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ABSTRACT 
There are many reasons to change the sample rate of a sampled data 

signal. Here we discuss the two basic operations in a multirate system 

i.e. decreasing (decimation) and (increasing) the sampling rate of a 

signal. Also the use of multirate filters at the interfaces of continuous 

& sampled data which results in a cost reduction of the analog signal 

conditioning components as well as improvement of signal quality. 

 

1. INTRODUCTION 

In single-rate systems, only one sampling rate is used throughout a 

digital signal processing systems, whereas in multirate systems the 

sampling rate is changed at least once. Multirate systems have gained 

popularity since the early 1980s and they are commonly used for 

audio and video processing, communication systems, and transform 

analysis to name but a few.  

 Some one humorously asked the question, “Resampling! Does that 

mean you didn’t do it right the first time?” It is not actually, there are 

many reasons to change the sample rate of a sampled data signal. 

Applications include conversion of  variable rate  input  data  to  

fixed  rate  output data  in a modulator and  the inverse  task  of 

converting fixed  rate  input data  to variable rate  output  data  in 

a demodulator. Another  application involves  sample rate  

changes  so that  filtering can be  performed at  the  Nyquist  rate  

of  the  signal being processed. In  one  major application, the 

multirate filter is used  to increase  the sample rate  of a sampled 

data  signal prior  to its delivery for processing by the digital to 

analog converter  involved   in  transferring  the  signal 

between the sampled data  world and the continuous  world. In  

the  other   major  application, the multirate filter is used  to 

decrease the sample rate of a sampled data  signal after being 

formed at the output of an analog  to digital  converter 

involved in transferring the signal  between  the continuous 

world and the sampled data  world. [1] 

 

 

2. DECIMATION 

Decimation can be regarded as the discrete-time counterpart of 

sampling.  Whereas in sampling we start with a continuous-time 

signal x(t) and convert it into a sequence of samples x[n], in 

 
Figure1: Block diagram notation of decimation,by a factor of M 

 

Figure 2: Decimation of a discrete-time signal by a factor of 3 

 
decimation we start with a discrete-time signal x[n] and convert it 

into another discrete time signal y[n], which consists of subsamples 

of x[n]. 

Thus, the formal definition of M-fold decimation, or down-

sampling, is defined by equation 1. In decimation, the sampling rate 

is reduced from Fs to  Fs/M by discarding M – 1 samples for every 

M samples in the original sequence. [1] 

y[n] = v [nM ] =  ∑ h[k ]x[nM − k]          (1) 

The block diagram notation of the decimation process is depicted 

in Figure 1. An anti-aliasing digital filter precedes the 
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downsampler to prevent aliasing from occurring, due to the 

lower sampling rate. The subject of aliasing in decimated 

signals is covered in more detail in Section II (A). In Figure 2, it 

illustrates the concept of 3-fold decimation i.e. M = 3. Here, the 

samples of x[n] corresponding to n = …, -2, 1, 4… and n = …, -

1, 2, 5…. are lost in the decimation process. In general, the 

samples of x[n] corresponding to n ≠ kM, where k is an integer, 

are discarded in M-fold decimation. In Figure 2 (b), it shows 

samples of the decimated signal y[n] spaced three times wider 

than the samples of x[n]. This is not a coincidence. In real time, 

the decimated signal appears at a slower rate than that of the 

original signal by a factor of M. If the sampling frequency of x[n] 

is Fs, then that of y[n] is Fs/M.  [2] 

 

2.1 Frequency Transforms of Decimated Sequences 
 

The analysis of decimation is better understood by assessing the 

frequency spectrum using the Fourier transform. [2]  

 
Figure 3: Aliasing caused by decimation; (a) Fourier 

Transform of the original signal; (b) After decimation 

Filtering; (c) Fourier transform of the decimated signal. 
 

In Figure 3 (a) it shows the Fourier transform of the original 

signal. Part (b) shows the signal after lowpass filtering. In Figure 3 

(c), it depicts the expanded spectrum after decimation. 
 

