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ABSTRACT 
Routers and Forwarders in a Router domain would likely have 

different amount of hardware Resources. The least capable switch 

should not hold the performance of the Router network domain to 

ransom. This write up lists some smart choices the forwarders and 

routers in the Router domain can make to most efficiently utilize 

the hardware forwarding capabilities of each node in the network. 

In a Router domain, all forwarders and routers belonging to a single 

Router domain keep every other Forwarder or router updated of all 

the host routes for each host known and present in the network. 

The above is done for every subnet in the Router domain. Each 

forwarder and router installs all the routes in the fast path 

forwarding database (for example hardware forwarding tables). 

In this new scheme, all the routers and forwarders learn all the 

routes, build the topology table for all subnets, but the difference is 

the router/forwarder can choose to put subnet of the routes in the 

fast path database (hardware database). This would save of the 

hardware resources, without sacrificing the network performance in 

most cases. In the cases where network path chosen is potentially 

suboptimal a further set of enhancements comes and loosens the 

optimization to further improve the network performance without 

wasting the forwarding resource utilization. 

Keywords 
Routers, Forwarders, Router Domain, Host, Fast path Database 

Related work  
An example of AI-based allocation algorithm is presented in 

Kichkaylo and Karamcheti (2004). This algorithm achieves 

resource optimality to improve throughput of applications and 

satisfy resource constraints at the same time. However, it focuses 

on a special application kind where components produce or 

consume data streams. The CANS framework [Fu 2003] enables 

dynamic deployment of components in the parts of network to ease 

handling of protocol conversation, data transcending, and mapping 

incompatible network partitions together. CANS optimize solutions 

using different application-related metrics, e.g. overall throughput. 

However, applications in CANS consist of components which are 

mapped into a direct sequence such as single sink-source chains. 

The AIRES [Wang et al. 2004] is an informed branch and bound 

allocating algorithm that aims to support software design 

automation. The AIRES uses a static resource model where all the 

devices share the same link. Thus, AIRES targets a limited case of 

the application allocation. Another approach is offered by HADAS 

[Ben-Shaul et al. 2004] and DecAp [Malek et al. 2005], both of  

which are decentralized agent-based systems. In HADAS, all the 

hosts and single components are autonomous entities that use a 

simple negotiation algorithm to discover resources and allocate 

components. However, HADAS has a significant drawback. The 

negotiation process is not time-limited and therefore agents cannot 

predict duration of allocation and deployment that is unacceptable 

in user-centric systems. The DecAp algorithm is based on the 

assumption that the host resources are not always known before the 

allocation. DecAp uses a distributed auctioneer algorithm to 

allocate components that are agents consuming or offering a 

resource. DecAp focuses on reliability of the system by solving the 

problem of disconnected operation, where the system continues 

functioning in temporary absence of network. However, we assume 

that disconnection of networking hosts has to be handled separately 

at the network level. This assumption simplifies algorithm and 

allows focusing on user-related metrics of applications that we find 

more important. 

Algorithm 

Algorithm exploits the  following: 

Step 1:All the Router  Area  border routers(aka  Domain Border 

Routers)advertise all the subnet. Prefix/mask as a route in to the 

Router domain. 

Step 2: Every router or forwarder in the domain is notified of all 

host routes for all subnets in the domain. 

Step 3: Area border  routes are the ones with the glean adjacency 

for the subnet, and are responsible for generation  of the Router 

probe request to discover an unknown host. 

Greedy optimization algorithm 
Each router or forwarder before installing the host route in 

hardware performs an Immediate less specific lookup. If a less 

specific route is present and the immediate less specific route  has 

the same set of adjacencies as the new route to be installed then, the 

installation of the new host route in hardware is unnecessary and 

optimized out. Two set of adjacencies are considered as equal if 

they have the member adjacencies each with the same load 

distribution weights. 

