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ABSTRACT 

In this paper, we present a swarm intelligence based technique 

for mining rules over a medical database.  Rules are a suitable 

method for representing real world medical knowledge because 

of their simplicity, uniformity, transparency, and ease of 

inference. Swarm Intelligence (SI) has been applied to the rule 

mining process as its dynamic nature provides flexibility and 

robustness to process of rule mining. Traditional methods of rule 

mining generate a large number of rules with too many terms, 

making the system unusable over medical data. In this paper, the 

attempt is to use SI as a novel method for discovering interesting 

rules in the medical domain. The performance of three different 

swarm based techniques has been compared by observing the 

output rules of rule sets used to classify data.  

Section 1 introduces the concept of swarm intelligence and rule 

mining and how these can be combined. Issues that arise in 

mining medical data are also briefly listed. Section 2 describes 

conventional rule mining techniques and states the motivation 

behind using swarm intelligence for rule mining and 

classification. Section 3 describes the various SI based 

algorithms that have been implemented in our study. Section 4 

describes the details of the experiment. Section 5 presents the 

results of the practical experiment followed by conclusions and 

future scope in section 6. 
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Data Mining, Soft Computing, Medical domain  

Keywords: Swarm intelligence, Association rule mining, Ant 
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1. INTRODUCTION 
Swarm Intelligence is an innovative distributed intelligent 

paradigm for solving optimization problems that originally took 

its inspiration from the biological examples by swarming, 

flocking and herding phenomena in vertebrates. Data Mining is 

an analytical process designed to explore large amounts of data 

for consistent patterns and/or systematic relationships between 

variables, and then to validate the findings by applying the 

detected patterns to new subsets of data.  

Association rules were proposed for expressing knowledge in a 

symbolic way. Association rule mining aims to extract interesting 

correlations, frequent patterns, associations or casual structures 

among sets of items in data repositories. Rules have advantages 

of simplicity, uniformity, transparency, and ease of inference, 

that have made them one of the most widely adopted approaches 

for representing real world medical knowledge.  

Other structures like Decision trees and Bayesian networks are 

shown to be not as adequate for medical systems as association 

rules. Association rules generally include simpler predictive 

rules, they work well with user-binned attributes, rule reliability 

is higher and rules generally refer to larger sets of patients [2]. 

Association rules have been used in medical domain to aid in 

infection detection and monitoring, to understand what drugs are 

co-prescribed with antacids, to discover frequent patterns in gene 

data, to understand interaction between proteins, to find 

cooccuring diseases, for pharmacovigilance [1], diagnosing 

hyperlipidemia [3], to determine candidates for temporal lobe 

surgery [4], and to detect common risk factors in pediatric 

diseases. 

The main issue in mining association rules on a medical data set 

is the large number of rules that are discovered, most of which 

are irrelevant. Such a large number of rules makes search slow 

and interpretation by the domain expert difficult. The commonly 

used interestingness measures of support and confidence cannot 

be effective in pruning the resultant rule set because an 

association that holds true for even a small number of patients, 

can be significant and should be considered. Also finding rules 

with a large number of terms or conditions on attribute values is 

not uncommon [5]. Some other issues in medical data [6] [7] 

include distributed and uncoordinated data collection, strong 

privacy concerns, diverse data types (image, numeric, 

categorical, missing information), complex hierarchies behind 

attributes and a comprehensive knowledge base.  

Swarm intelligence can be an effective tool in mining rules of 

high quality. The dynamic essence of SI provides flexibility and 

robustness to process of rule mining. With full control on the 

extracted rules, SI is a suitable approach to satisfy medical 

systems requirements [8]. Isues related to data collection and 

privacy can be handled with suitable additions to the core mining 

algorithm based on swarm techniques. 

2. CONVENTIONAL RULE MINING  

An association rule can be defined as: 

Let I a set of m distinct attributes, T be a transaction that 

contains a set of items such that T is a subset of I, D be a 

database with different transaction records Ts. An association 

rule is an implication in the form of X ->Y, where X, Y are 

subsets of I and X ∩ Y = {null}. Any set of items is called an 

itemset. X is called antecedent while Y is called consequent, the 

rule means X implies Y with a certain degree of support and 

confidence. If the consequent is a 1-itemset, it can function as a 

class label and the rule can be used for classification purpose.  
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Support(s) of an association rule is defined as the 

percentage/fraction of records that contain X U Y to the total 

number of records in the database. Confidence of an association 

rule is defined as the percentage/fraction of the number of 

transactions that contain X U Y to the total number of records 

that contain X. Confidence is a measure of how strong the 

association rule is.  