 The implications of aliasing caused by decimation are very 

similar to those in the case of sampling a continuous-time signal. 

In general, if the Fourier transform of a signal, X(θ), occupies the 

entire bandwidth from [-π, π], then the Fourier transform of the 

decimated signal, X(↓M)(θ), will be aliased. This is due to the 

superposition of the M shifted and frequency-scaled transforms. 

This is illustrated in Figure 3, which shows the aliasing 

phenomenon for M = 3. 

 

3. INTERPOLATION 

Interpolation is the exact opposite of decimation. It is an 

information preserving operation, in that all samples of x[n] are 

present in the expanded signal y[n]. The mathematical definition 

of L-fold interpolation is defined by Equation 2 and the block 

diagram notation is depicted in Figure 4. Interpolation works by 

inserting (L–1) zero-valued samples for each input sample. The 

sampling rate therefore increases from Fs   to LFs. With reference 

to Figure 4, the expansion process is followed by a unique 

digital low-pass filter called an anti-imaging filter. Although the 

expansion process does not cause aliasing in the interpolated 

signal, it does however yield undesirable replicas in the signal’s 

frequency spectrum. We shall see how this special filter, in 

Section III (A), is necessary to remove these replicas from the 

frequency spectrum [2]. 

 

Y[n] = L ∑ h[k ]w[n − k ]   (2) 

 

In Figure 5 below, it depicts 3-fold interpolation of the signal x[n] 

i.e. L = 3. The insertion of zeros effectively attenuates the signal 

by L, so the output of the anti-imaging filter must be multiplied by 

L, to maintain the same signal magnitude. 

 

 
Figure 4: Block diagram notation of interpolation, by a factor of L 

 

 

3.1 Frequency Transforms of Expanded Sequences 
 

 

The effect of expansion on a signal in the frequency domain is 

illustrated in Figure 6 below. Part (a) shows the Fourier transform 

of the original signal; part (b) illustrates the Fourier transform of 

the signal with zeros added W(θ); and part (c) shows the Fourier 

transform of the signal after the interpolation filter. It is clearly 

visible that the shape of the Fourier transform is compressed by 

a factor L in the frequency axis and is also repeated L times in the 

range of [-π, π]. [1] Despite the compression of the signal in the 

frequency axis, the shape of the Fourier transform is still 

preserved, confirming that expansion does not lead to aliasing. 

These replicas are removed by a digital low-pass filter called an  
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anti-imaging filter, as indicated in Figure 4. 

 

 
 

Figure 5: Interpolation of Discrete-time signal by a factor of 3. 

 

 

 

 
 

 

Figure 6: Expansion in the frequency domain of the 

original signal (a) and the expanded signal (b). 

4.    SAMPLING RATE CONVERSION 

A common use of Multirate signal processing is for sampling-rate 

conversion. Suppose a digital signal x[n] is sampled at an interval 

T1, and we wish to obtain a signal y[n] sampled at an interval T2. 

Then the techniques of decimation and interpolation enable this 

operation, providing the ratio T1/T2 i s  a rational number i.e. L/M. 

Sampling-rate conversion can be accomplished by L-fold expansion, 

followed by low-pass filtering and then M-fold decimation, as 

depicted in Figure 7. It is important to emphasis that the 

interpolation should be performed first and decimation second, to 

preserve the desired spectral characteristics of x[n]. Furthermore by 

cascading the two in this manner, both of the filters can be combined 

into one single low-pass filter [3]. 

 

 

 
Figure 7: Sampling-rate conversion by expansion, filtering, and 

decimation. 

 

An example of sampling-rate conversion would take place when data 

from a CD is transferred onto a DAT. Here the sampling-rate is 

increased from 44.1 kHz to 48 kHz. To enable this process the non 

integer factor has to be approximated by a rational number. 

 

 
Hence, the sampling-rate conversion is achieved by interpolating by 

L i.e. from 44.1 kHz to [44.1x160] = 7056 kHz. Then decimating by 

M i.e. from 7056 kHz to [7056/147] = 48 kHz. 