In case of an, hardware resource condition the subnet routes are 

always prioritized and installed, so that forwarding is correct. The 

host routes which would forward out using a different set of 

adjacencies as compared to less specific route are given the next 

priority in hardware for table space, in case there is no space to 

accommodate them, these host routes, then the less specific route 

has to forward using the slow path(software). 

This is a safe algorithm and avoids creation of any routing loop, 

sub optimal forwarding etc.  
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But the optimization cannot be turned for the routes that are seen 

from forwarders that share a common set of redundant distribution 

switches. put a figure here to illustrate the case where the 

optimization helps and where it does not help. 

 

For an example 

 

 

FORWARDIND TABLE COMPUTED FROM 

THE ROUTING TABLE USING ADAPTIVE 

ALGORITHM (assume all links have same 

cost): 

 
Forwarder G: 
Prefix                               Next Hop 

120.1.1.5/32                    120.1.1.5 

120.1.1.11/32                  120.1.1.11 

120.1.1.2/32                    Router C  

<< Less specific does not have an *equal*set 

120.1.1.6/32                   Router C  

<< Less specific does not have an *equal*set 

120.1.1.0/24                    ECR(Router  C || Router D ) 

Forwarder H: 

Prefix                              Next Hop 

120.1.2/32                      120.1.2  

120.1.2/32                      120.1.1.6  

120.1.2/32                      Router C  

Forwarder I: 

Prefix                              Next Hop 

120.1.1.15/32                 120.1.1.15 

120.1.1.3/32                   120.1.1.3  

120.1.1.2/32                   Router C  

<< Less specific does not have an *equal*set 

120.1.1.8/32                      Router F (Forwarder J is a candidate,  

                                    but is not as optimization cannot be done  

                                with less specific ,its RD(2)<FD(3)) 

 

120.1.1.10/32                    Router F 

120.1.1.0/24                      ECR(Router A || Forwarder B) 

 

Router F 

Prefix                                Next Hop 

120.1.1.4/32                      Router  E(Forwarder K is a candidate, 

                                     but is not  used  as optimization cannot  

                                be done with less specific, its RD(2)<FD(3)) 

 

120.1.1.10/32                    Router  E(Forwarder K is a candidate,  

but is not  used  as optimization cannot                                               

be done with less specific, its RD(2)<FD(3)) 

 

120.1.1.9/32                      Forwarder K 

120.1.1.8/32                      Forwarder K 

120.1.1.10/32                    Forwarder L 

120.1.1.0/24                      ECR(Router A ||Forwarder B) 

Router B: 

Prefix                                Next Hop 

120.1.1.5/32                      ECR(Router C||Router D) 

120.1.1.11/32                    ECR(Router C||Router D) 

120.1.1.2/32                      Router C 

120.1.1.6/32            Router C 

120.1.1.15/32                    ECR(Router C||Router D) 

120.1.1.15/32              ECR(Router C||Router D) 

120.1.14/32                       Router E 

120.1.1.7/32                      Router E 

120.1.1.9/32                      Router F  

120.1.1.8/32                      Router F 

120.1.1.10/32                    Router F 

0.1.1.0/24                          Glean    

 

Router A: 

Prefix                                 Next Hop 

120.1.1.5/32                       ECR(Router C||Router D) 

120.1.1.11/32                     ECR(Router C||Router D) 

120.1.1.2/32                       Router C 

120.1.1.6/32                       Router C 

120.1.1.15/32                     ECR(Router C||Router D) 

120.1.1.3/32                       ECR(Router C||Router D) 

120.1.1.4/32                       Router E 

120.1.1.7/32                       Router E 

120.1.1.9/32                       Router F 

120.1.1.8/32                       Router F 

120.1.1.10/32                     Router F 

120.1.1.0/24                       Glean 

 

Optimization Algorithm   

Our  algorithm produces better results as compared to the above 

one, as it‟s more aggressive but needs more information, to get it‟s 

job done right, like no routing loops. 

