
International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

14

Operational profile based reliability assessment of COTS

software
Tirthankar Gayen

IIT Kharagpur,

India

ABSTRACT

In this paper, approaches to assess the reliability of the COTS

software for a given or specified operation profile have been

analyzed using the proposed methods for White box and Black

box approaches. In the black box approach the fragile point

analysis is used to assess the reliability of the software, for a

given operational profile, using the functional or design

specification of the software.

General Terms

COTS: Commercial-off-the-shelf

CDG: Component dependency graph

CFG: Control flow graph

Keywords

COTS, CDG, CFG, software, reliability

1. INTRODUCTION

Most COTS software (such as third-party libraries or

executables) rarely provides access to source code. For such a

software component, with a given or specified operation profile,

the reliability assessment can be made by two ways:

i) White box solution

ii) Black box solution

1.1 White box solution

In white box solution the black box component is converted to a

white-box component using a suitable disassembler tool [4]

[Gayen, Misra ,2008], which converts the binary executables or

the object files to its equivalent assembly language code. From

the assembly language, the CFG is generated, and from the CFG,

the following evaluations are made.

Fault discovery evaluation

According to Norman Schneidewind [1] the expected number of

faults at node n is given by

E(n)= p(n)* f (n) (1)

where p(n) is the probability of traversing node n,

 determined by the branch probabilities

 f (n) is the fault count in node n

But this may not give the accurate results in all cases as there

is no consideration of the probability of occurrence of the

faults resulting in errors.

Fig 1. An example CDG with branch probabilities

From Fig. 1, the probability of traversing node B from A

 i.e p(B, A) =1

the probability of traversing node D from B i.e p(D,B) = 0.2

the probability of traversing node D from C i.e p(D,C) = 0.4

 the probability of traversing node F from D i.e p(F, D) =0.4

and so on.

Hence, the probability of traversing node B i.e p(B)

= p(B, A)= 1

 the probability of traversing node C i.e p(C)

= p(B)* p(C,B) = 1*0.8 = 0.8

 the probability of traversing node D i.e p(D)

= p(C)* p(D,C) + p(B)* p(D,B)

 = 0.8*0.4 + 1*0.2 = 0.52

 For a node n
 let there be k number of errors and let the

probability of occurrence of error i (causing failure) be ci .

Hence, the probability of non-occurrence of error i = 1- ci.

The probability of occurrence of errors 1,2,3..,k are c1,c2, c3, …

ck respectively for a particular operational profile. Hence, the

A

C

B

D

F E

1

0. 2

0. 8

0. 6

0. 4

j

k

0.4

0. 6

R. B Misra
IIT Kharagpur,

India

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

15

probability for non-occurrence of errors or the probability of

success or the reliability of software given as

R(n) = (1- c1) * (1- c2) * … * (1- ck) ……k times

The branch probabilities, can be easily determined from a given

operation profile. The faults, causing errors at node n and their

probability of occurrence is to be determined. The question is

how to find the faults at node n with their probability of

occurrence?

According to Sanyal et. al [2] the user can approximate

the fault probability using the type of assembly level instructions

and the number of such instructions that will be typically needed

to manifest, the COTS function. For example, division and

floating point instructions are more likely to failure, interrupt,

and handlers depict transient characteristics and so on. This has

been handled by [Gayen, Misra ,2009] [3,5] for the reliability

assessment of COTS software.

1.2 Black box solution

In this process, a given black-box COTS component is used for a

specific purpose, having some desired outputs. Consider the

desired outputs as a set of n elements represented as {b1, b2, …,

bn}, where bi corresponds to a specific output i. Based upon the

functionality of the component, the input domain is divided into

equivalent classes of subdomains and from each subdomain, test

cases are selected. The boundary value analysis is also performed

to select the test cases.

 Let the test cases selected form a set of k inputs

represented as {a1,a2, … , ak}. For a given or specified

operation profile and the input domain, a survey of several runs

of the component is taken into consideration with the test inputs

{a1,a2, … , ak} selected from the input domain. From the survey

made the results are noted.

Let the conditional probability that the output bk is produced, for

the input aj is P(bk/aj)

 But, every output bk produced for input aj may not be

correct, desired or acceptable. Therefore, an acceptance criteria

cj is taken into consideration. When the output is correct or

desired cj=1 else cj=0.

Hence, the probability that the correct output bk is produced is

P(bk) for all inputs {a1,a2, … , ak} is

 J

 P(bk) = ∑ P(bk/aj)*P(aj)*cj

 j=1

Hence, the probability of obtaining the desired output or the

reliability is

 n

 P(b1) + P(b2) + P(b3) +… + P(bn) = ∑ P(bi)

i=1

The limitation of this process is that, it cannot be guaranteed that

the test cases selected from the boundary value analysis and

equivalent class partitioning cover all the execution scenarios or

adequate enough to detect all the faults.

 In this case the maximum coverage of all the execution

scenarios can be obtained by keeping a record of all the inputs

applied and the outputs obtained, for several runs of the

program, for a given or specified operation profile.

