
International Journal of Computer Applications (0975 – 8887)

Volume 4– No.10, August 2010

40

Comparative Investigations and Performance Evaluation

for Multiple-Level Association Rules Mining Algorithm

Suraj Srivastava
Department of Computer Science and

Engineering

National Institute of Technology,
Jalandhar, Punjab, India

Deepti Gupta

 Department of Computer Science and
Engineering

National Institute of Technology,
Jalandhar, Punjab, India

Harsh K Verma
 Department of Computer Science and

Engineering

National Institute of Technology,
Jalandhar, Punjab, India

ABSTRACT

This paper focuses on the comparative investigation and

performance evaluation of the ML_TMLA algorithm that

generates multiple transaction tables for all levels in one database

scan with that of ML_T2L1 and ML_T1LA algorithms. The

performance study has been carried out on different kinds of data

distributions (three synthetic and one real dataset) and thresholds

that identify the conditions for algorithm selection. The AR Tool

has been used for the experimental and comparative evaluation of

the proposed algorithm with other algorithms.

Keywords

Data mining, Knowledge discovery in databases, Association

rules, multiple-level association rules.

1. INTRODUCTION
Various applications of computers, database technologies and

automated data collection techniques require large amount of data

to be collected into databases. It, therefore, creates great demands

for analyzing such data and turning it into useful knowledge. Data

mining or Knowledge Discovery in Database (KDD) emerges as a

solution to the data analysis problem. Association rules is one of

the data mining techniques that can be used to discover interesting

rules or relationships among attributes in databases. It is often

desirable to discover knowledge at multiple conceptual levels,

which shall provide a spectrum of understanding, from general to

specific, for the underlying data. Mining association rules from

large data sets has been a focused topic in recent research into

knowledge discovery in databases [1, 2, 3, 11, 13, and 14].

In order to explore multiple-level association rule mining, one

needs to provide data at multiple levels of abstraction as well as

efficient methods for multiple-level rule mining. The first

requirement can be satisfied by providing concept taxonomies

from the primitive level concepts to higher levels. In many

applications, the taxonomy information is either stored implicitly

in the database, such as, Wonder wheat bread is a wheat bread

which is in turn bread, or provided by experts or users, such as,

Freshman is an undergraduate student, or computed by applying

some cluster analysis methods [7]. With the recent development

of data warehousing and OLAP technology, arranging data at

multiple levels of abstraction has been a common practice [5].

Therefore, in this study, it has been assumed that such concept

taxonomies exist and the study focuses at the second requirement,

the efficient methods for multiple-level rule mining.

There are several possible directions to explore efficient mining of

multiple-level association rules. One method is the direct

application of the existing single level association rule mining

methods to multiple-level association mining. One may, for

example, apply the Apriori algorithm [2] to examine data items at

multiple levels of abstraction under the same minimum support

and minimum confidence thresholds. Second method is the

application of different minimum support thresholds and possibly

different minimum confidence thresholds as well as mining

associations at different levels of abstraction. Especially, the most

typical case is explored: progressively reducing the minimum

support thresholds at lower levels of abstraction. This leads to

mining interesting association rules at multiple concept levels,

which may not only discover rules at different levels, but may also

have high potential to find nontrivial, informative association

rules because of its flexibility for focusing the attention to

different sets of data and applying different thresholds at different

levels.

The necessity for mining multiple-level association rules or using

taxonomy information at mining association rules has also been

observed by other researchers such as in [4]. A major difference

between this study and theirs is that they use the same support

threshold across all the levels [4], whereas we have used different

support thresholds for different levels of abstraction and different

datasets (three synthetic & one real data set).

Moreover, using a single support threshold will allow many

uninteresting rules to be generated together with the interesting

ones if the threshold is rather low, but will disallow many

interesting rules to be generated at low levels if the threshold is

rather high. Therefore, in this study, attempt has been made on

how to identify and remove the redundant rules across different

levels.

2. MINING MULTIPLE-LEVEL

ASSOCIATION RULES
Association rules are an important class of regularities within data

which have been extensively studied by the data mining

community. The general objective here is to find frequent co-

occurrences of items within a set of transactions. These found co-

occurrences are called associations. The idea of discovering such

rules is derived from market basket analysis where the goal is to

mine patterns describing the customer's purchase behavior [12].

