
International Journal of Computer Applications (0975 – 8887)
Volume 4– No.11, August 2010

13

Algorithms to Optimally Use Hardware Forwarding
Resources in a Router Domain

 B.G.Prasanthi, Dr.T.Bhaskara Reddy

 Research Student, Associate Professor
 S.K.University, S.K.University,
 Anantapur. Anantapur.

ABSTRACT
Routers and Forwarders in a Router domain would likely have

different amount of hardware Resources. The least capable switch

should not hold the performance of the Router network domain to

ransom. This write up lists some smart choices the forwarders and

routers in the Router domain can make to most efficiently utilize

the hardware forwarding capabilities of each node in the network.

In a Router domain, all forwarders and routers belonging to a single

Router domain keep every other Forwarder or router updated of all

the host routes for each host known and present in the network.

The above is done for every subnet in the Router domain. Each

forwarder and router installs all the routes in the fast path

forwarding database (for example hardware forwarding tables).

In this new scheme, all the routers and forwarders learn all the

routes, build the topology table for all subnets, but the difference is

the router/forwarder can choose to put subnet of the routes in the

fast path database (hardware database). This would save of the

hardware resources, without sacrificing the network performance in

most cases. In the cases where network path chosen is potentially

suboptimal a further set of enhancements comes and loosens the

optimization to further improve the network performance without

wasting the forwarding resource utilization.

Keywords
Routers, Forwarders, Router Domain, Host, Fast path Database

Related work
An example of AI-based allocation algorithm is presented in

Kichkaylo and Karamcheti (2004). This algorithm achieves

resource optimality to improve throughput of applications and

satisfy resource constraints at the same time. However, it focuses

on a special application kind where components produce or

consume data streams. The CANS framework [Fu 2003] enables

dynamic deployment of components in the parts of network to ease

handling of protocol conversation, data transcending, and mapping

incompatible network partitions together. CANS optimize solutions

using different application-related metrics, e.g. overall throughput.

However, applications in CANS consist of components which are

mapped into a direct sequence such as single sink-source chains.

The AIRES [Wang et al. 2004] is an informed branch and bound

allocating algorithm that aims to support software design

automation. The AIRES uses a static resource model where all the

devices share the same link. Thus, AIRES targets a limited case of

the application allocation. Another approach is offered by HADAS

[Ben-Shaul et al. 2004] and DecAp [Malek et al. 2005], both of

which are decentralized agent-based systems. In HADAS, all the

hosts and single components are autonomous entities that use a

simple negotiation algorithm to discover resources and allocate

components. However, HADAS has a significant drawback. The

negotiation process is not time-limited and therefore agents cannot

predict duration of allocation and deployment that is unacceptable

in user-centric systems. The DecAp algorithm is based on the

assumption that the host resources are not always known before the

allocation. DecAp uses a distributed auctioneer algorithm to

allocate components that are agents consuming or offering a

resource. DecAp focuses on reliability of the system by solving the

problem of disconnected operation, where the system continues

functioning in temporary absence of network. However, we assume

that disconnection of networking hosts has to be handled separately

at the network level. This assumption simplifies algorithm and

allows focusing on user-related metrics of applications that we find

more important.

Algorithm

Algorithm exploits the following:

Step 1:All the Router Area border routers(aka Domain Border

Routers)advertise all the subnet. Prefix/mask as a route in to the

Router domain.

Step 2: Every router or forwarder in the domain is notified of all

host routes for all subnets in the domain.

Step 3: Area border routes are the ones with the glean adjacency

for the subnet, and are responsible for generation of the Router

probe request to discover an unknown host.

Greedy optimization algorithm
Each router or forwarder before installing the host route in

hardware performs an Immediate less specific lookup. If a less

specific route is present and the immediate less specific route has

the same set of adjacencies as the new route to be installed then, the

installation of the new host route in hardware is unnecessary and

optimized out. Two set of adjacencies are considered as equal if

they have the member adjacencies each with the same load

distribution weights.

