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ABSTRACT 

This paper focuses on the comparative investigation and 

performance evaluation of the ML_TMLA algorithm that 

generates multiple transaction tables for all levels in one database 

scan with that of ML_T2L1 and ML_T1LA algorithms. The 

performance study has been carried out on different kinds of data 

distributions (three synthetic and one real dataset) and thresholds 

that identify the conditions for algorithm selection. The AR Tool 

has been used for the experimental and comparative evaluation of 

the proposed algorithm with other algorithms. 
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1. INTRODUCTION 
Various applications of computers, database technologies and 

automated data collection techniques require large amount of data 

to be collected into databases. It, therefore, creates great demands 

for analyzing such data and turning it into useful knowledge. Data 

mining or Knowledge Discovery in Database (KDD) emerges as a 

solution to the data analysis problem. Association rules is one of 

the data mining techniques that can be used to discover interesting 

rules or relationships among attributes in databases. It is often 

desirable to discover knowledge at multiple conceptual levels, 

which shall provide a spectrum of understanding, from general to 

specific, for the underlying data. Mining association rules from 

large data sets has been a focused topic in recent research into 

knowledge discovery in databases [1, 2, 3, 11, 13, and 14]. 

In order to explore multiple-level association rule mining, one 

needs to provide data at multiple levels of abstraction as well as 

efficient methods for multiple-level rule mining. The first 

requirement can be satisfied by providing concept taxonomies 

from the primitive level concepts to higher levels. In many 

applications, the taxonomy information is either stored implicitly 

in the database, such as, Wonder wheat bread is a wheat bread 

which is in turn bread, or provided by experts or users, such as, 

Freshman is an undergraduate student, or computed by applying 

some cluster analysis methods [7]. With the recent development 

of data warehousing and OLAP technology, arranging data at 

multiple levels of abstraction has been a common practice [5]. 

Therefore, in this study, it has been assumed that such concept 

taxonomies exist and the study focuses at the second requirement, 

the efficient methods for multiple-level rule mining. 

There are several possible directions to explore efficient mining of 

multiple-level association rules. One method is the direct 

application of the existing single level association rule mining 

methods to multiple-level association mining. One may, for 

example, apply the Apriori algorithm [2] to examine data items at 

multiple levels of abstraction under the same minimum support 

and minimum confidence thresholds. Second method is the 

application of different minimum support thresholds and possibly 

different minimum confidence thresholds as well as mining 

associations at different levels of abstraction. Especially, the most 

typical case is explored: progressively reducing the minimum 

support thresholds at lower levels of abstraction. This leads to 

mining interesting association rules at multiple concept levels, 

which may not only discover rules at different levels, but may also 

have high potential to find nontrivial, informative association 

rules because of its flexibility for focusing the attention to 

different sets of data and applying different thresholds at different 

levels. 

The necessity for mining multiple-level association rules or using 

taxonomy information at mining association rules has also been 

observed by other researchers such as in [4]. A major difference 

between this study and theirs is that they use the same support 

threshold across all the levels [4], whereas we have used different 

support thresholds for different levels of abstraction and different 

datasets (three synthetic & one real data set).  

Moreover, using a single support threshold will allow many 

uninteresting rules to be generated together with the interesting 

ones if the threshold is rather low, but will disallow many 

interesting rules to be generated at low levels if the threshold is 

rather high. Therefore, in this study, attempt has been made on 

how to identify and remove the redundant rules across different 

levels. 

2. MINING MULTIPLE-LEVEL 

ASSOCIATION RULES 
Association rules are an important class of regularities within data 

which have been extensively studied by the data mining 

community. The general objective here is to find frequent co-

occurrences of items within a set of transactions. These found co-

occurrences are called associations. The idea of discovering such 

rules is derived from market basket analysis where the goal is to 

mine patterns describing the customer's purchase behavior [12].  

The problem of mining association rules can be stated as follows: 

I={i1 , i2 , ... , im } is a set of items, T={t1 , t2 , ... , tn } is a set of 

transactions, each of which contains items of the itemset I.  Thus, 

each transaction ti is a set of items such that ti subset and equal I. 

An association rule is an implication of the form: X →Y, where X 
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subset of I, Y subset of I and X ∩Y=Φ. X (or Y) is a set of items, 

called itemset [12].  

Looking at an association rule of the form X→Y, X would be 

called the antecedent, Y the consequent. It is obvious that the 

value of the antecedent implies the value of the consequent. The 

antecedent, also called the “left hand side” of a rule, can consist 

either of a single item or of a whole set of items. This applies for 

the consequent, also called the “right hand side”, as well. 