The problem of mining association rules can be stated as follows:

I={i1 , i2 , ... , im } is a set of items, T={t1 , t2 , ... , tn } is a set of

transactions, each of which contains items of the itemset I. Thus,

each transaction ti is a set of items such that ti subset and equal I.

An association rule is an implication of the form: X →Y, where X

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.10, August 2010

41

subset of I, Y subset of I and X ∩Y=Φ. X (or Y) is a set of items,

called itemset [12].

Looking at an association rule of the form X→Y, X would be

called the antecedent, Y the consequent. It is obvious that the

value of the antecedent implies the value of the consequent. The

antecedent, also called the “left hand side” of a rule, can consist

either of a single item or of a whole set of items. This applies for

the consequent, also called the “right hand side”, as well.

The most complex task of the association rule mining process is

the generation of frequent itemsets. Different combinations of

items have to be explored, especially in large databases, which

can be a very computation-intensive task. Often, a compromise

has to be made between discovering all itemsets and computation

time. Generally, only those itemsets that fulfill a certain support

requirement are taken into consideration. Support and confidence

are the two most important quality measures for evaluating the

interestingness of a rule as described.

In order to study the mining of association rules from a large set

of transaction data, it has been assumed that the database contains

(1) a transaction data set, T, which consists of a set of transactions

(Ti, {Ap, . . . , Aq}), where Ti is a transaction identifier, Ai belongs

to T (for i = p, . . . , q), and T is the set of all the data items in the

item data set; and (2) the description of the item data set, D, which

contains the description of each item in T in the form of (Ai,

description i), where Ai belongs to T.

3. METHODS FOR MINING MULTIPLE-

LEVEL ASSOCIATION RULES
The methods for mining multiple-level association rules use a

hierarchy-information encoded transaction table, instead of the

original transaction table, in iterative data mining. First, a data

mining query is made in relevance to a portion of the transaction

database, such as food, instead of all the items. Second, encoding

can be performed during the collection of task-relevant data, and

thus there is no extra "encoding pass" required. Third, an encoded

string, which represents a position in a hierarchy, requires fewer

bits than the corresponding object-identifier or bar-code.

Moreover, encoding allows more items to be merged (or removed)

due to their identical encoding, which further reduces the size of

the encoded transaction table. The encoding can always be

performed on the fly [6].

3.1 ML_T2L1 Algorithm
It is a top-down, progressively deepening process which collects

large itemsets at different conceptual levels. Starting at level 1, it

derives for each level l, the large k-items sets, L[l ,k] for each k,

and the set of large itemsets, LL[l] (for all k's). After finding the

frequent itemsets, the set of association rules for each level l can

be derived from the frequent itemsets LL [l] based on the

minimum confidence at this level, minconf[l] as in [3].

3.2 Variations of the Algorithm for Potential

Performance Improvement
Potential performance improvements of Algorithm ML_T2Ll have

been considered by exploration of the sharing of data structures

and intermediate results and maximally generation of results at

each database scan, etc. which leads to the following variations of

the algorithm [8][9], that is, ML_TlLA: using only one encoded

transaction table (thus Tl) and generating L[I, l] for all the levels

at one database scan (thus LA); ML_TMLl: using multiple

encoded transaction tables and generating L [I, l] for one

corresponding concept level and ML_T2LA: using two encoded

transaction tables (T[1] and T[2]) and generating L[I, l] for all the

levels at one database scan.

3.3 Algorithm ML_TMLA
INPUT: (1) T[1], a hierarchy information-encoded and task-

relevant set of a transaction database, in the format of <TID,

Itemset>, in which each item in the Itemset contains encoded

conceptual hierarchy information, and (2) the minimum support

threshold (minsup[l]) for each conceptual level l.

OUTPUT: Multiple-level large itemsets.