In case of an, hardware resource condition the subnet routes are

always prioritized and installed, so that forwarding is correct. The

host routes which would forward out using a different set of

adjacencies as compared to less specific route are given the next

priority in hardware for table space, in case there is no space to

accommodate them, these host routes, then the less specific route

has to forward using the slow path(software).

This is a safe algorithm and avoids creation of any routing loop,

sub optimal forwarding etc.

International Journal of Computer Applications (0975 – 8887)
Volume 4– No.11, August 2010

14

But the optimization cannot be turned for the routes that are seen

from forwarders that share a common set of redundant distribution

switches. put a figure here to illustrate the case where the

optimization helps and where it does not help.

For an example

FORWARDIND TABLE COMPUTED FROM

THE ROUTING TABLE USING ADAPTIVE

ALGORITHM (assume all links have same

cost):

Forwarder G:
Prefix Next Hop

120.1.1.5/32 120.1.1.5

120.1.1.11/32 120.1.1.11

120.1.1.2/32 Router C

<< Less specific does not have an *equal*set

120.1.1.6/32 Router C

<< Less specific does not have an *equal*set

120.1.1.0/24 ECR(Router C || Router D)

Forwarder H:

Prefix Next Hop

120.1.2/32 120.1.2

120.1.2/32 120.1.1.6

120.1.2/32 Router C

Forwarder I:

Prefix Next Hop

120.1.1.15/32 120.1.1.15

120.1.1.3/32 120.1.1.3

120.1.1.2/32 Router C

<< Less specific does not have an *equal*set

120.1.1.8/32 Router F (Forwarder J is a candidate,

 but is not as optimization cannot be done

 with less specific ,its RD(2)<FD(3))

120.1.1.10/32 Router F

120.1.1.0/24 ECR(Router A || Forwarder B)

Router F

Prefix Next Hop

120.1.1.4/32 Router E(Forwarder K is a candidate,

 but is not used as optimization cannot

 be done with less specific, its RD(2)<FD(3))

120.1.1.10/32 Router E(Forwarder K is a candidate,

but is not used as optimization cannot

be done with less specific, its RD(2)<FD(3))

120.1.1.9/32 Forwarder K

120.1.1.8/32 Forwarder K

120.1.1.10/32 Forwarder L

120.1.1.0/24 ECR(Router A ||Forwarder B)

Router B:

Prefix Next Hop

120.1.1.5/32 ECR(Router C||Router D)

120.1.1.11/32 ECR(Router C||Router D)

120.1.1.2/32 Router C

120.1.1.6/32 Router C

120.1.1.15/32 ECR(Router C||Router D)

120.1.1.15/32 ECR(Router C||Router D)

120.1.14/32 Router E

120.1.1.7/32 Router E

120.1.1.9/32 Router F

120.1.1.8/32 Router F

120.1.1.10/32 Router F

0.1.1.0/24 Glean

Router A:

Prefix Next Hop

120.1.1.5/32 ECR(Router C||Router D)

120.1.1.11/32 ECR(Router C||Router D)

120.1.1.2/32 Router C

120.1.1.6/32 Router C

120.1.1.15/32 ECR(Router C||Router D)

120.1.1.3/32 ECR(Router C||Router D)

120.1.1.4/32 Router E

120.1.1.7/32 Router E

120.1.1.9/32 Router F

120.1.1.8/32 Router F

120.1.1.10/32 Router F

120.1.1.0/24 Glean

Optimization Algorithm

Our algorithm produces better results as compared to the above

one, as it‟s more aggressive but needs more information, to get it‟s

job done right, like no routing loops.