 

 

5.    MULTISTAGE APPROACH 

When the sampling-rate changes are large, it is often better to 

perform the operation in multiple stages, where Mi (Li), an integer, 

is the factor for the stage i. 

 

M = M1M2…MI    or L  = L1L2…LI 

 

An example of the multistage approach for decimation is shown in 

figure 8. The multistage approach allows a significant relaxation of 

the anti-alias and anti-imaging filters, with a consequent reduction in 

the filter complexity. The optimum number of stages is one that leads 

to the least computational effort in terms of either the multiplications 

per second (MPS), or the total storage requirement (TSR). 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 4– No.10, August 2010 

30 

 

 
 

Figure 8: Multistage approach for the decimation process. 

 

6.    MULTIRATE DSP IN ANALOG SIGNAL  

         CONDITIONING 
 

6.1 Motivation 
A ubiquitous task performed by many communications and 

multimedia system is that  of converting  a digital  representation of a 

time  waveform into a continuous time representation. This task is 

performed, for instance, when we convert the digital samples 

recovered from a compact Disk (CD) to a continuous time l o w  

voltage analog   waveform. This waveform, in turn, i s  

amplified and converted to sound pressure waves b y 

earphones or loud speakers. Similarly, this task is performed at 

the output of a digital modulator, which c o n v e r t s  digital 

samples of a modulated waveform to a continuous time low 

voltage analog w a v e f o r m  [ 4 ] . This waveform in turn is  

presented to an RF up-converter and t r an s mi t t e r  for spectral 

t r a n s l a t i o n  and p o w e r  a m p l i f i c a t i o n .  

 

 
  

 

 

 

 

 

 

 
 

Figure 9: Detailed and Simplified Models of Signal 

Conditioning Sequence for D-to-A Conversion 

Process 
 

One f i n a l  e x a m p l e  o f  this the need for  the task is at the 

output of arbitrary function generators. The function generator 

pulls  digital samples  of a desired waveform from deep   

memory and  converts  these samples   to  a continuous time  low 

voltage  analog waveform to be applied as an input  signal  to a 

system  under test. 

 

This process of converting discrete time digital samples of a 

waveform to a continuous time analog waveform is performed by 

sequence of three operations. Figure 9 depicts the three operations 

performed by   an   analog-to-digital converter (ADC), a sample and 

hold (S&H), and an analog- smoothing filter. Figure 10 shows the 

time series that can be observed at each position in the signal 

conditioning stream, while figure 11 shows the spectral description at 

the same locations [4]. 

 

Examining figure 1 1 , we note t h a t  t h e  d ig i t a l  to analog   

conversion process   subjects   the   reconstructed analog 

waveform to two forms of distortion.  The first is the sin(x)/x 

spectral d i s t o r t i o n  due to the frequency response of the 

zero-order holds ( the rectangle  time r e s p o n s e  of the D AC ) 

[9]. The second is the group delay d i s to r t ion  caused by the 

dominant poles o f  the analog s m o o t h i n g  (or reconstruction) 

filter following the DAC. As a reminder, the  dominant poles  

are  those  close to the  jw axis in the S- plane,  and  are near  the  

filter transition band edges. These poles are characterized by 

large changes in phase over small changes in frequency, which has 

the effect of delaying signals near the band edge more than 

those near the band c e n t e r .  [5]  This differential time delay over 

the filter bandwidth distorts the w a v e f o r m  passing through 

the filter. This distortion is called group delay distortion. 
 

 

6.2   Multirate filter to correct distortion 
When we examine the causes of distortion introduced be the 

DAC and the analog l o w  pass filter we are guided to the 

following conclusions. The first is that the amplitude 

distortion caused by the DAC can be reduced if we have a  

larger r a t i o  of sample rate to signal b a n d w i d t h . The  affect  

of increasing  the  sample  rate relative  to  the  signal bandwidth 

can be seen  in the  frequency domain as  an  increased 

separation between  the  spectral replicates. 