The procedure is described as follows:

1. {L[1,1],……..L[max_l,1]} := get_all_large_1_itemsets

(T[l]);

2. {T[l+1],L[l+1,1]} := get_filtered_T_table (T[l],L[l,1]);

3. for (k := 2; L[l,k-1] ≠ Ø; k++) do begin

4. for (l := 1; l < max_l; l++) do

5. if L[l,k-1] ≠ Ø then begin

6. C[l] := get_candidate_set (L[l, k-1]);

7. foreach transaction tЄT[l+1] do begin

8. D[l] := get_subsets (C[l], t); // Candidates

contained in

t

9. foreach candidate c Є D[l] do c.support ++;

10. end

11. L[l,k] := { cЄC[l,k] | c.support ≥ minsup[l]}

12. end

13. end

14. for (l:= 1; l < max_ l ; l ++) do LL[l] = Uk [l,k];

According to Algorithm ML_TMLA, the discovery of large

support items at each level proceeds as follows.

Step 1: At the first scan of T[l], large 1-itemsets L [l, 1] for every

level l can be generated in parallel, because the scan of an item i

in each transaction t may increase the count of the item in every

L[l,1] if its has not been incremented by t. After the scanning of

T[l], each item in L [l,1] whose parent (if l > 1) is not a large item

in the higher level large 1-itemsets or whose support is lower than

minsup[l] will be removed from L[l,1].

Step 2: The first scan of T[l] generates the large 1-itemsets L [l, 1]

which then serves as a filter to filter out from T[l] any small items

or transactions containing only small items. A new table T [l+1]

results from this filtering process and is used in the generation of

large k-itemsets at level l. The filtered transaction table T[l+1] is

derived by “get_filtered_t_table (T[l], L[l,1])”, which uses L[l, 1]

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.10, August 2010

42

as a filter to filter out (a) any item which is not large at level 1,

and (b) the transactions which contain no large items.

Step 3: T [l + 1] is generated at the processing of each level l , for

l > 1. This is done by scanning T[l] to generate the large 1-

itemsets L [l,1] which serves as a filter to remove from T[l] any

small items or transactions containing only small items and results

in T[l+ 1], which will be used for the generation of large k-

itemsets (for k > 1) at level l and table T [l + 2] at the next lower

level.

Step 4: After the generation of large 1-itemsets for each level l,

the candidate set for large 2-itemsets for each level l can be

generated by the apriori-gen algorithm [13]. The get_subsets

function will be processed against the candidate sets at all the

levels at the same time by scanning T[l] once, which calculates

the support for each candidate itemset and generates large 2-

itemsets L[l,2]. Similar processes can be processed for step-by-

step generation of large k-item-sets L [l, k] for k > 2.

Step 5: For each transaction t in T[2].for each of t’s K-item

subset c, increment c’s support count if c is in the candidate set

C[l,k]. Then collect into L[l,k] each c(together with its support) if

its support is no less than minsup[l].

Step 6: The large itemsets at level l, LL [l], is the union of L [l, k]

for all the k's.

After finding the large itemsets, the set of association rules for

each level l can be derived from the large itemsets LL [l] based on

the minimum confidence at this level, minconf [l]. This is

performed as follows [10]. For every large itemset r, if a is a

nonempty subset of r, the rule "a → r - a" is inserted into rule_set

[l] if support(r)/support (a) ≥ minconf [l], where minconf [l] is the

minimum confidence at level l.

4. PERFORMANCE STUDY
The comparative analysis and evaluation has been conducted on

different kinds of data distributions (three synthetic and one real

dataset) and thresholds, which identify the conditions for

algorithm selection. The AR Tool has been used to generate the

results and perform the comparative investigations of ML_T1LA,

ML_TML1 and MLTMLA algorithms. The performance of the

different multiple-level association rule mining algorithms has

been experimentally evaluated in the context of execution time

(milliseconds) and disk input/output on different datasets. This

section describes the various datasets, followed by a description

of the experimental results [15].

4.1 Datasets
Four different datasets three synthetic and one real have been used

in the performance comparison of the algorithms described above.

The synthetic datasets used were generated using the AR tool.

Table 1 summarizes the names and parameter settings for each

dataset. For the synthetic datasets N (Number of items) was set to

1000 and |L| (Number of maximal potentially large itemsets) was

set to 2000. We chose three values for |T|: 5, 10, and 20. We also

chose three values for |I|: 2, 4, and 6. The number of transactions

was set to 100,000. The real dataset used in our experiments was

MUSHROOMS (ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/mushroom/agaricus-lepiota.data).