It‟s needs to do *one* of the following :

A new Router route distribution protocol is used that propagates the

link state topology of the network, and every host route is

advertised with the source forwarder (first forwarder to which the

lost is connected). Now if the link state topology is known along

with the source forwarder for the host route, any forwarder or

router in the network can safely compute the adjacencies That can

be used to reach the host(these adjacencies may have different load

distribution values), but there is a guarantee that there will never be

a routing loop. The forwarder can ignore the load distribution when

performing the equality check in step IIa below, and just treat all

the adjacencies as equal cost. Picking up the less optimal non

looped paths enables the algorithm in step IIa to perform an

International Journal of Computer Applications (0975 – 8887)
Volume 4– No.11, August 2010

15

aggressive less specific match, as it takes all the paths to reach the

destination, Irrespective of the load distribution.

Another alternative to the above is, play with the link costs such

that the cost of the distribution links is less than that of the

forwarder to router uplinks. Then use EIGRP for route distribution

and exploit a concept similar to variance. Exploit concepts the

EIGRP Concepts of feasible distance, reported distance, feasible

successor to always prevent a routing loop, but still pick up less

optimal paths. If the less specific‟s adjacency set, consists of the

same adjacency members as the host route, then treat the routes as

equal, if not increase the member set of host routes by including the

feasible successors, now if the sets have the same members,

optimization can be done. Picking Up the less optimal non looped

paths enables the algorithm in step IIa to perform an aggressive

less specific match, as it takes all the paths to reach the destination,

irrespective of the load distribution. That is why is called adaptive

algorithm optimization algorithm.

Optimization techniques

Technique 1:

Each router or forwarder before installing the host route in

hardware performs a less specific lookup. if a less specific route is

present and the less specific route has the same equivalent set of

adjacencies as the new route to be installed then, the installation of

the new host route in hardware is considered unnecessary and

optimized out. Two set of adjacencies are considered equivalent if

they have the same member adjacencies irrespective of the load

distribution weight see the options in 4 & 5 to see when this is

possible.

Technique 2:

In case of, an out of hardware resource condition the subnet routes

are always prioritized and installed, so that forwarding is correct.

the host routes which would forward out using the a different set of

adjacencies as compared to the less specific route has to forward

using the slow path(software).

Technique 3:

This adaptive algorithm use suboptimal paths to forward traffic In

the network at times, from the access forwarders. This weakness

can be mitigated, by making the algorithm adaptive, and take a

feedback from the actual user traffic in the network. Making the

algorithm adaptive does not slow down the forwarding of data

traffic, that is does not put the algorithm in the data path, but rather

the algorithm samples copies of the traffic being forwarded in the

hardware, and matching the less specific subnet routes. On a

catalyst switch like 3750 this could be implemented by forwarding

packets and hardware but also copying the packets to a special CPU

Queue or DI. Packets received on this queue are not forwarded, but

just used for sampling of the end destinations for which there is

active traffic. From this sampled traffic the software further isolates

those destinations, for which an optimal path is present in the

network with possibly a different load distribution, than the less

specific prefix route. For each of these DAs if space is present in

hardware the software installs a dedicated/32or /128 entry. when

the hardware resources fall below a particular watermark, the

software looks at the activity bits of a statistics bucket attached to

these /32 or /128 entries that are not be used are garbage collected.

if the platform has small number of statistics buckets, then other

schemes can be used like cycling the buckets through the entries

that may be candidates for garbage collection or using an elaborate

divide and conquer scheme using fixed statistics buckets to find

HW entries that are not used recently.

FORWARDIND TABLE COMPUTED FROM

THE ROUTING TABLE USING ADAPTIVE

ALGORITHM (assume all links have same

cost):

Forwarder G:

Prefix Next Hop

120.1.1.5/32 120.1.1.5

120.1.1.11/32 120.1.1.11

120.1.1.2/32 Router C

<< Less specific does not have an *equal*set

120.1.1.6/32 Router C

<< Less specific does not have an *equal*set

120.1.1.0/24 ECR(Router C || Router D)