The most complex task of the association rule mining process is 

the generation of frequent itemsets. Different combinations of 

items have to be explored, especially in large databases, which 

can be a very computation-intensive task. Often, a compromise 

has to be made between discovering all itemsets and computation 

time. Generally, only those itemsets that fulfill a certain support 

requirement are taken into consideration. Support and confidence 

are the two most important quality measures for evaluating the 

interestingness of a rule as described. 

In order to study the mining of association rules from a large set 

of transaction data, it has been assumed that the database contains 

(1) a transaction data set, T, which consists of a set of transactions 

(Ti, {Ap, . . . , Aq}), where Ti is a transaction identifier, Ai belongs 

to T (for i = p, . . . , q), and T is the set of all the data items in the 

item data set; and (2) the description of the item data set, D, which 

contains the description of each item in T in the form of (Ai, 

description i), where Ai belongs to T. 

3. METHODS FOR MINING MULTIPLE-

LEVEL ASSOCIATION RULES 
The methods for mining multiple-level association rules use a 

hierarchy-information encoded transaction table, instead of the 

original transaction table, in iterative data mining. First, a data 

mining query is made in relevance to a portion of the transaction 

database, such as food, instead of all the items. Second, encoding 

can be performed during the collection of task-relevant data, and 

thus there is no extra "encoding pass" required. Third, an encoded 

string, which represents a position in a hierarchy, requires fewer 

bits than the corresponding object-identifier or bar-code. 

Moreover, encoding allows more items to be merged (or removed) 

due to their identical encoding, which further reduces the size of 

the encoded transaction table. The encoding can always be 

performed on the fly [6]. 

3.1 ML_T2L1 Algorithm 
It is a top-down, progressively deepening process which collects 

large itemsets at different conceptual levels. Starting at level 1, it 

derives for each level l, the large k-items sets, L[l ,k] for each k, 

and the set of large itemsets, LL[l] (for all k's). After finding the 

frequent itemsets, the set of association rules for each level l can 

be derived from the frequent itemsets LL [l] based on the 

minimum confidence at this level, minconf[l] as in [3].  

3.2 Variations of the Algorithm for Potential 

Performance Improvement 
Potential performance improvements of Algorithm ML_T2Ll have 

been considered by exploration of the sharing of data structures 

and intermediate results and maximally generation of results at 

each database scan, etc. which leads to the following variations of 

the algorithm [8][9], that is, ML_TlLA: using only one encoded 

transaction table (thus Tl) and generating L[I, l] for all the levels 

at one database scan (thus LA); ML_TMLl: using multiple 

encoded transaction tables and generating L [I, l] for one 

corresponding concept level and ML_T2LA: using two encoded 

transaction tables (T[1] and T[2]) and generating L[I, l] for all the 

levels at one database scan. 

3.3 Algorithm ML_TMLA 
INPUT: (1) T[1], a hierarchy information-encoded and task-

relevant set of a transaction database, in the format of <TID, 

Itemset>, in which each item in the Itemset contains encoded 

conceptual hierarchy information, and (2) the minimum support 

threshold (minsup[l]) for each conceptual level l. 

OUTPUT: Multiple-level large itemsets. 

The procedure is described as follows: 

1. {L[1,1],……..L[max_l,1]} := get_all_large_1_itemsets 

(T[l]); 

2. {T[l+1],L[l+1,1]} := get_filtered_T_table (T[l],L[l,1]); 

3. for (k := 2; L[l,k-1] ≠ Ø; k++) do begin 

4.      for (l := 1; l < max_l; l++) do  

5.           if L[l,k-1] ≠ Ø then begin 

6.              C[l] := get_candidate_set (L[l, k-1]); 

7.              foreach transaction tЄT[l+1] do begin 

8. D[l] := get_subsets (C[l], t); // Candidates       

contained in 

t 

9.                     foreach candidate c Є D[l] do c.support ++; 

10.          end 

11.          L[l,k] := { cЄC[l,k] | c.support ≥ minsup[l]} 

12.     end 

13. end 

14. for (l:= 1; l < max_ l ; l ++) do LL[l] = Uk [ l,k]; 

According to Algorithm ML_TMLA, the discovery of large 

support items at each level proceeds as follows. 

Step 1: At the first scan of T[l], large 1-itemsets L [l, 1] for every 

level l can be generated in parallel, because the scan of an item i 

in each transaction t may increase the count of the item in every 

L[l,1] if its has not been incremented by t. After the scanning of 

T[l], each item in L [l,1] whose parent (if l > 1) is not a large item 

in the higher level large 1-itemsets or whose support is lower than 

minsup[l] will be removed from L[l,1]. 