 

The spectral d i s t o r t i o n  caused by the main-lobe o f  t h e    

DAC   sin(x)/x r e s p o n s e  i s  reduced since signal 

bandwidth occupies a smaller fraction of the main-lobe width. 

This effect can be seen in figure 12. The second effect of 

operating the DAC at higher sample  rates  (than  the  minimum 

Nyquist  rate) can be seen  in the  levels  of the  residual spectra  

centered at multiples of the sample rate. [5] 

 

Source DAC LPF 

CL CL 

Vref 

Discrete time 

Digital Data 
Analog 

Filter 

S (t) 
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Figure 10 (a): Time Series for Detailed Model of Signal 

conditioning Sequence for Digital-to-Analog conversion 

Process. 

 

 

 
Figure 10 (b): Time Series for Simplified Model of Signal 

Conditioning Sequence for Digital-to-Analog Conversion Process. 

 

The spectral  levels  are  reduced since  spectral   replicates stay  

closer   to  the  spectral  zeros   of  the  DAC's sin(x)/x. A third 

e f f e c t  can also be attributed to operating the DAC at higher 

sample rates.  Since the  distance   between   the  spectral   

residues  is increased, the  analog  filter  required to finish  the 

reconstruction task  can now  have  a wider transition 

bandwidth. Analog fi l ters  with wider transition bandwidth are 

lower order, hence have fewer components and reduced cost. 

An additional benefit of the l o we r  order filter i s  that filters with 

wider    transition   bandwidth e x h i b i t     smaller 

amounts of group delay distortion. Hence operating a DAC with 

over sampled data results in lower cost analog filters, with 

reduced group delay distortion. [6]  

 

We now   have   a quandary.  We  would  like  to reduce  

distortion by operating the  DAC at rates above   the   Nyquist   

rate   for  the  signal   being processed but  we  don't  want to 

store  or process data  at  rates  above  the  Nyquist  rate  since  

that results in increased storage  or  processing speed 

requirements. We resolve this sticky situation by collecting, 

storing, and processing sampled input data at the Nyquist rate, 

but raise the sample rate with a Multirate filter prior to passing 

the sample values o n  to the DAC for analog r e c o n s t r u c t i o n .  

 

 The  up-sampling  operation,  sometimes  called zero       

packing,  raises   the   input   sample  rate   by inserting  zero  

sampled data  values  between  the input  samples.  This is  

demonstrated for a 1-to-4 up-sampler  in  figure  13, and  the  

process  can  be visualized  as  a  commutator  operating  at   

the desired up-sample rate  accessing the  input  samples and  

inserted zero-value samples. 

 

A moments thought leads  us  to  the  conclusion that  the 

original  input  data  and  the zero inserted output  data   have  

the  same   Fourier   transform. This i s  because the i n s e r t e d  

zeros c a n n o t    contribute to the transform, which is simply a 

weighted s u m m a t i o n  of input samples.   The zeros d o  

accomplish something however. What they do is raise the 

sample rate. We know that the spectrum of a sampled data input 

signal is a periodic function with period (of spectral spacing) of 

fs, the input sample rate. We cannot, in general view the 

periodic spectrum. We can only view one cycle of the periodic 

spectrum, an interval called the primary strip of width fs, the 

reciprocal of the time interval between s a m p l e s  [ 6 ] .  

Fortunately the  width of  the  strip   and   the  spacing  between   

spectral copies  are  the  same  so  we  can  observe   all  the 

information in the  spectrum when we perform a discrete 

Fourier  transform (DFT).  When we raise the sample rate by zero 

insertion, we redefine the Nyquist interval, but not the spacing 

between the spectral copies.  Thus if we up-sample 1-to-4, the 

Nyquist interval widens by a factor of 4 and now spans 4 

spectral cycles of the input periodic spectrum.  Now   that w e  

c a n  see the wider spectral interval, spanning 4 cycles of the 

input spectrum, we can pass the data through a sampled data 

fi l ter  to reject three of the four copies. The output of that filter 

now has a wider spacing between spectral  copies, a distance 

that now matches t h e  new sample rate.  When  the  spectral  

spacing  matches the  higher spectral  width, the  output 

represents samples  of the  band-limited signal  at the  higher 

output rate.  The process of up sampling and filtering to realize 

new samples of the output series is called   interpolation.   The 

spectral   and   time domain representation of this process is 

shown in figure 14. 