Forwarder H:
Prefix Next Hop

120.1.2/32 120.1.2

120.1.2/32 120.1.1.6

120.1.2/32 Router C

Forwarder I:
Prefix Next Hop

120.1.1.15/32 120.1.1.15

120.1.1.3/32 120.1.1.3

120.1.1.2/32 Router C

<< Less specific does not have an *equal*set

120.1.1.8/32 Router F

(Forwarder J is a candidate, but is not as

optimization cannot be done

 with less specific ,its RD(2)<FD(3))

120.1.1.10/32 Router F

120.1.1.0/24 ECR(Router A || Forwarder B)

Router F

Prefix Next Hop

120.1.1.4/32 Router E(Forwarder K is a candidate,

International Journal of Computer Applications (0975 – 8887)
Volume 4– No.11, August 2010

16

but is not used as optimization cannot be

done with less specific, its RD(2)<FD(3))

120.1.1.10/32 Router E(Forwarder K is a candidate,

but is not used as optimization cannot

 be done with less specific, its RD(2)<FD(3))

120.1.1.9/32 Forwarder K

120.1.1.8/32 Forwarder K

120.1.1.10/32 Forwarder L

120.1.1.0/24 ECR(Router A ||Forwarder B)

Router B:

Prefix Next Hop

120.1.1.5/32 ECR(Router C||Router D)

120.1.1.11/32 ECR(Router C||Router D)

120.1.1.2/32 Router C

120.1.1.6/32 Router C

120.1.1.15/32 ECR(Router C||Router D)

120.1.1.15/32 ECR(Router C||Router D)

120.1.14/32 Router E

120.1.1.7/32 Router E

120.1.1.9/32 Router F

120.1.1.8/32 Router F

120.1.1.10/32 Router F

120.1.1.0/24 Glean

Router A:

Prefix Next Hop

120.1.1.5/32 ECR(Router C||Router D)

120.1.1.11/32 ECR(Router C||Router D)

120.1.1.2/32 Router C

120.1.1.6/32 Router C

120.1.1.15/32 ECR(Router C||Router D)

120.1.1.3/32 ECR(Router C||Router D)

120.1.1.4/32 Router E

120.1.1.7/32 Router E

120.1.1.9/32 Router F

120.1.1.8/32 Router F

120.1.1.10/32 Router F

120.1.1.0/24 Glean1

ALGORITHM:

Measurement-Period, t ∈ (Cx.1,Mx)

for every neighbor node j do

Sij ←a monitoring scheme for the link from node i to node j

if Sij == PASSIVE or ACTIVE then

monitor egress traffic to node j

else if Sij == COOPERATIVE then

monitor egress traffic from node i to node k that node j overhears

end if

if node i received a cooperation request (.) from node j then

overhear cross traffic from node j to node .

end if

end for

(2) At the end of a Measurement-Period, t = Mx

for every neighbor j do

record measurement results from node i to node j

if node i received a cooperation request (.) from node j then

send node j a report of overhearing traffic from node j to node .

end if

end for

3) During an Update-Period, t ∈ (Mx,Mx + Ux)

process a measurement report(s) from other nodes, if any

(4) End of an Update-Period, t = Mx + Ux (or, t = Cx)

for every neighbor j do

calculate the quality of link from node i to j using Eq. (2.1)

run the transition algorithm (in Figure 2.2) for node j

if transition to COOPERATIVE then

choose node k that node j can overhear

send a cooperation request (k) to node j

else if transition to ACTIVE then

schedule active probe packets

end if

end for

Results:
We have implemented the proposed routing algorithm in C-

Programming with respect to hardware routing resources in an IP

domain. We have tested our algorithm on a set of 50 nodes with 14

routers. We explore the tradeoff between the performance of

routing with generic, symmetric, IARS (implemented system) .

Hardware forwarding routing table

 Generic
routers

Symmetric
routers

IARS Benefits

Technique 1 4 % 3.62 % 7.98 % 14.3 %

Technique 2 12 % 11.8 % 13.68% 18.90

CONCLUSION

Both algorithms found equally good solutions in most of the cases,

as demonstrated by our preliminary experiments. However, this

adaptive algorithm is more robust and stable than the greedy one.