Step 2: The first scan of T[l] generates the large 1-itemsets L [l, 1] 

which then serves as a filter to filter out from T[l] any small items 

or transactions containing only small items. A new table T [l+1] 

results from this filtering process and is used in the generation of 

large k-itemsets at level l. The filtered transaction table T[l+1] is 

derived by “get_filtered_t_table (T[l], L[l,1])”, which uses L[l, 1] 
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as a filter to filter out (a) any item which is not large at level 1, 

and (b) the transactions which contain no large items. 

Step 3: T [l + 1] is generated at the processing of each level l , for 

l > 1. This is done by scanning T[l] to generate the large 1-

itemsets L [l,1] which serves as a filter to remove from T[l] any 

small items or transactions containing only small items and results 

in T[l+ 1], which will be used for the generation of large k-

itemsets (for k > 1) at level l and table T [ l + 2] at the next lower 

level.  

Step 4: After the generation of large 1-itemsets for each level l, 

the candidate set for large 2-itemsets for each level l can be 

generated by the apriori-gen algorithm [13]. The get_subsets 

function will be processed against the candidate sets at all the 

levels at the same time by scanning T[l] once, which calculates 

the support for each candidate itemset and generates large 2-

itemsets L[l,2]. Similar processes can be processed for step-by-

step generation of large k-item-sets L [l, k] for k > 2.  

Step 5: For each transaction  t  in T[2].for each of  t’s K-item 

subset c,  increment c’s support count  if c is in the candidate set 

C[l,k]. Then collect into L[l,k] each c(together with its support) if  

its support is no less than minsup[l]. 

Step 6: The large itemsets at level l, LL [l], is the union of L [l, k] 

for all the k's.  

After finding the large itemsets, the set of association rules for 

each level l can be derived from the large itemsets LL [l] based on 

the minimum confidence at this level, minconf [l]. This is 

performed as follows [10]. For every large itemset r, if a is a 

nonempty subset of r, the rule "a → r - a" is inserted into rule_set 

[l] if support(r)/support (a) ≥ minconf [l], where minconf [l] is the 

minimum confidence at level l. 

4. PERFORMANCE STUDY 
The comparative analysis and evaluation has been conducted on 

different kinds of data distributions (three synthetic and one real 

dataset) and thresholds, which identify the conditions for 

algorithm selection. The AR Tool has been used to generate the 

results and perform the comparative investigations of ML_T1LA, 

ML_TML1 and MLTMLA algorithms. The performance of the 

different multiple-level association rule mining algorithms has 

been experimentally evaluated in the context of execution time 

(milliseconds) and disk input/output on different datasets. This 

section describes the various datasets, followed by a description 

of the experimental results [15]. 

4.1 Datasets 
Four different datasets three synthetic and one real have been used 

in the performance comparison of the algorithms described above. 

The synthetic datasets used were generated using the AR tool. 

Table 1 summarizes the names and parameter settings for each 

dataset. For the synthetic datasets N (Number of items) was set to 

1000 and |L| (Number of maximal potentially large itemsets) was 

set to 2000. We chose three values for |T|: 5, 10, and 20. We also 

chose three values for |I|: 2, 4, and 6. The number of transactions 

was set to 100,000. The real dataset used in our experiments was 

MUSHROOMS (ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/mushroom/agaricus-lepiota.data). 

Table 1. Parameter settings of datasets 

Name 
# of 

objects 

Average 

Size 

# of 

items 

T100000 AT10 I1000 P2000 

AP 4dB 

100k 10 1000 

T100000 AT20 I1000 P2000 

AP 6dB 

100k 20 1000 

T100000 AT5 I1000 P2000 

AP 2dB 

100k 5 1000 

MUSHROOMS 
8416 23 128 

 

4.2 Experimental Results-Execution Time 

(milliseconds) 
Fig.1 shows the performance comparison of ML_T2L1, 

ML_T1LA, and ML_TMLA algorithms with respect to running 

time under various support values for minimum support threshold 

level 1 in case of datasets T100000 AT10 I1000 P2000 AP 4dB, 

T100000 AT20 I1000 P2000 AP 6dB and T100000 AT5 I1000 

P2000 AP 2dB respectively. 

 

(a) 

 

 

(b) 
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Fig.1 Execution Time comparison at minsup[1] for (a) 

T100000 AT10 I1000 P2000 AP 4dB (b) T100000 AT20 I1000 

P2000 AP 6dB (c) T100000 AT5 I1000 P2000 AP 2dB 

It has been observed that as the minimum support decreases the 

execution times of all the algorithms increase because of increase 

in the total number of candidate and large itemsets. However, the 

execution time for ML_TMLA algorithm is lowest among the 

three algorithms. In other words, it executes faster.   

