
International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

32

Remote File Synchronization Single-Round Algorithms
 Deepak Gupta Kalpana Sagar
Bhagwan Parshuram Institute of Technology University School of Information technology
 Delhi, India Delhi, India

ABSTRACT
Remote file synchronization has been studied extensively over
the last decade, and the existing approaches can be divided into
single-round and multi-round protocols. Single-round protocols
are preferable in scenarios involving small files and large
network latencies (e.g., web access over slow links) due
protocol complexity and computing and I/O overheads. The
best-known algorithms which are used for synchronization of
file systems across machines are rsync, set reconciliation,
Remote Differential Compression & RSYNC based on erasure

codes.

In this paper we will discuss the remote file synchronization
protocols and compare the performance of all these protocols on
different data sets.

Index Terms — Remote files synchronization (RSYNC),

Remote Differential Compression (RDC), Set

Reconciliation (Recon), GCC, HTML, EMACS.

I. INTRODUCTION
Remote file synchronization has been studied extensively over
the last decade, and the existing approaches can be divided into
single-round and multi-round protocols. Single-round protocols
are preferable in scenarios involving small files and large
network latencies (e.g., web access over slow links). The best-

known single-round protocol is the algorithm used in the widely
used rsync open-source tool for synchronization of file systems
across machines. (The same algorithm has also been
implemented in several other tools and applications.) However,
in the case of large collections and slow networks it may be
preferable to use multiple rounds to further reduce
communication costs, and a number of protocols have been
expounded. Experiments have shown that multi-round protocols

can provide significant bandwidth savings over single-round
protocols on typical data sets. However, multi-round protocols
have several disadvantages in terms of protocol complexity,
computing and I/O overheads at the two endpoints; this
motivates the search for single-round protocols that transmit
significantly less data than rsync while preserving its main
advantages.
For instance consider the case of a group of people

collaborating over email to produce a large PowerPoint
presentation, sending it back and forth as an attachment each
time they make changes. An analysis of typical incremental
changes shows that very often just a small fraction of the file
changes. Therefore, a dramatic reduction in bandwidth can be
achieved if just the changes are communicated across the
network. A change affecting 16KB in a 3.5MB file requires
about 3s to transmit over a 56Kbps modem, compared to 10

minutes for a full transfer.
Imagine that you have two files, A and B, and you wish to
update B to be the same as A. The obvious method is to
copy A onto B. Now assume that the two files are on machines
connected by a slow communications link, for example a dial up
IP link. If A is large, copying A onto B will be slow. To make it
faster you could compress A before sending it, but that will
usually only gain a factor of 2 to 4.

1.1 The setup for the file synchronization problem

Fig 1 shows the general setup for remote file
synchronization.

Fig 1 General Setup for remote file

synchronization
Fig 1 shows that, we have two files (strings) fnew, fold Є Σ*
over some alphabet Σ (most methods are character/byte

oriented), and two machines C (the client) and S (the server)
connected by a communication link. We also refer to fold as the
outdated file and to fnew as the current file. We assume that C
only has a copy of fold and S only has a copy of fnew. Our goal
is to design a protocol between the two parties that results in C
holding a copy of fnew, while minimizing the communication
cost. We limit ourselves to a single round of messages between
client and server, and measure communication cost in terms of
the total number of bits exchanged between the two parties. For

a file f, we use f[i] to denote the ith symbol of f, 0 ≤ i < |f|, and
f[i, j] to denote the block of symbols from i up to (and
including) j. We assume that each symbol consists of a constant
number of bits. All logarithms are with base 2, and we use

2
p

 and 2
p

 to denote the next larger and next smaller

power of 2 of a number p.

The above scenario arises in a number of applications, such as
synchronization of user files between different machines,
distributed file systems, remote backups, mirroring of large web
and ftp sites, content distribution networks, or web access, to
name just a few. The above said problem is also discussed in [2,

7, 15, 16].

The rest of this paper is structured as follows: Section II

summarizes the basic algorithms used by RSYNC, ERASURE
CODE, SET RECONSILIATION and RDC protocols, Section
III gives the experimental comparison between all of the above
protocols on different data sets. Finally the paper concludes in
section IV.

II. TECHNICAL PRELIMINARIES

In this section, we will describe different remote file
synchronization protocols along with their approach used to
synchronize two files which are placed on two different
machines using a communication medium.

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

33

A. The RSYNC Algorithm
The basic idea in rsync as discussed in [2] and most other

synchronization algorithms is to split a file into blocks and use
hash functions to compute hashes or “fingerprints” of the
blocks. These hashes are sent to the other machine, which looks
for matching blocks in its own file.

