
broker. As shown in Fig. 5.a , C1 and C4 clients have two
requests during the simulation while other clients have only one
request. Therefore the total number of service requests in this
experiment is 8. On the other hand, 4 individual resources have

announced their readiness for providing service. As shown in Fig
5.b, the R0 resource is disconnected for a while, but again
becomes available after 100 time unit.

Considering the concurrency facilities provided in SystemC-and
therefore in OSCI TLM-2.0- the implemented simulator analyzes
the ResourcesLogFile of the experiment –shown in Fig 5.a- and
recognizes the availability of the resources shown in Fig 6.a. In
this figure the horizontal axis of the chart represents the

simulation time and the vertical axis illustrates the individual
resources. In a real grid computing system, the resources get
disconnected almost randomly, i.e., their disconnection times are
not identified in advance. In the presented simulator, in order to
have more determined experiments, the disconnection time of the
resources must be given in the corresponding input file. But these
information couldn’t be used in scheduler algorithm, because in a
real system such disconnections couldn’t be predicted.

As mentioned above, in this experiment the scheduler is using a
FCFS algorithm and no priority is defined for the coming
requests. On the other hand, we have homogeneous resources in
this experiment, so each available resource could serve any
request.

The simulation result of this experiment is shown in Fig 6.b. This
figure represents the resource scheduling for the received
requests. In Fig. 6, the horizontal axis shows the simulation time

while the vertical axis shows the individual resources. As shown
in this figure, a number of requests are scheduled only once while
others are scheduled twice or even more. For example the request

with ID equal to 6 is scheduled only once. According to the
corresponding ClientsLogFile (Fig 5.a), this request is sent from
client named C5, and as shown in Fig 6.b it is served with R1.
But Request number 5, which is sent from C4 has been scheduled
three times. The reason for these rescheduling, is the
disconnection of related resource during the scheduled service.
When a resource gets disconnected from the broker, the scheduler

component of the broker pushes the uncompleted request back to
the RequestQueue. Therefore this uncompleted request (for
example request 0 or 5 in our experiment) will be scheduled later.

5. ADVANTAGES

In this section, advantages of the proposed simulator are
discussed.

5.1 Meeting All Essential Requirements

One of the most important advantages of the proposed simulator
is its flexibility, which facilitates of the assembling all essential

requirements [16] of a grid computing simulator. In the rest of
this section, some of these requirements and the corresponding
solutions are explained.

5.1.1 Multi-tasking IT resources

Most of the resources in a grid computing system are preemptive

multi tasking resources. In these resources, submitted tasks go

through processing queue, which includes all ofthe tasks that are

being processed.

The convenience concurrency of SystemC kernel enables

designers to implement multi-tasking resources with less

0 0 C0 0 80
1 1 C1 0 20
2 2 C2 10 40
3 3 C3 20 150
4 1 C1 40 30
5 4 C4 10 100
6 5 C5 20 40
7 4 C4 30 50

a) ClientsLogFile of the experiment

0 0 R0 0 50
1 1 R1 0 200
2 2 R2 40 250
3 0 R0 60 100
4 3 R3 70 80

b) ResourcesLogFile of the experiment

Figure 5 – Inputs of the experiment

time

Resources

R3

R2

R1

R0

1 2

3

time

Resources

R3

R2

R1

R0 0

0

4 5

6

7

5

5

a) Resources of the experiment

b) Scheduling result of the simulation

Figure 6 – Simulation result of the experiment

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

5

simulation overhead. For implementing such resources, using

sc_fifo and its sc_event members simplifies the related design

process.

5.1.2 Task parallelization

A grid computing task may be parallelizable. Parallelization

could be of two types: Embarrassingly parallel tasks can be

simply split up to as many portions as available resources. The

second type of parallel tasks is more constrained and consists of a

specific number of parallel paths, regardless of the number of

available resources.

Implementing both of these parallelization types, are feasible in

proposed simulation platform. For this purpose, the C++ code of

the scheduling algorithm must be manipulated. For example, in

the parallelization of the second type, the scheduler needs to split

a popped task and send it to a number of resources.

5.1.3 Heterogeneous resources

A grid computing architecture may include heterogeneous

resources.

In the proposed simulator, the only obligation for implementing

this feature is adapting the memory component and the

scheduling algorithm, in order to take account of resources

category in the related scheduling decision.