Table 1. Parameter settings of datasets

Name
of

objects

Average

Size

of

items

T100000 AT10 I1000 P2000

AP 4dB

100k 10 1000

T100000 AT20 I1000 P2000

AP 6dB

100k 20 1000

T100000 AT5 I1000 P2000

AP 2dB

100k 5 1000

MUSHROOMS
8416 23 128

4.2 Experimental Results-Execution Time

(milliseconds)
Fig.1 shows the performance comparison of ML_T2L1,

ML_T1LA, and ML_TMLA algorithms with respect to running

time under various support values for minimum support threshold

level 1 in case of datasets T100000 AT10 I1000 P2000 AP 4dB,

T100000 AT20 I1000 P2000 AP 6dB and T100000 AT5 I1000

P2000 AP 2dB respectively.

(a)

(b)

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.10, August 2010

43

(c)

Fig.1 Execution Time comparison at minsup[1] for (a)

T100000 AT10 I1000 P2000 AP 4dB (b) T100000 AT20 I1000

P2000 AP 6dB (c) T100000 AT5 I1000 P2000 AP 2dB

It has been observed that as the minimum support decreases the

execution times of all the algorithms increase because of increase

in the total number of candidate and large itemsets. However, the

execution time for ML_TMLA algorithm is lowest among the

three algorithms. In other words, it executes faster.

Fig.2 indicates the performance comparison of ML_T2L1,

ML_T1LA, and ML_TMLA algorithms with respect to running

time under various support values for minimum support threshold

level 2 in case of datasets T100000 AT10 I1000 P2000 AP 4dB,

T100000 AT20 I1000 P2000 AP 6dB and T100000 AT5 I1000

P2000 AP 2dB respectively.

It has been concluded that on an average the ML_TMLA

algorithm runs faster than the ML_T2L1 and ML_T1LA

algorithms for all support levels.

(a)

(b)

(c)

Fig.2 Execution Time comparison at minsup[2] for (a)

T100000 AT10 I1000 P2000 AP 4dB (b) T100000 AT20 I1000

P2000 AP 6dB (c) T100000 AT5 I1000 P2000 AP 2dB

Fig.3 depicts the performance comparison of ML_T2L1,

ML_T1LA, and ML_TMLA algorithms with respect to running

time under various support values for minimum support threshold

level 3 in case of datasets T100000 AT10 I1000 P2000 AP 4dB,

T100000 AT20 I1000 P2000 AP 6dB and T100000 AT5 I1000

P2000 AP 2dB respectively.

(a)

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.10, August 2010

44

(b)

(c)

Fig.3 Execution Time comparison at minsup[3] for (a)

T100000 AT10 I1000 P2000 AP 4dB (b) T100000 AT20 I1000

P2000 AP 6dB (c) T100000 AT5 I1000 P2000 AP 2dB

It has been concluded that on an average the ML_TMLA

algorithm runs faster than the ML_T2L1 and ML_T1LA

algorithms for all support levels.

Fig.4 indicates the performance comparison of ML_T2L1,

ML_T1LA, and ML_TMLA algorithms with respect to running

time under various support values for minimum support threshold

value varying between 55% to 30 % and 75% to 50% in case of

Mushroom dataset. It has been concluded that on an average the

ML_TMLA algorithm runs faster than the ML_T2L1 and

ML_T1LA algorithms for all support levels.

(a)

(b)

Fig.4 Execution Time comparison for Mushroom dataset at

minsup values varying from (a) 55% to 30% and (b) 75% to

50%

4.3 Experimental Results-Disk Input/Output
Fig.5 shows the performance comparison of ML_T2L1,

ML_T1LA, and ML_TMLA algorithms with respect to disk

input/output under various support levels in case of datasets

T100000 AT10 I1000 P2000 AP 4dB, T100000 AT20 I1000

P2000 AP 6dB and T100000 AT5 I1000 P2000 AP 2dB

respectively.