Fig 2.1 RSYNC

In rsync as shown in fig 2.1, the client splits its file into disjoint
blocks of some fixed size b and sends their hashes to the server.
Note that due to possible misalignments between the files, it is
necessary for the server to consider every window of size b in

fnew for a possible match with a block in fold. The complete
algorithm is as follows:

1. at the client:

Step 1: Partition fold into blocks Bi = fold [ib, (i + 1) b
− 1] of some block size b.

Step 2: For each block Bi, compute two hashes, ui = hu
(Bi) and ri = hr (Bi), and communicate them to
the server. Here, hu is a heuristic but fast hash
function, and hr is a reliable but expensive

hash.

2. at the server:

Step 3: For each pair of received hashes (ui, ri), insert
an entry (ui, ri, i) into a dictionary, using ui as

key.

Step 4: Perform a pass through fnew, starting at
position j = 0, and involving the following four
steps:

4.1: Compute the unreliable hash hu(fnew[j,
j+b−1]) on the block starting at j.

4.2: Check the dictionary for any block with
matching unreliable hash.

4.3: If found, and if the reliable hashes match,
transmit the index i of the matching block in
fold to the client, advance j by b positions, and
continue.

4.4: If none found, or if the reliable hash did not

match, transmit symbol fnew[j] to the client,
advance j by one position, and continue.

3. at the client:

Step 5: Use the incoming stream of symbols and

indices of hashes in fold to reconstruct fnew.

All symbols and indices sent from server to client in steps
(iii) and (iv) are also compressed using an algorithm similar to
gzip. A checksum on the entire file is used to detect the (fairly
unlikely) failure of both checksums, in which case the algorithm
could be repeated with different hashes, or we simply transfer
the entire file in compressed form. The reliable checksum is
implemented using MD4 (128 bits), but only two bytes of the
MD4 hash are used since this provides sufficient power for most

file sizes. The unreliable checksum is implemented as a 32-bit
“rolling checksum” that allows efficient sliding of the block
boundaries by one character, i.e., the checksum for f[j +1, j +b]
can be computed in constant time from f[j, j +b−1]. Thus, 6
bytes per block are transmitted from client to server.

B. The File Synhronization based on Erasure Codes

The basic idea underlying this approach as studied in [7] is quite
simple: essentially, erasure codes are used to convert certain
multi-round protocols into single-round protocols with similar
communication cost. In an erasure code, we are given m source
data items of some fixed size s each, which are encoded into m′
> m encoded data items of the same size s, such that if any m′ −
m of the encoded data items are lost during transmission, they
can be recovered from the m correctly received encoded data

items. Note that it is assumed here that a receiver knows which
items have been correctly received and which are lost. A
systematic erasure code is one where the encoded data items
consist of the m source data items plus m′ − m additional items.
In our application, which requires a systematic erasure code, the
source data items are hashes, and we refer to the m′− m
additional items as erasure hashes. To summarize, the algorithm
works as follows:

Step 1: The server partitions fnew recursively into blocks
from size bmax down to bmin, and for each
level computes all block hashes.

Step 2: The server applies a systematic erasure code to
each level of hashes except the top level, and

computes 2k erasure hashes for each level.

Step 3: In one message, the servers send all hashes at the
highest level to the client, plus the 2k erasure
hashes for each level.

Step 4: The client, upon receiving the message, recovers
the hashes on all levels in a top-down manner,
by first matching the top-level hashes. Then on the

next level, the hash function is applied to all
children of blocks that were already matched on a
higher level in order to compute their hashes,
and the 2k erasure hashes are used to recover the
hashes of the at most 2k blocks with no
matched ancestors.

Step 5: At the bottom level with block size bmin, we
assume that the hash is simply the content of the

block, and thus we can recover the current file at
the client.

Assuming no hash collisions, the algorithm correctly simulates
the complete multi-round algorithm. Choosing as before bmax

= 2
/n k

, bmin = lg (n), and hashes of size 4 lg n bits.

While the protocol above is efficiently implementable and has
reasonable performance, it does suffer from two main
shortcomings that make it inferior to rsync and other existing
protocols in practice.

 The protocol requires us to estimate an upper bound

on the file distance k. This adds complexity to the
implementation, and while there are efficient
protocols for this, we need to make sure that we do

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

34

not underestimate, since otherwise the client is unable
to recover the current file. Thus, to be sure we may
have to send more than needed.

 More importantly, the algorithm does not support

compression of unmatched literals but essentially
sends them in raw form as hashes. The performance
of rsync and other protocols is significantly improved
through the use of compression for literals. There are
some tricks that one can use to integrate compression
into the algorithm, but this seems to lead either to
variable size data items in the erasure coding at the

leaf level, or to severely reduced compression if we
force all items to be of the same size.