5.1.4 Resource scheduling

The grid simulator must be able to model the scheduling policies

used by resource brokers, to determine which resource should

process an arriving task. Typical policies are task dispatch rules

and are discussed below.

5.1.4.1 Load leveling
In the Load leveling method, the task is sent to the least utilized
resource to be able to balance utilization across all resources
compatible to that task.
Implementation of this rule in the proposed simulator is

achievable by forcing the resource broker to keep track of

services that all resources have already done. For this purpose, it

is enough to update a data array whenever a successfully

completed transaction is sent to the broker on backward path.

5.1.4.2 Greedy
The task is sent to the resource using which it can be completed
faster: a function of its processing power and current utilization.
Applying this rule is as easy as implementing the decision

algorithm of resource scheduler in a greedy form (According to

the described parameters).

5.1.4.3 Round robin
In the Round robin method, the task is sent to the next compatible
resource in a defined sequence.

For the implementation of this method, the scheduler component

of the broker must keep track of defined sequence using some

SystemC sc_fifo objects.

5.1.4.4 Threshold-based
In the Threshold-based method, then tasks are sent to a preferred
resource until a certain performance parameter threshold is
passed.
Implementation of this rule could be done similar to the greedy

one, but it will be enough for the selected resource to reach the

define threshold.

5.1.5 Resource provisioning

The ability of resource provision is another feature to be

simulated. The provisioning policies can be either based on a

calendar or based on a more dynamic policy which monitors

workload arrivals and resource usage and reacts accordingly.

Simulation of these provisioning policies in conjunction with the

resource scheduling policies would allow grid designers to

determine whether the respective policies are aligned and

consistent with each other and if they provid the desired grid

performance in terms of resource availability, workload

throughput and processing times.

As described earlier, the proposed methodology supports dynamic

configuration of the grid computing structure using pool of

predefined components during the elaboration phase. Accordingly

calendar based and dynamic provisioning policies can be

implemented.

5.1.6 Non-programmer user interface

The expected users of the simulation are grid designers and

consultants, who are unfamiliar with simulation languages.

Therefore, the simulator must provide a graphical modeling

environment and user interface. It should also allow the grid

designers to write new resource scheduling and provisioning

policies and incorporate them into the simulation.

Although in our methodology all coding will be done in C++, but

for the junior users who are not familiar with the required

concepts, it could be possible to use some ready to use

components through a GUI. As one of the most important

features in the recent TLM standard is its interoperability,

designers will be able to use such components in conjunction with

other modules and systems. But this solution will restrict the

amenity of the entire methodology.

5.2 Simulation speed

Simulation time is one of the most important factors in

simulation method evaluation. In the proposed methodology, the

implemented C++ Class, models the systems directly and there is

no interface tool to decrease simulation speed. All other GRID

computing simulators spend some time for compiling, analyzing

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.8, June 2010

6

and simulating each model. But using TLM-2.0, each model is

being declared with a C++ code and its simulation includes only

compile and run time of the programming code. Therefore using

TLM-2.0 will decrease total simulation latency.

5.3 Extensibility

As mentioned in section 1, OSCI TLM-2.0 standard
consists of open source C++ classes. Therefore, all
designers can manipulate and extend those classes based
on their own modeling requirements and goals.

Moreover, most of the modeling experiences require
exploring design space with several parameters and
different implementations. TLM-2.0 allows designers to
define all design aspects such as resource scheduling
algorithms, data base managements and so on in each
unobligatory way. But in other simulators, only a restricted
set of parameters can be defined. In addition in those
simulators for changing any design feature, the simulation
kernel must be changed or adjusted.

5.4 Ease of use

Programming is one of the inevitable bases of computer
engineering field. Accordingly, all designers are familiar with at
least one object oriented programming languages.

Using our methodologies, the only required capability for each
designer is the ability of manipulating some program classes for
defining and verifying an optional design in every desired way.
Therefore designers don’t have any problem in their design space
exploration.

5.5 Availability

Another advantage of this methodology is its availability.
TLM-2.0 library is an open source package and is available
via systemc.org.