It‟s needs to do *one* of the following : 

A new Router route distribution protocol is used that propagates the 

link state topology of the network, and every host route is 

advertised with the source forwarder (first forwarder to which the 

lost is connected). Now if the link state topology is known along 

with the source forwarder for the host route, any forwarder or 

router in the network can safely compute the adjacencies That can 

be used  to reach the host(these adjacencies may have different load 

distribution values), but there is a guarantee that there will never be 

a routing loop. The forwarder can ignore the load distribution when 

performing the equality check in step IIa below, and just treat all 

the adjacencies as equal cost. Picking up the less optimal non 

looped paths enables the algorithm in step IIa to perform an 
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aggressive less specific match, as it takes all the paths to reach the 

destination, Irrespective of the load distribution. 

Another alternative to the above is, play with the link costs such 

that the cost of the distribution links is less than that of the 

forwarder to router uplinks. Then use EIGRP for route distribution 

and exploit a concept similar to variance. Exploit concepts the 

EIGRP Concepts of feasible distance, reported distance, feasible 

successor to always prevent a routing loop, but still pick up less 

optimal paths. If the less specific‟s adjacency set, consists  of the 

same adjacency members as the host route, then treat the routes as 

equal, if not increase the member set of host routes by including the 

feasible successors, now if the  sets have the same members, 

optimization can be done. Picking Up the less optimal non looped 

paths enables the algorithm in step IIa  to perform an aggressive 

less specific match, as it takes all the paths to reach the destination, 

irrespective of the load distribution. That is why is called adaptive 

algorithm optimization algorithm. 

Optimization techniques 

Technique 1: 

Each router or forwarder  before installing the host route in 

hardware performs a less specific lookup. if a less specific route is 

present and the less specific route has the same equivalent set of 

adjacencies as the new route to be installed then, the installation of 

the new host route in hardware is considered unnecessary and 

optimized out. Two set of adjacencies are considered equivalent if 

they have the same member  adjacencies irrespective  of the load 

distribution weight see the options in 4 & 5 to see when this is 

possible. 

Technique 2: 

In  case of, an out of hardware resource condition the subnet routes 

are always prioritized and installed, so that forwarding is correct. 

the host routes which would forward out using the a different set of 

adjacencies as compared to the less specific route has to forward 

using the slow path(software).  

Technique 3: 

This adaptive algorithm use suboptimal paths to forward traffic In 

the network at times, from the access forwarders. This weakness 

can be mitigated, by making the algorithm adaptive, and take a 

feedback from the actual user traffic in the network. Making the 

algorithm adaptive does not slow down the forwarding of data 

traffic, that is does not put the algorithm in the data path, but rather 

the algorithm samples  copies of the traffic being forwarded in the 

hardware, and matching the less specific subnet routes. On a 

catalyst  switch like 3750 this could be implemented by forwarding 

packets and hardware but also copying the packets to a special CPU 

Queue or DI. Packets received on this queue are not forwarded, but 

just used for sampling of the end destinations for which there is 

active traffic. From this sampled traffic the software further isolates 

those destinations, for which an optimal path is present in the 

network with possibly a different load distribution, than the less 

specific prefix route. For each of these DAs if space is present in 

hardware the software installs a dedicated/32or /128 entry. when 

the hardware resources fall below a particular watermark, the 

software looks at the activity bits of a statistics bucket attached to 

these /32 or /128 entries that are not be used are garbage collected. 

if the platform has small number of statistics buckets, then other 

schemes can be used like cycling the buckets through the entries 

that may be candidates for garbage collection or using an elaborate 

divide and conquer scheme using fixed statistics buckets to find 

HW entries that are not used recently. 