To address these problems we design another erasure-based

algorithm that works better in practice. The main change is that
now, as in rsync, hashes are sent from client to server as part of
the request, while the server uses the hashes to identify common
blocks and then sends the unmatched literals in compressed

form. In the following description note that the first three steps
are identical to the previous algorithm while the roles of client
and server exchanged.

Step 1: The client partitions fold recursively into blocks

from size bmax down to bmin, and for each level
computes all block hashes.

Step 2: The client applies a systematic erasure code to each
level i of hashes except the top level, and computes
mi erasure hashes for each level, for some

appropriate mi discussed later.

Step 3: In one message, the client sends all hashes at the
highest level to the server, plus the mi erasure
hashes for each level i.

Step 4: The server, upon receiving the message, attempts
to recover the hashes on all levels in a top-down
manner, by first matching the top-level hashes.

Then on the next level i, if the number of blocks
without any matched ancestor is at most mi, the
hash function is applied to all blocks that do have a
matched ancestor, and the mi erasure hashes are
used to recover the hashes of the other blocks.
Otherwise, we stop at the previous level of hashes.

Step 5: We now use the hashes on the lowest level that was
successfully decoded, in exactly the same way they

are used in rsync or in our variations of rsync.
Thus, common blocks are identified and all
unmatched literals are sent in compressed form to
the client.

C. The Set Reconciliation

We now discuss the set reconciliation problem which is

discussed in [15] and its relation to file synchronization. In the
set reconciliation problem, we have two machines A and B that
each holds a set of integer values SA and SB respectively. Each
host needs to find out which integer values are in the
intersection and which are in the union of the two sets, using a
minimum amount of communication. The goal is to use an
amount of communication that is proportional to the size of the
symmetric difference between the two sets, i.e., the number of

elements in (SA – SB) U (SB - SA). A protocol based on
characteristic polynomials achieves this with a single message.

We define the characteristic polynomial
()s z

of a set S =

{x1, x2… xn} as the univariate polynomial

()s z = (z - x1) (z - x2) ….. (z - xn) ….. (1)

An important property of the characteristic polynomial is that it
allows us to cancel out all terms corresponding to elements in
SA ∩ SB, by considering the ratio between the characteristic
polynomial SA and SB.

In order to determine the set of integers held by the other party,
it suffices to determine the ratio of the two polynomials. As
observed, if we know the results of evaluating both polynomials

at only k evaluation points, where k is the size of the symmetric
difference, then we can determine the coefficients

of
() / ()A Bz z 

. Thus, if the difference between the two
sets is small, then only a small amount of data has to be
communicated.

Recent work proposed a new algorithm for file synchronization,
called reconciliation puzzles, that uses set reconciliation as a

main ingredient. Each machine converts its file (string) into a
multi-set of overlapping pieces, where each piece is created at
every offset of the file according to a predetermined mask. The
hosts also create a modified de Bruijn digraph to enable
decoding of the original string from the multi-set of pieces: The
correct Eulerian path on this digraph determines the ordering of
the pieces in the original string.

Fig 2.2 Set Reconciliation

The main idea of our algorithm as shown in fig 2.2 is as
follows: We locally partition both versions of the file into
overlapping blocks using the 2-way min technique, and
represent the blocks by their hashes. We then use a set
reconciliation protocol consisting of a single message from
client to server, such that the server knows which of the blocks

in fnew are already known to the client. Then the server
transmits fnew to the client in two parts: Blocks not known to
the client are encoded using a compression algorithm similar to
gzip, while the information about the ordering of blocks within
the new file is communicated in an optimized manner that
exploits the fact that for each block there is usually only a very
small number (often just one) of other blocks that can follow
this block (i.e., that start with exactly the right characters). Here

are the details:

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

35

0. at both server and client:

Step 1: Use 2-way min to partition the local file into a

number of blocks, and compute a hash for each
block. Let SC and SS be the sets of hashes at
the client and server, respectively.

1. at the client:

Step 2: Let d be the symmetric difference between the
two sets of hashes. Use the set reconciliation
algorithms to evaluate the characteristic
polynomial SC on d randomly selected points,
and transmit the results to the server.

2. at the server:

Step 3: Use the d devaluations to calculate the
symmetric difference between SC and SS i.e.,
the hashes in SC – SS sand SS – SC.

Step 4: The server goes through fnew to identify all
blocks that are not known by the client. Any
two consecutive blocks not known to the client
are merged into one.