It has been observed that the ML_T1LA and the ML_TMLA

algorithms depict almost same disk input/output for all the

datasets chosen. It has been observed that for the minimum

support levels taken the ML_T2L1 algorithm reads the database

multiple number of times ranging from 2 to 9 for different

datasets. However, the number of read operations performed by

the ML_T1LA and the ML_TMLA algorithms on the database are

comparatively less. This is because the exact number depends on

the minimum support and the data characteristics and, therefore,

cannot be determined in advance. Moreover, when the support

level is set very high no itemsets are found to have the required

support. In such cases, the algorithms read the database only once.

(a)

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.10, August 2010

45

(b)

(c)

Fig.5 Disk Input/Output comparison for (a) T100000 AT10

I1000 P2000 AP 4dB (b) T100000 AT20 I1000 P2000 AP 6dB

(c) T100000 AT5 I1000 P2000 AP 2dB

5. CONCLUSION
The work described in this paper comparatively evaluates the

performance of the ML_TMLA algorithm that generates multiple

transaction tables for all levels in one database scan with that of

ML_T2L1 and ML_T1LA algorithms. The execution time for

ML_TMLA algorithm is lowest among the three algorithms. It has

been concluded that on an average the ML_TMLA algorithm runs

faster than the ML_T2L1 and ML_T1LA algorithms for all

support levels. It has been observed that the ML_T1LA and the

ML_TMLA algorithms depict almost same disk input/output for

all the datasets chosen. Moreover, for the minimum support levels

taken the ML_T2L1 algorithm reads the database multiple number

of times ranging from 2 to 9 for different datasets. However, the

number of read operations performed by the ML_T1LA and the

ML_TMLA algorithms on the database are comparatively less.

The results obtained clearly indicate that the proposed algorithm

executes fast and performs less number of read operations.

6. REFERENCES
[1] Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining

association rules between sets of items in large databases. In

Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data,

pp. 207-216, Washington, D.C.

[2] Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining

association rules. In Proc. 1994 Int. Conf. Very Large Data

Bases, pp. 487-499, Santiago, Chile.

[3] Agrawal, R. and Srikant, R. 1995. Mining sequential

patterns. In Proc. 1995 Int. Conf. Data Engineering, pp. 3-

14, Taipei, Taiwan.

[4] Agrawal R. ,Srikant R. 1995. Mining Generalized

Association Rules. Proc. 1995 Int'l Conf. Very Large Data

Bases, pp. 407±419, Zurich.

[5] Chaudhuri S. ,and Dayal, U. 1997. An Overview of Data

Warehousing and OLAP Technology. ACM SIGMOD

Record, vol. 26, pp. 65±74.

[6] Fu Yongjian. 1996. Discovery of Multiple-Level Rules from

Large Databases. Phd Thesis.

[7] Han J., Cai Y., and Cercone N. 1993. Data-Driven Discovery

of Quantitative Rules in Relational Databases. IEEE Trans.

Knowledge and Data Eng., vol. 5,pp. 29±40.

[8] Han Jiwawei,Fu Yongjian. 1999. Mining Multiple-Level

Association Rules in Large Databases. IEEE.

[9] Han, Jiawei and Yongjian, Fu. 1995. Discovery of Multiple-

Level Association Rules from Large Databases. Proceedings

of the 21st VLDB Conference Zurich, Swizerland.

[10] Han, Jiawei. 2005. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

ISBN 1558609016.

[11] Klemettinen, M., Mannila, H. and Ronkainen, P., Toivonen,

H., and Verkamo, A. I. 1994. Finding interesting rules from

large sets of discovered association rules. In Proc. 3rd Int '1

Conf. on Information and Knowledge Management, pp. 401-

408, Gaithersburg, Maryland.

[12] Liu, Bing. 2007. Web Data Mining: Exploring Hyperlinks,

Contents, and Usage Data, Springer.

[13] Park, J.S., Chen, M.S. and Yu, P.S. 1995. An effective hash-

based algorithm for mining association rules. In Proc. 1995

ACM-SIGMOD Int. Conf. Management of Data, pp. 175-

186, San Jose, CA.

[14] Piatetsky-Shapiro, G. 1991. Discovery, analysis, and

presentation of strong rules. In Knowledge Discovery in

Databases, pp. 229-238, AAAIIMIT Press.

[15] Wasilewska Anita. 2007. Mining Association Rules in Large

Databases.