Fig.2 indicates the performance comparison of ML_T2L1, 

ML_T1LA, and ML_TMLA algorithms with respect to running 

time under various support values for minimum support threshold 

level 2 in case of datasets T100000 AT10 I1000 P2000 AP 4dB, 

T100000 AT20 I1000 P2000 AP 6dB and T100000 AT5 I1000 

P2000 AP 2dB respectively.    

It has been concluded that on an average the ML_TMLA 

algorithm runs faster than the ML_T2L1 and ML_T1LA 

algorithms for all support levels. 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Fig.2 Execution Time comparison at minsup[2] for (a) 

T100000 AT10 I1000 P2000 AP 4dB (b) T100000 AT20 I1000 

P2000 AP 6dB (c) T100000 AT5 I1000 P2000 AP 2dB 

Fig.3 depicts the performance comparison of ML_T2L1, 

ML_T1LA, and ML_TMLA algorithms with respect to running 

time under various support values for minimum support threshold 

level 3 in case of datasets T100000 AT10 I1000 P2000 AP 4dB, 

T100000 AT20 I1000 P2000 AP 6dB and T100000 AT5 I1000 

P2000 AP 2dB respectively.  

 

(a) 
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(b) 

 

(c) 

Fig.3 Execution Time comparison at minsup[3] for (a) 

T100000 AT10 I1000 P2000 AP 4dB (b) T100000 AT20 I1000 

P2000 AP 6dB (c) T100000 AT5 I1000 P2000 AP 2dB 

It has been concluded that on an average the ML_TMLA 

algorithm runs faster than the ML_T2L1 and ML_T1LA 

algorithms for all support levels. 

Fig.4 indicates the performance comparison of ML_T2L1, 

ML_T1LA, and ML_TMLA algorithms with respect to running 

time under various support values for minimum support threshold 

value varying between 55% to 30 % and 75% to 50% in case of 

Mushroom dataset. It has been concluded that on an average the 

ML_TMLA algorithm runs faster than the ML_T2L1 and 

ML_T1LA algorithms for all support levels. 

 

(a)       

 

(b)                        

Fig.4 Execution Time comparison for Mushroom dataset at 

minsup values varying from (a) 55% to 30% and (b) 75% to 

50% 

4.3 Experimental Results-Disk Input/Output 
Fig.5 shows the performance comparison of ML_T2L1, 

ML_T1LA, and ML_TMLA algorithms with respect to disk 

input/output under various support levels in case of datasets 

T100000 AT10 I1000 P2000 AP 4dB, T100000 AT20 I1000 

P2000 AP 6dB and T100000 AT5 I1000 P2000 AP 2dB 

respectively.  

It has been observed that the ML_T1LA and the ML_TMLA 

algorithms depict almost same disk input/output for all the 

datasets chosen. It has been observed that for the minimum 

support levels taken the ML_T2L1 algorithm reads the database 

multiple number of times ranging from 2 to 9 for different 

datasets. However, the number of read operations performed by 

the ML_T1LA and the ML_TMLA algorithms on the database are 

comparatively less. This is because the exact number depends on 

the minimum support and the data characteristics and, therefore, 

cannot be determined in advance. Moreover, when the support 

level is set very high no itemsets are found to have the required 

support. In such cases, the algorithms read the database only once. 

 

 

(a) 
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(b) 

 

 

(c) 

 

Fig.5 Disk Input/Output comparison for (a) T100000 AT10 

I1000 P2000 AP 4dB (b) T100000 AT20 I1000 P2000 AP 6dB 

(c) T100000 AT5 I1000 P2000 AP 2dB 

5. CONCLUSION 
The work described in this paper comparatively evaluates the 

performance of the ML_TMLA algorithm that generates multiple 

transaction tables for all levels in one database scan with that of 

ML_T2L1 and ML_T1LA algorithms. The execution time for 

ML_TMLA algorithm is lowest among the three algorithms. It has 

been concluded that on an average the ML_TMLA algorithm runs 

faster than the ML_T2L1 and ML_T1LA algorithms for all 

support levels. It has been observed that the ML_T1LA and the 

ML_TMLA algorithms depict almost same disk input/output for 

all the datasets chosen. Moreover, for the minimum support levels 

taken the ML_T2L1 algorithm reads the database multiple number 

of times ranging from 2 to 9 for different datasets. However, the 

number of read operations performed by the ML_T1LA and the 

ML_TMLA algorithms on the database are comparatively less. 

The results obtained clearly indicate that the proposed algorithm 

executes fast and performs less number of read operations. 
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