Rule mining problem is usually decomposed into two 

subproblems. One is to find those itemsets whose occurrences 

exceed a predefined threshold in the database ( defined by the 

support); those itemsets are called frequent or large itemsets. The 

second problem is to generate association rules from those large 

itemsets with the constraints of minimum confidence. Generally, 

an association rule mining algorithm contains the following 

steps: 

• The set of candidate k-itemsets is generated by adding one item 

at a time to large (k-1)itemsets generated in the previous 

iteration. 

• Supports for the candidate k-itemsets are generated by a scan 

over the database. 

• Itemsets that do not have the minimum support are discarded 

and the remaining itemsets are called large k-itemsets. 

This process is repeated until no more large itemsets are found. 

Most approaches to rule mining have been based on candidate 

generation using an Apriori [9] style algorithm or FP-tree [10] 

style approaches to mine rules without candidate generation. 

Efforts have been made to improve the performance of these 

techniques by either i) reducing the number of passes over the 

database [11] [12], or ii) sampling data [13] [14] [15], or iii) 

adding extra constraints on the structure of rules [16] [17] or iv) 

parallelization of operations [18] [19] [20] or v) a combination of 

these. But these different strategies still do not return accurate 

results in a reasonable time.  

SI based techniques perform a global search and cope better with 

attribute interaction than the greedy rule induction algorithms 

often used in data mining. The improvements are reflected in 

rules output to the user and classification systems constructed 

using these rules. 

3. SWARM INTELLIGENCE BASED RULE 

MINING 

A swarm can be viewed as a group of agents cooperating to 

achieve some purposeful behavior and achieve some goal. The 

agents use simple local rules to govern their actions and via the 

interactions of the entire group, the swarm achieves its 

objectives. 

A type of self-organization emerges from the collection of actions 

of the group. An autonomous agent is a subsystem that interacts 

with its environment, which probably consists of other agents, 

but acts relatively independently from all other agents [21]. The 

autonomous agent does not follow commands from a leader, or 

some global plan [22]. 

(PSO) and Ant Colonies Optimization (ACO) are currently the 

most popular algorithms in the area of swarm intelligence. 

3.1 Ant Colony Optimisation (ACO) 

Each ant can be regarded as an agent that incrementally 

constructs/modifies a solution for the target problem. In our case 

the target problem is the discovery of rules. The main steps of 

the ACO algorithm are given below: 

 

TrainingSet = {all training cases}; 

DiscoveredRuleList = [];  

WHILE (TrainingSet >=Max_Uncovered_Cases) 

i = 1; /* ant index */ 

No_Ants_Converg = 1;  

Initialize all trails with the same amount of pheromone; 

REPEAT 

Anti starts with an empty rule and incrementally constructs a 

classification rule Ri, by adding one term at a time to the current 

rule; 

Prune rule Ri; 

Update the pheromone of all trails, by increasing pheromone in 

the trail followed by Anti and decreasing pheromone in the other 

trails; 

IF (Ri is equal to Ri – 1) /* update convergence test */ 

THEN No_Ants_Converge = No_Ants_Converge + 1; 

ELSE No_Ants_Converge = 1; 

END IF 

i = i + 1; 

UNTIL (i >= No_of_Ants) OR 

(No_Ants_Converg >= No_Rules_Converg) 

Choose the best rule Rbest among all rules Ri constructed by all 

the ants; 

Add rule Rbest to DiscoveredRuleList; 

TrainingSet=TrainingSet - {set of cases correctly covered by 

Rbest}; 

END WHILE 

Initially, for all attributes i and their possible values j, a given 

initial amount of pheromone is deposited in the respective 

position. This initial normalized amount is proportional to the 

total number of values of all attributes, and is given by Eq. (1). 