The algorithm based on evolutionary computing also demonstrated

a better calculation time, although it had a little time overhead on

small applications. As can be seen, this algorithm has a success

ratio bigger than 18% for large applications. The fact that the

success ratio of this algorithm increases with the application size is

(or appears to be) due to an increased number of additional

constraints imposed by the application components that greedy

algorithm cannot handle. The limitation of the current

implementation of this algorithm is the resource model that

supports only specific types of resources, such as hosts and network

0

5

10

15

20

GR SR IARS Benefits

Series1

Series2

Series3

International Journal of Computer Applications (0975 – 8887)
Volume 4– No.11, August 2010

17

link physical constraints. We identify a need to use a generic

resource model, where each host can provide any kind of resource.

This generic model has to take into use, for example, displays,

microphones and other peripheral devices offering additional

services for the user. Moreover, in a future implementation of the

algorithm.

 REFERENCES
1 . Ben-Shaul I. et al, 2004. Dynamic adaptation and deployment of

distributed components in HADAS. The IEEE Transactions on

Software Engineering, 27, 9, 769-787.Fu X., 2003. Infrastructure

support for accessing network services in dynamic network

environments. Phd thesis. NewYork University.

2 Gross T. et al, 1999. Adaptive distributed applications on

heterogeneous networks. In Proceedings of the 8th Heterogeneous

Computing Workshop. 209.Kejariwal A. and Nicolau A., 2005. An

Efficient Load Balancing Scheme for Grid-based High

Performance Scientific Computing. In Proceedings of the 4th

International Symposium on Parallel and Distributed Computing

(ISPDC‟05).CA. USA. 217- 225.

3 Kichkaylo T., 2005. Construction of Component-Based

Applications by Planning. Phd thesis. New York

University.Kichkaylo T. et al, 2003. Constrained Component

Deployment in Wide-Area Networks Using AI Planning

Techniques.In Proceedings of International Parallel and Distributed

Computing Symposium (IPDPS‟03). Nice. France.

4 Kichkaylo T. and Karamcheti V., 2004. Optimal resource-aware

deployment planning for component-based distributed applications.

In Proceedings of 13th IEEE International Symposium on High

Performance Distributed Computing.150 – 159.

5 Malek S. et al, 2005. A Decentralized Redeployment Algorithm

for Improving the Availability of Distributed Systems. In

Proceedings of 3rd International Working Conference on

Component Deployment (CD„05). Grenoble. France.Michalewicz

Z. and Fogel D. B. 2000. How to solve it: modern heuristics.

Berlin: Springer.

6 Perttunen M. et al, 2007. A QoS Model for Task-Based Service

Composition. 4th International Workshop on Managing Ubiquitous

Communications and Services (MUCS 2007), Munich, Germany,

25 May.

7 Ranganathan A. and Campbell R., Autonomic Pervasive

Computing Based on Planning. In Proceedings of the First

International Conference on Autonomic Computing (ICAC'04), 17-

19 May 2004, New York, NY, USA, pp. 80-87.Roman M. et al,

2002. “A middleware infrastructure for active spaces”. Pervasive

Computing, IEEE, Vol. 1, 4, pp. 74-83.

8 Satyanarayanan M., 2001. “Pervasive computing: vision and

challenges”, IEEE Pers. Commun., Vol. 8, 4, pp. 10-17.Tanenbaum

A. and Maarten S., 2002. Distributed Systems: Principles and

Paradigms. Prentice Hall.

10 Wang S. et al, 2004. Component Allocation with Multiple

Resource Constraints for Large Embedded Real-Time Software

Design. In Proceedings of IEEE Symposium on Real-Time and

Embedded Technology and Applications(RTAS‟04). Toronto.

Canada.