 This becomes feasible when the number of inputs or

the input domain is small. But as the size of the input domain

increases, the uncertainty in prediction also increases.

Consider software with n input variables. Variable V1

may have k1 number of values, V2 may have k2 and so on. Fig. 4

below shows all possible combinations of input variables V1, V2,

…Vn leading to outputs. The nodes in a particular column

indicate all possible values that a variable Vi can have. The

various paths from V1 to Vn represents all possible combination

of input variables the application can have resulting in output.

.

Fig. 4. The graph showing all possible combinations of input variables (V1,

V2, …Vn) leading to outputs

For the software whose specification is available, the test cases

can be reduced by performing the fragile point analysis.

2. FRAGILE POINT ANALYSIS
Fragile or weak point analysis is done in several areas like

volcanic activity detection, where the possibility of the volcanic

activity is detected by checking the fragile or weak areas of the

earth‟s crust which are most susceptible or active for volcanic

eruption. In an air tube, the worn out areas are the fragile or

weak points susceptible for air leakage. In some cases some

patch work may have been done in the worn out areas to handle

the leakage if it occurs.

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

16

Similarly for software whose specification is available,

the weak points are those weak or fragile areas of the

specification which are susceptible to error.

For example, a software which is specified to evaluate the roots

of a quadratic equation of the form ax
2
 + bx + c = 0, with a, b

and c as given inputs. The fragile points are:-

i) The input value of a- If a = 0, then there can be a possibility of

divide by zero error.

ii) If b2
 < 4ac – There can be a possibility of square root of a

 negative number error.

iii) For b>>2a, (-b-
2 4b ac) >> 2a, (-b +

2 4b ac)

>> 2a – There can be a possibility of overflow error due to

divide operation.

iv) The values of b2
, 4ac – There can be a possibility of

overflow, if the values of b2 or 4ac are large

enough to exceed the maximum allowable value.

 In some cases the fragile portions has been handled by the

software itself (similar to the patch work done in the worn

out areas of the air tube). For the above example, the

software may have a built in feature to check whether a=0

for every input a and proceed accordingly. For example it

may not accept the input a when it is equal to zero,

generating appropriate messages asking to re-enter the value

of a. Hence, before performing any test activity it is

advisable to detect the fragile points of the software. Once

they are detected, appropriate test cases are used to detect

the possibility of error at the fragile points. If an error

occurs, then the test condition is noted, and all the input

combinations/test cases which satisfies the test condition are

eliminated from the test suite. From the operational profile,

the probability of occurrence of all input combinations

which satisfies the error condition is obtained. The

reliability is evaluated using these values according to the

proposed approach.

 There may be several problems related to data

inconsistency for a database management system. For

example, in an online banking system, as per the design

specification, for a joint account any one of the account

holders should be allowed to login at a time for doing the

transactions. Otherwise, there may result in data

inconsistency. Consider a situation, where Rs 1000 is

displayed as the account balance, to both the account

holders of the joint account who wants to draw Rs 600.

Since, the balance that is being displayed is sufficient to

draw Rs 600, both the account holders places their option

simultaneously. In such cases, there remain chances of data

inconsistency, resulting in erroneous data, if such things are

not handled properly. Therefore, the fragile point analysis

checks these vulnerable points for the possibility of error.

3. THE PROPOSED APPROACH
For software with given specifications, the rules to predict the

reliability of the software are as follows:-

i) From the specification of the software, detect the

fragile points of the software.

ii) Appropriate test cases are used to detect the

possibility of error at the fragile point.

iii) If an error is detected, the test condition is noted,

and all the input combinations/test cases which

satisfy the test condition are eliminated from the

test suite.

iv) From the operational profile, the probability of

occurrence of all input combinations Pr(i,j), which

satisfies the condition i for the fragile point j is

obtained.

v) Step (iv) is repeated for all the conditions i. for the

fragile point j

Mathematically,

Pr(j) =

1

m

i

 Pr(i,j),

Where m is the number of conditions for

fragile point j

vi) Steps (ii) to (iv) are repeated for all the fragile

points j, and the probability of occurrence Pr(j)

obtained in step (v) is added at every iteration to

obtain Q.

Mathematically,

Q =

1

n

j

 Pr(j)

Where n is the total number of fragile points.

vii) The probability of operational correctness Rop is

obtained as 1-Q

Mathematically, Rop= 1-Q

viii) From the remaining input space test cases are

selected in accordance with the equivalent class

partitioning and boundary value analysis.

ix) The test cases from step (viii) are applied as inputs

the probability of logical correctness Rlog is

evaluated using Weiss and Weyuker „s model. [3,6]

x) The overall reliability R is the product of Rop and

Rlog.

 Mathematically, R = Rop * Rlog

 Hence, using the black-box approach one can predict the

reliability of a specification based software for a given

operational profile. This approach is extremely useful as it

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

17

detects most of the errors including the operational errors. It

also eliminates a whole of lot test cases which would

otherwise have been required to test the software.