τi,j (t=0) = 1/Σi 
a bi                    (1) 

 

where a is the total number of attributes and bi is the number of 

possible values of attribute i. At the completion of a rule, the 

amount of pheromone in the i|j (attributes i | values j) that 

constitute the rule must be updated. The pheromone updating is 

performed as follows: for all terms i|j belonging to the rule 

created by the ant, the amount of pheromone is increased 

proportionally to rule quality Q, according to Eq. (2) and (3).  

 

τij (t 1) = τij (t) + τij (t) * Q, for all i |  j €to the rule    (2) 
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where rule quality, 

Q=(TruePos/(TruePos+FalseNeg))*(TrueNeg/(FalsePos+

TrueNeg))        (3) 
The heuristic criterion for choosing an attribute i with value j is 

based on the amount of information (entropy measurement) 

associated with the attribute value pair. For rule pruning, one 

condition is removed iteratively from the rule and Q is measured. 

The condition whose removal leads to maximum improvement in 

Q is removed [23] [24]. ACO works well with nominal and 

categorical attributes. Continuous (real valued) attributes have to 

be discretized first. 

3.2 Particle Swarm Optimisation (PSO) 

PSO algorithms make use of particles moving in an n-

dimensional space to search for solutions for an n-variable 

function optimization problem. A particle decides where to move 

next, considering its own experience, which is the memory of its 

best past position, and the experience of its most successful 

neighbour. The pseudo-code of basic PSO is as follows: 

 

Initiate_Swarm() 

{ 

For p=1 to number of particles 

Evaluate(p) 

Update_past_experience(p) 

Update_neighbourhood_best(p,k) 

For d=1 to number of Dimensions 

Move(p,d)} 

Until Criterion 

} 

 

The particle’s previous best position (Pid) and the best position 

in the neighbourhood (Pgd) are maintained and updated. There is 

also a velocity (vid) associated with each dimension, which is an 

increment to be made, in each iteration, to the dimension 

associated (Eq. (4)), thus making the particle change its position 

in the search space. 

vid(t)=χ(vid(t-1)+φ1id(Pid-xid(t-1))+φ2id(Pgd -xid (t-1)))       

xid(t)=xid(t)+ vid(t)                                                         (4) 

φ1 and φ2 are random weights defined by an upper limit, χ is a 

constriction coefficient. The general effect of Eq. (4) is that each 

particle oscillates in the search space between its previous best 

position and the best position of its best neighbour, hopefully 

finding new best points during its trajectory. 

The formula used to evaluate a rule and therefore set its 

quality is given by Eq. (5)  

Q(X)= sensitivity*specificity,  if 0.0<=xi<=1.0 for all i€d 

otherwise Q(X)=-1.0                                                     (5) 
This formula penalizes a particle which has moved out of legal 

values, assigning it with negative value and thereby, forcing it to 

return to the search space. PSO is low in spatial complexity [25]. 

 

3.3 Combined ACO/PSO 
 

It uses a sequential covering approach to discover one 

classification rule at a time according to the following algorithm. 

 

RS = {}/* initially, Rule Set is empty */ 

FOR EACH class C  

TS = {all training samples belonging to all classes} 

WHILE (number of uncovered training examples of class C > 

MaxUncovExampPerClass) 

Run the PSO/ACO algorithm to discover the best rule predicting 

class C, called BestRule 

RS = RS U BestRule 

TS= TS–{training samples correctly covered by discovered rule} 

END WHILE 

END FOR 

END FOR 

 

Each particle represents the antecedent of a candidate 

classification rule. The rule’s class is fixed for all the particles in 

each run of the algorithm since each run of the algorithm aims at 

discovering the best rule for a fixed class. This has the advantage 

of avoiding the problem of having different particles predicting 

different classes in the same population. Continuous values can 

be directly represented as a component of the vector associated 

with a particle and processed using the standard PSO. A simple 

approach would be to define upper and lower bounds for the 

continuous attribute in the rule. A particle contains a number of 

pheromone matrices equal to number of categorical attributes in 

the data set. Each pheromone matrix contains values for 

pheromones for each possible value that that attribute can take 

plus a flag value (the indifference flag) indicating whether or not 

the attribute is selected to occur in the decoded rule. Updating a 

particle’s pheromone (the probabilities of choosing attribute 

values) is done as follows: 