 

7.      PRACTICAL REALIZATIONS 
 

The up-sampled digital-to-analog configuration still exhibits 

amplitude distortion from the DAC and g r o u p  delay 
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dis tor t ion  from the analog   low-pass smoothing filter. The   

amount   of d i s t o r t i o n    has b e e n  reduced by the use of 

the up sampler, but it has not been completely eliminated.  We 

n ote  that the source and   the amount of distortion caused by the 

analog   signal   conditioning are  k n o w n . Standard design 

procedures completely eliminate these distortion terms by pre-

compensating the digital low-pass filter following the 

upsampling commutator [6].  The i n v e r s e  sin(x)/x amplitude is 

designed into the pass band of the digital filter as is the 

conjugate of the analog filter’s phase distortion.  The cascade 

of the pre-compensated digital filter, DAC, and analog lowpass 

filter essentially is an ideal filter reconstruction system. The 

analog signal formed at the output of the cascade process only 

contains quantization noise r e l a t e d  to the  number of bits 

used to represent the digital sampler.  

 

The most common application of the reconstruction technique 

described here is in the playback systems   for the Compact 

Disk Player. Data   is extracted from the CD as left and r i g h t  

c h a n n e l  samples of 16-bits per sample at a data rate of 44.1 

kHz [9].  Both channels are upsampled 1-to-4 in a pair o f  

Polyphase filters to obtain o u t p u t  data o f  16-bits per sample 

at a data rate of 176.4 kHz. The up-sampled data is  then 

presented to a DAC and analog low-pass filter. The use of a 

1-to-4 higher sample rate permits the analog f i l t e r s  to  

implement with less severe design constraints and at reduced 

cost. CD players that perform th i s  function are  identified by 

the term “four times o v e r  sampled". [7] 

 
For c o m p l e t e n e s s , w e    mention that   many   CD players 

continue to raise the sample rate by another factor of 16 by a 

second Multirate filter to obtain output 16-bit output samples 

at a sample rate of 64 fs or 2.8224 MHz This data is highly  over 

sampled, hence  highly  correlated. This  highly  correlated  data  

is  presented to  a  digital sigma-delta converter that converts 

the 16-bit data  (with 96 dB dynamic range) to 1-bit data (with 

the same 96 dB dynamic range  over  the  signal's  Nyquist  

band- width). The 1-bit data is presented to a 1-bit DAC and a  

very s i m p l e  a n a l o g    filter.  The r easo n in g  behind this 

sequence of operations is that it is less expensive to be fast in 

the digital world than i t  is to be accurate i n  the analog wo r l d . 

The 1-bit 2.82 MHz DAC only has to form 2 accurate output 

levels as opposed to the 16-bit 176.4 kHz DAC that has t o  f o r m  

65,536 accurate   output levels.  CD players t h a t  perform 

this form of DAC operation are identified by the term “1-bit 

MASH converter". [8]  

 
In a similar fashion, over sampling analog-to-digital converters 

that use sigma-delta converters followed by Digital filters with 

Multirate capabilities have become the standard, cost effective, 

option of the audio community and of the instrumentation 

community. 

 

8.       APPLICATIONS OF MULTIRATE DSP 

 
 

Multirate systems are used in a CD player when the music signal is 

converted from digital into analogue (DAC). Digital data (16-bit 

words) are read from the disk at a sampling rate of 44.1 kHz. If this 

data were converted directly into an analogue signal, image frequency 

bands centered on multiples of the sampling-rate would occur, 

causing amplifier overload, and distortion in the music signal. To 

protect against this, a common technique called oversampling is often 

implemented nowadays in all CD players and in most digital 

processing systems of music signals [8]. 
 