6. CONCLUSION

In this work, the TLM-2.0 based simulation platform for grid

computing systems is implemented. Because of the wide spread

configuration space of Grid computing architecture, none of the

available simulators support all of its possible features. While

OSCI TLM-2.0 standard is presented with a C++ library on top of

SystemC class library, it takes advantage of the flexibility of the

entire C++ language. The correctness and flexibility of the

proposed simulation platform is approved with the configured

experiment. Although the experiment includes homogeneous

resources, it can be easily generalized for heterogeneous

resources. The proposed platform discussed in this paper, presents

a new idea leading to some original research works in near future.

7. REFERENCES

[1] Rajkumar Buyya, Srikumar Venugopal, “A gentle
introduction to grid computing and technologies”, Computer
Society of India,CSI Communications, 2005

[2] John Aynsley, Doulos, “OSCI TLM-2.0 Language reference
manual” by the Open SystemC Initiative (OSCI),2009

[3] M. Zolfy, Z. D. Koozehkanani, M. Hashemi, and Z.
Navabi,”Test Strategi in OSCI TLM-2.0”, Proceeding of
East West Design and Test Symposium, pp. 438-441,
Russia, 2009

[4] M. Zolfy, Z. D. Koozehkanani, L. Mohammadkhanli, and Z.
Navabi,”Investigation of OSCI TLM-2.0 Employment in
Grid Computing Simulation”, Proceeding of VALID
2010France, 2010

[5] Y. El-khatib,“Survey of Grid Simulators ,Network-level
Analysis of Grid Applications,” Europe-China Grid
Internetworking, European Sixth Framework STREP

[6] R. Buyya and A. Sulistio,“Service and Utility Oriented
Distributed Computing Systems:Challenges and
Opportunities for Modeling and Simulation
Communities”,Proceeding of Simulation Symposium 2008,
pp. 68-81, Ottawa, USA

[7] R. Buyya and S. Venugopal,”The Gridbus Toolkit for
Service Oriented Grid and Utility Computing: An Overview
and Start Up report”, Grid Economics and Business Models,
pp.19-66, 2004

[8] G. Belalem and Y. Slimani, “Consistency Management for
Data Grid in OptorSim Simulator”, Proceeding of
International Conference on Multimedia and Ubiquitous
Engineering, pp. 554-560, Seoul, 2007,

[9] M. Quinson, “SimGrid: A Generic Framework for Large-
Scale Distributed Experminets”, Proceeding of IEEE 9th
International conference on Peer-to-peer computing 2009,
pp. 95-96, Seattle, USA

[10] H. Jin, J. Huang, X, Xie, and Q. Zhang, “JFreeSim: A Grid
Simulation Tool Based on MTMSMR Model”, Proceeding
of APPT 2005, pp. 332-341, 2005

[11] B. Volckaert, P. Thysebaert , M. De Leenheer, F. De Turck,
B. Dhoedt, and P. Demeester, “On the Use of NSGrid for
Accurate Grid Schedule Evaluation”. Proceedings of the
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA '04),
2004, USA, Volume 1, pp. 200-206, CSREA Press 2004,
ISBN 1-892512-23-8.

[12] A. Iosup and D. Epema, “Grenchmark:A Framework for
Analyzing, Testing and Comparing Grids”, Proceeding of
International Symposium on Cluster Computing and the
Grid, pp. 313-320,2006

[13] H. Lamehamedi, Z. Shentu, B. K. Szymanski, and E.
Deelman ,“Data Replication strategies in Grid Environment
". Proceedings of the 5th International Conference on
Algorithms and Architecture for Parallel Processing
(ICA3PP 2002), pp. 378-383, China, pp. 378-383, 2002.

[14] S. Naqvi and M. Riguidel, “Grid Sequrity Services
Simulator – A Simulation Tool for Design and Analysis of
Grid Security Solutions”, Proceeding of the 1st IEEE
International Conference on e-science and Grid Computing,
Australia, pp. 421-428, 2005

[15] K. Ranganathan and I. Foster, “Computation Scheduling and
Data Replication Algorithms for Data Grids ”,Kluwer
Academic Publishers, pp. 359-373,2004

[16] S. Bagchi, “Simulation of Grid computing
infrastructure:Challenges and solutions”,Proceeding of the
2005 Winter Simulation Conference, pp. 1773-1780.

http://www.buyya.com/gridsim/