τcij= τcij + (φ1*Qc ) , for all ij belongs to CurrentRule     (6) 

τcij= τcij + (φ2*QP ) , for all ij belongs to BestPastRule   (7) 

τcij= τcij + (φ3*Q1) , for all ij belongs to BestLocalRule  (8) 

τcij= τcij  / ( Σ
ai+1 j=1 τcij  )                                                 (9) 

Where τcij is the amount of pheromone in the current particle c, 

for attribute i, for value j. Q is the quality of the rule as given by 

Eq. (3). φis a random learning factor in the range 0..1. 

The population is initialized in positions with nonzero qualities 

by taking a record from the class to be predicted and using its 

terms (attribute values) as the rule antecedent. Then a pruning 

procedure based on term quality is initially applied, and for other 

iterations a method similar to ACO’s pruning is applied for the 

final rule produced by each run of the hybrid PSO/ACO 

algorithm [26]. 
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3.4 ACO/PSO with new Quality Measure-PF 
This algorithm uses a sequential covering approach similar to 

ACO/PSO to discover one classification rule at a time. 

RS = {}  

FOR EACH class C 

TS = {All training examples belonging to any class} 

WHILE (Number of uncovered training examples belonging to 

class C > MaxUncovExampPerClass) 

Run the NRalgorithm to discover best nominal rule predicting 

class C called Rule 

Run the standard PSO algorithm to add continuous terms to Rule, 

and return the best discovered rule BestRule 

Prune BestRule 

RS = RS ∪  BestRule 

TS = TS −{training examples covered by discovered rule} 

ENDWHILE 

END FOR 

Order rules in RS by descending Quality 

Prune RS removing unnecessary terms and/or rules 

A single iteration of this loop only discovers rules based on 

nominal attributes, returning the best discovered rule. For the 

continuous part of the rule, a conventional PSO algorithm 

(applied only to numeric attributes) with constriction is used. 

The vector to be optimized consists of two dimensions per 

continuous attribute, one for an upper bound and one for a lower 

bound. At every particle evaluation, the vector is converted to a 

set of terms and added to Rule produced by the algorithm for 

fitness evaluation. If two bounds cross over, both terms are 

omitted from decoded rule, but Personal Best position is still 

updated in those dimensions using Eq. (10) 

vid = χ (vid + c1φ1(Pid-xid) + c2φ2(Pgd -xid))) 

xid=xid+ vid                                                                                                       (10) 

To improve the performance of the PSO algorithm, each 

particle’s initial position is set to a uniformly distributed position 

between the value of a randomly chosen seed example’s 

continuous attribute and that value added to the range for that 

attribute (for upper bound) and at a uniformly distributed 

position between an example’s value and an example’s value 

minus the range for that attribute (for lower bound). The 

particles are prevented from fully converging using the Min-Max 

system. After the BestRule has been generated it is then added to 

the rule set after being pruned using ACO’s pruning method. But 

since this is computationally expensive, ACO pruning is applied 

only if the number of terms is less than a fixed number. Nominal 

attributes are handled by the NR algorithm as follows: 

Initialise population 

REPEAT for MaxInterations 

FOR every particle x 

Set Rule Rx = “IF {null} THEN C” 

FOR every dimension d in x 

Use roulette selection to choose whether the state should be set 

to off or on. If it is on then the corresponding attribute-value pair 

set in the initialization will be added to Rx; otherwise (i.e., if off 

is selected) nothing will be added. 

LOOP 

Calculate Quality Qx of Rx 

P = x’s past best state 

Qp = P’s quality 

IF Qx > Qp 

Qp = Qx 

P = x 

END IF 

LOOP 

FOR every particle x 

P = x’s past best state 

N = the best state ever held by a neighbour of x according to N’s 

quality QN 

FOR every dimension d in x 

IF Pd = Nd THEN pheromone entry corresponding to the value of 

Nd in the current xd is increased by Qp 

ELSE IF Pd = off AND seeding term for xd ≠ Nd THEN 

pheromone entry for the off state in xd is increased by Qp 

ELSE 

pheromone entry corresponding to the value of Nd in the current 

xd is increased by Qp 

END IF 

Normalize pheromone entries 

LOOP 

LOOP 

LOOP 

RETURN best rule discovered 

Each particle has four neighbours. Initially, pheromone state in 

each dimension is set to 0.9 for on and 0.1 for off. Quality, Q is 

defined using Precision as given by Eq. (11): 