4. ILLUSTRATION
A software component which evaluates b!/5 - a2/ √(a-b) in the

form of an executable file (i.e ‘exp.exe‟) is executed as shown in

Fig. 5.

Fig. 5 The execution of „exp.exe’

Let us consider the input data to be a random value in

the application domain. For „a‟ let the specified domain be from -

200 to 50000 and for „b‟ let the specified domain be from 0 to

15. The possible errors are as follows:-

Out of range data set for ‘a’ = {[46341 …, 50000]}

The total number of integer data in this range = 3660

Probability of occurrence in this range =3660/50201=0.0729

Probability of non-occurrence in this range (executable range for

„a‟) =1- 0.0729 = 0.927

Out of range data set for „b‟ = {[13 …, 15]}

The total number of integer data in this range = 3

Probability of occurrence in this range =3/16= 0.1875

Probability of non-occurrence in this range (executable range for

„b‟) =1-0.1875 = 0.8125

Divide by zero error occurs when a=b

Region of commonality between a and b is [0, … , 15]

Out of which the executable range is [0,…, 12]

The total number of integer data in this range = 13

The probability of occurrence of a=b is =1/13= 0.07692

The probability of non-occurrence of a=b = 1- 0.07692=0.923

Square root of a negative number occurs when a<b

The total number of integer data for a<b in the executable range

= 12*11/2 + 13*200 = 2666

The probability of occurrence of a<b = 2666/(13*46541)= 0.0044

The probability of non-occurrence of a<b = 1- 0.0044 =0.99559

Logical error occurs when the output of a program does not

match with the specified output is evaluated using Weiss and

Weyuker et. al [3,6] „s model

Consider an example where the test suite consists of 4 test cases

i.e

T = {(23, 12), (104, 4), (200, 10), (824, 7)}

Let a= 23, b=12 be a test case

The specified output should be 479001600/5 - 529/3

=95800143.667

The obtained output is = 95800144

|Difference| = 95800144 - 95800143.667 = 0.333

Let a=104, b = 4 be another test case

The specified output should be 24/5 - 10816/10 = -1076.8

The obtained output is = -1077

|Difference |= 1077 - 1076.8 = 0.2

Let a = 200, b = 10 be another test case

The specified output should be 3628800/5 -

40000/13=722683.0769

The obtained output is =725760 – 3076 = 722684

|Difference| = 722684 -722683.0769 = 0.9231

Let a = 824, b = 7 be another test case

The specified output should be 5040/5 - 678976/28 =23241.1428

The obtained output is =23241

|Difference| =23241.1428 – 23241 = 0. 1428

Considering the tolerance allowed i.e α = 0.9

Rlog = 1- 1/4{(0.333+0.2+0.9+0.1428)/ 0.9} =1- 0.437722=

0.562277

Overall reliability R= 0.927*0.8125*0.923*0.99559*0.562277 =

0.38916668

Thus, the reliability of the component is evaluated to be=

0.38916668

5. CONCLUSION
Using the fragile point analysis one can use the black-box

approach to predict the reliability of a specification based

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.1, July 2010

18

software for a given operational profile. The functional

specification of the software can either be obtained from the

vendor or from the design specification provided by the

developer/software development company. This approach is

extremely useful as it detects most of the errors including the

operational errors. It also eliminates a whole of lot test cases

which would otherwise have been required to test the

software. Therefore, for a COTS component based software

even if the source code unavailable, one can go for predicting

the reliability of the software using this approach for the given

functional or design specification of the software.

6. REFERENCES
[1] Norman Schneidewind, “Integrating testing with reliability”,

Software Testing Verification and Reliability, Wiley , Vol.

19, Issue 3, pp. 175-198, 2008.

[2] S.Sanyal, V.Shah, S Bhattacharya, “Framework of software

Reliability Engineering Tool”, Proceedings of the 2nd High-

Assurance Systems Engineering Workshop, IEEE Computer

Society , pp.114-119, 1997

[3] Tirthankar Gayen, R. B Misra , “Reliability assessment of

Elementary COTS software component”, International

Journal of Recent Trends in Engineering, Issue 1, Vol 2,

pp. 196-200, June 2009.

[4] Tirthankar Gayen, R. B Misra, “Reliability Bounds

Prediction of the COTS Component Based Software

Application”, International Journal of Computer Science

and Network Security, Vol 8, No. 12, pp. 219 – 228, Dec

2008.

 [5] Vivek Goswami, Y.B.Acharya, “Method for Reliability

Estimation of COTS Components based Software Systems”

in the proceedings of 20th International Symposium on

Software Reliability Engineering, ISSRE 2009, IEEE

Computer Society, IEEE Reliability Society, Computer

Society of India, Mysuru, India, Nov., 2009.

[6] S. N. Weiss, E. J. Weyuker, “An Extended Domain-Based

Model of Software Reliability”, IEEE Transactions on

Software Engineering, Volume 14 , Issue 10, October 1988,

pp: 1512 - 1524