Figure 15 illustrates the procedure of converting a digital waveform 

into an analogue signal in a CD player using x8 oversampling. As 

an example, Figure 15 (a) illustrates a 20 kHz sinusoidal signal 

sampled at 44.1 kHz, denoted by x[n]. The six samples of the 

signal represent the waveform over two periods. If the signal x[n] 

was converted directly into an analogue waveform, it would be very 

hard to exactly reconstruct the 20 kHz signal from this diagram. 

Now, Figure 15 (b) shows x[n] with an x8 interpolation, denoted by 

y[n]. Figure 15(c) shows the analogue signal y(t), reconstructed 

from the digital signal y[n] by passing it through a DAC. Finally, 

Figure 15(d) shows the waveform of z(t), which is obtained by 

passing the signal y(t) through an analogue low-pass filter [9]. 

 

The effect of oversampling also has some other desirable features. 

Firstly, it causes the image frequencies to be much higher and 

therefore easier to filter out. The anti-alias filter specification can 

therefore be very much relaxed i.e. the cut- off frequency of the 

filter for the previous example increases from [44.1 / 2] = 22.05 

kHz to [44.1x8 / 2] = 176.4 kHz after the interpolation. 

 

One other attractive feature about oversampling is the effect of 

reducing the noise power spectral density, by spreading the noise 

power over a larger bandwidth. This is illustrated in Figure 16 and 

mathematical defined below by Equation 3 

 

Noise Power Spectral Density = Total Power           (3) 

           Bandwidth 

 

For both sequences, the total noise power (shaded area in Figure 

16) remains the same. However, as the bandwidth is increased by a 

factor of x8 because of the interpolation process, it causes the level 

of the noise power spectral density to decrease by a factor of x8, 

over the whole range of the bandwidth 

 

As a consequence of the reduction in the noise power spectral 

density, it means that the level of tolerable noise can be increased by 

a factor of 8. In terms of the quantization noise power, q
2

, it means 

that it can now be 8 times greater (or the quantization step size, q, 

can be increased by √8). This ultimately means that a reduction in 

the number of bits for the DAC is possible. [10]  
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9.      CONCLUSION 
We have presented a simple overview and co mmon application 

of one possible Multirate signal processing task. That task is the 

improvement in signal quality obtained when converting a 

sampled d a t a  s i g n a l  to an analog s i g n a l  b y a combination of 

a DAC and analog low-pass filter. In the improved option, a 

digital resampling filter, commonly i mp l e men ted  as a 

polyphase filter is used to raise the output sample rate prior t o  

the DAC and   low-pass filter o p e r a t i o n s . The i n c r e a s e    in 

sample rate r e s u l t s  in l e s s  d i s t o r t i o n  from t h e  DAC and 

analog f i l t e r . Embedding the appropriate pre-compensating 

gain and phase in  the digital resampling filter further controls 

t h e  residual distortion. 

 

 

 
 

Figure 15: Illustration of oversampling in CD music signal 

reconstruction 

 

 

 

 

 

Figure 16: Illustration of noise power spectral density reduction due 

to oversampling. 
 

 

 

 
Figure 11: Spectra of various signals for Simplified Model of Signal 

Conditioning Sequence for Digital-to-Analog Conversion Process 

 

 

 
   
Figure12 (a): Spectral distortion caused by DACs sinx/x at sample 

rate fs. 
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Figure12 (b): Spectral Distortion Caused by DAC's 

Sin(x)/x at Double sampling rate fs. 

 
 

Figure13: 1-to-4 Upsampling or Zero-Packing with 

Input commutator 

 

 
 
 

Figure14 (a): Time Series: Input, Zero-Packed, and 

Filtered Components of 1-to-4 Interpolator 

 
 

Figure14 (b): Spectra: Input, Zero-Packed & Filtered 

components of 1–to-4 Interpolator. 
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