Laplace-corrected Precision = (1+TP)/(1+TP+FP)     

If TP<MinTP, Q=Laplace-Corrected Precision∗ 0.1, 

ELSE Q=Laplace-Corrected Precision                       (11) 

where MinTP is the least number of correctly covered examples 

that a rule has to cover [27]. 

 

4. EXPERIMENTAL SETUP 

4.1 Database 
The data sets used for rule mining are from the STULONG data 

set. STULONG is an epidemiologic study carried out in order to 

elaborate the risk factors of atherosclerosis in a population of 

middle aged men [28]. Our study focuses on identifying the 
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relationship between alcohol intake, smoking, cholesterol and 

hypertension. The first three categories of attributes can then be 

used to characterize a patient as hypertensive or not. Data 

corresponding to 1417 persons and 14 attributes has been 

considered. These attributes were manually extracted. 

Continuous attributes were discretized for ACO using field 

knowledge of medical experts. Nominal and categorical data was 

cleaned to handle missing values. ACO/PSO algorithms can 

handle both nominal and continuous attributes. 

4.2 Setting of Variable Values 
For ACO, the following parameter values were taken: Number of 

Ants=2000, Minimum number of records per rule=15, maximum 

number of uncovered records=20 and number of rules to test ant 

convergence=30. For PSO/ACO and PSO/ACO with PF, number 

of particles=100 and number of iterations=200. For PSO/ACO 

with PF, ACO pruning was used if rule has less than 20 terms. 

The value for minimum number of true positives=15, constriction 

factor χ=0.729, social and personal learning coefficients, 

c1=c2=2.05. Maximum number of uncovered examples per class 

was set to 20. Also, the constant factor of 0.1 in Eq. (11) was 

replaced with 0.4 in order to penalize false positives more 

severely, as this is desirable in medical domain. These values are 

not optimized.  

5. RESULTS  
The first criterion used to analyze the performance of the various 

implemented techniques is predictive accuracy, defined in terms 

of cross validation accuracy rate, which in turn equals quotient 

between number of test cases correctly classified and the total 

number of test cases. A 10-fold cross validation was used with 

value of k=10. The other two criteria for performance evaluation 

are the number of rules in a rule set and the number of attribute 

value combinations or conditions per rule.  

Table 1 summarizes the results obtained by the ACO, combined 

ACO/PSO and ACO/PSO with Precision Fitness algorithms. 

Table 1: Comparison between ACO, ACO/PSO and 

ACO/PSO with PF 

 Accuracy No. of rules 

in rule set 
 No. of 

conditions in rule 

ACO 80.75% 18.20± 0.87 13.80± 1.89 

ACO/PSO 78.1% 15.1± 2.27 10.84± 0.38 

ACO/PSO 

with new 

Q 

87.43% 12.3± 1.0 7.81± 0.16 

6. CONCLUSIONS AND FUTURE WORK 
The rule quality can be viewed in terms of its accuracy and 

comprehensibility. A rule will be interesting to a medical 

practitioner if it is accurate and easily understood. All three 

techniques studied provide accuracy comparable to other non SI 

based mining approaches. A system for rule mining over medical 

data needs to include and consider rules with small values of 

support without making the system unwieldy. A system 

generating large number of rules or rules with too many 

conditions in the antecedent, tends to confuse the end user and is 

not usable for medical knowledge discovery. ACO/PSO with new 

quality measure of fitness performs the best in terms of 

comprehensibility and accuracy. This method also penalizes false 

positives severely, which is a desirable property for data mining 

in the medical domain. One drawback of the approach is the 

complexity of the algorithm. One possible further research 

direction is to introduce new data structures to reduce execution 

time. Certain domain specific constraints can be applied in the 

preprocessing phase to reduce the input data size. Also, further 

work needs to be carried out to arrive at the optimal values for 

variables in swarm intelligence algorithms. 
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