Step 5: The server now sends to the client the following
information in suitably encoded form:

5.1: The number of blocks in fnew

5.2: A bit vector specifying which of the hashes of
fold (sorted by value) also exist in fnew

5.3: A bit vector specifying which of the blocks in
fnew (sorted by position) also exist in fold,

5.4: The lengths of all blocks in fnew that are not in
fold,

5.5: The interiors of these blocks themselves in
suitably coded form, and

5.6: An encoding of the sequence of matched blocks
in fnew

D. The Remote Differential Compression (RDC)

For completeness, we summarize the basic RDC protocol
discussed in [16] used in LBFS [14]. While LBFS uses the
entire client file system as a seed for differential transfers, we

shall assume without loss of generality the existence of a single
seed file FC, as this shall facilitate the presentation of our
approach in the following sections.

Fig 2.3 Remote Differential Compression

The basic RDC protocol assumes that the file FS on the server
machine S needs to be transferred to the client machine C using
the seed file FC stored on the client. FS is a new version
containing incremental edits over the seed file FC. The transfer
of FS from S to C is performed as follows:

Step 1: C sends S a request to transfer files FS.

Step 2: C partitions FC into chunks by using a

fingerprinting function that is computed at every
byte position of FC. A chunk boundary is
determined in a data-dependent fashion at positions
for which the fingerprinting function satisfies a
certain condition. Next, a signature SigCk is
computed for each chunk k of FC. A
cryptographically secure hash function (SHA-1) is
used in LBFS, but any other collision resistant hash

function may be used instead.

Step 3: Using the same partitioning algorithm as in Step 2,
S independently partitions FS into chunks and
computes the chunk signatures SigSj. Steps 2 and 3
may run in parallel.

Step 4: S sends the ordered list of chunk signatures and
lengths ((SigS1, LenS1)… (SigSn, LenSn)) to C.

Note that this implicitly encodes the offsets of the
chunks in FS

Step 5: As this information is received, C compares the
received signatures against its own set of signatures
{SigC1… SigCm} computed in Step 2. C records
every distinct signature value received that does
not match one of its own signatures SigCk.

Step 6: C sends a request to S for all the chunks for which
there was no matching signature. The chunks are
requested by their offset and length in FS.

Step 7: S sends the content of the requested chunks to C.

Step 8: C reconstructs FS by using the chunks received in
Step 7, as well as its own chunks of FC that in Step
5 matched signatures sent by S.

In LBFS, the entire client file system acts as the seed file FC.
This requires maintaining a mapping from chunk signatures to
actual file chunks on disk to perform the comparison in Step 5.
For a large number of files this map may not fit in memory and

may require expensive updates on disk for any changes to the
local file system. In our approach the seed is made up of a small
set of similar files from the client file system, and can be
efficiently computed at the beginning of a transfer based on a
data structure that fits in memory.

The various protocols discussed in this section are shown in the
table 1

Protocol Name Basic Technique

RSYNC Partitioning in blocks and

compute ui and ri hashes using
hu

RSYNC based on

Erasure Codes

Partition using bmax and bmin

and compute hashes in top-
down manner

SET

RECONCILIATION

Compute hashes and
characteristic polynomial

Remote Differential

Compression (RDC)

Partitioning file into chunks and
compute signatures

Table 1

III. EXPERIMENTAL RESULTS

We now present some experimental results of all the file
synchronization algorithms on different data sets given below

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

36

1. gcc - The GNU Compiler Collection (usually shortened to
GCC) is a compiler system produced by the GNU Project
supporting various programming languages. It is used for
developing software that is required to execute on a wide
variety of hardware and/or operating systems.

2. html - HTML, which stands for HyperText Markup
Language, is the predominant markup language for web pages.

It provides a means to create structured documents by denoting
structural semantics for text such as headings, paragraphs, lists
etc as well as for links, quotes, and other items.

3. emacs – Emacs is a class of feature-rich text editors, usually

characterized by their extensibility. Emacs has, perhaps, more
editing commands compared to other editors, numbering over
1,000 commands. It also allows the user to combine these
commands into macros to automate work. The original EMACS
consisted of a set of Editor MACroS for the TECO editor

As discussed in [15, 16] there are the following an experimental
result shown in fig 3.1, fig 3.2 & fig 3.3 for different

partitioning of specified block size in bytes and calculates the
total traffic in K bytes.

GCC

0

500

1000

1500

2000

200 400 600 800

Block Size (Bytes)

Tr
af

fic
 (K

 B
yt

es
)

rsync

FBS

recon

RDC

Fig 3.1 Comparison of algorithms on the gcc data set. The

graphs from top to bottom are RDC, rsync, FBS, reconciliation

HTML

0

2000

4000

6000

8000

200 400 600 800

Block Size (Bytes)

Tr
af

fic
 (K

 B
yt

es
)

rsync

FBS

recon

RDC

Fig 3.2 Comparison of algorithms on the html data set. The

graphs from top to bottom are RDC, rsync, FBS, reconciliation

EMACS

0

1000

2000

3000

4000

5000

200 400 600 800

Block Size (Bytes)

Tr
af

fic
 (K

 B
yt

es
)

rsync

FBS

recon

RDC

Fig 3.3 Comparison of algorithms on the emacs data set. The

graphs from top to bottom are RDC, rsync, FBS, reconciliation

IV. CONCLUDING REMARK

In this paper we discussed various remote file synchronization
algorithms and their performance compared to one another.
Some of the open issues that could be topics for future research
in RDC (see also [16]) include determining whether an optimal
chunking algorithm exists with respect to slack, and applying
RDC to compressed files, other file synchronization problems is
that the current communication bounds for feasible protocols
are still a logarithmic factor from the lower bounds for most

interesting distance metrics, even for multi-round protocols (see
also [15]).

REFERENCES

[1] U. Irmak, S. Mihaylov, and T. Suel. Improved single-round
protocols for remote file synchronization. In Proc. of the IEEE

INFOCOM Conference, March 2005.
[2] A. Tridgell and P. Mackerras. The rsync algorithm.
Technical Report TR-CS-96-05, Australian National University,
June 1996.
[3] T. Schwarz, R. Bowdidge, and W. Burkhard. Low cost
comparison of file copies. In Proc. of the 10th Int. Conf. on
Distributed Computing Systems, pages 196–202, 1990.
[4] G. Cormode. Sequence Distance Embeddings. PhD thesis,

University of Warwick, January 2003.
[5] A. Evfimievski. A probabilistic algorithm for updating files
over a communication link. In Proc. of the 9th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 300–305,
January 1998.
[6] A. Orlitsky and K. Viswanathan. Practical algorithms for
interactive communication. In IEEE Int. Symp. on Information
Theory, 2001.
[7] T. Suel, P. Noel, and D. Trendafilov. Improved file

synchronization techniques for maintaining large replicated
collections over slow networks. In Proc. of the Int. Conf. on
Data Engineering, March 2004.
[8] P. Noel. An efficient algorithm for file synchronization.
Master’s thesis, Polytechnic University, 2004.
[9] D. Teodosiu, N. Bjorner, Y. Gurevich, M. Manasse, and J.
Porkka. Optimizing file replication over limited bandwidth
networks using remote differential compression. MSR-TR-

2006-157, Microsoft, 2006.
[10] A. Muthitacharoen, B. Chen, and D. Mazieres, “A
Lowbandwidth Network File System,” Proceedings of the 18th
SOSP, Banff, Canada, 10-2001.
[11] A. Tridgell, “Efficient Algorithms for Sorting and
Synchronization,” PhD thesis, Australian National University,
1999.
[12] Y. Minsky, A. Trachtenberg, and R. Zippel. Set

reconciliation with almost optimal communication complexity.
Technical Report TR2000- 1813, Cornell University, 2000.
[13] S. Agarwal, V. Chauhan, and A. Trachtenberg. Bandwidth
efficient string reconciliation using puzzles. IEEE Transactions
on Parallel and Distributed Systems, 17(11):1217–1225,
November 2006.
[14] A. Muthitacharoen, B. Chen, and D. Mazieres, “A
Lowbandwidth Network File System,” Proceedings of the 18th

SOSP, Banff, Canada, 10-2001.
[15] Hao Yan, Utku Imrak, Torsten Suel “Algorithms for Low-
Latency Remote File Synchronization,”.In Proc. of the IEEE
INFOCOM Conference, April 2008.
[16] Dan Teodosiu, Nikolaj Bjorner, Yuri Gurevich, Mark
Manasse, Joe Porkka “Optimizing File Replication over
Limited-Bandwidth Networks using Remote Differential
Compression,”, Technical Report MSR-TR-2006-157,
Microsoft Research Nov 2006

[17] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and Images.
Morgan Kaufmann, second edition, 1999.

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Web_page
http://en.wikipedia.org/wiki/Structured_document
http://en.wikipedia.org/wiki/Semantic
http://en.wikipedia.org/wiki/Feature-rich
http://en.wikipedia.org/wiki/Text_editor
http://en.wikipedia.org/wiki/Macro_(computer_science)
http://en.wikipedia.org/wiki/Text_Editor_and_Corrector