FORWARDIND TABLE COMPUTED FROM 

THE ROUTING TABLE USING ADAPTIVE 

ALGORITHM (assume all links have same 

cost): 

 
Forwarder G: 

Prefix                               Next Hop 

120.1.1.5/32                     120.1.1.5 

120.1.1.11/32                   120.1.1.11 

120.1.1.2/32                     Router C  

<< Less specific does not have an *equal*set 

120.1.1.6/32                     Router C  

<< Less specific does not have an *equal*set 

120.1.1.0/24                     ECR(Router  C || Router D ) 

Forwarder H: 
Prefix                               Next Hop 

120.1.2/32                        120.1.2  

120.1.2/32                        120.1.1.6  

120.1.2/32                        Router C  

Forwarder I:  
Prefix                               Next Hop 

120.1.1.15/32                 120.1.1.15 

120.1.1.3/32                   120.1.1.3  

120.1.1.2/32                   Router C  

<< Less specific does not have an *equal*set 

120.1.1.8/32                   Router F  

(Forwarder J is a candidate, but is not as 

optimization cannot be done  

                                with less specific ,its RD(2)<FD(3)) 

 

 
 

120.1.1.10/32                 Router F 

120.1.1.0/24                   ECR(Router A || Forwarder B) 

Router F 

Prefix                             Next Hop 

120.1.1.4/32                   Router  E(Forwarder K is a candidate,  
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but is not  used  as     optimization cannot be 

done with less specific, its RD(2)<FD(3)) 

 

120.1.1.10/32                 Router  E(Forwarder K is a candidate,  

but is not  used  as optimization cannot  

                                be done with less specific, its RD(2)<FD(3)) 

 

120.1.1.9/32                   Forwarder K 

120.1.1.8/32                   Forwarder K 

120.1.1.10/32                 Forwarder L 

120.1.1.0/24                   ECR(Router A ||Forwarder B) 

Router B: 

Prefix                             Next Hop 

120.1.1.5/32                   ECR(Router C||Router D) 

120.1.1.11/32                 ECR(Router C||Router D) 

120.1.1.2/32                   Router C 

120.1.1.6/32         Router C 

120.1.1.15/32                 ECR(Router C||Router D) 

120.1.1.15/32           ECR(Router C||Router D) 

120.1.14/32                    Router E 

120.1.1.7/32                   Router E 

120.1.1.9/32                   Router F  

120.1.1.8/32                   Router F 

120.1.1.10/32                 Router F 

120.1.1.0/24                   Glean    

Router A: 

Prefix                             Next Hop 

120.1.1.5/32                   ECR(Router C||Router D) 

120.1.1.11/32                 ECR(Router C||Router D) 

120.1.1.2/32                   Router C 

120.1.1.6/32                   Router C 

120.1.1.15/32                 ECR(Router C||Router D) 

120.1.1.3/32                   ECR(Router C||Router D) 

120.1.1.4/32                   Router E 

120.1.1.7/32                   Router E 

120.1.1.9/32                   Router F 

120.1.1.8/32                   Router F 

120.1.1.10/32                 Router F 

120.1.1.0/24                   Glean1  

 

 
ALGORITHM:  

Measurement-Period, t ∈ (Cx.1,Mx) 

for every neighbor node j do 

Sij ←a monitoring scheme for the link from node i to node j 

if Sij == PASSIVE or ACTIVE then 

monitor egress traffic to node j 

else if Sij == COOPERATIVE then 

monitor egress traffic from node i to node k that node j overhears 

end if 

if node i received a cooperation request (.) from node j then 

overhear cross traffic from node j to node . 

end if 

end for 

(2) At the end of a Measurement-Period, t = Mx  

for every neighbor j do 

record measurement results from node i to node j 

if node i received a cooperation request (.) from node j then 

send node j a report of overhearing traffic from node j to node . 

end if 

end for 

3) During an Update-Period, t ∈ (Mx,Mx + Ux) 

process a measurement report(s) from other nodes, if any 

(4) End of an Update-Period, t = Mx + Ux (or, t = Cx) 

for every neighbor j do 

calculate the quality of link from node i to j using Eq. (2.1) 

run the transition algorithm (in Figure 2.2) for node j 

if transition to COOPERATIVE then 

choose node k that node j can overhear 

send a cooperation request (k) to node j 

else if transition to ACTIVE then 

schedule active probe packets 

end if 

end for 

 

Results: 
We have implemented the proposed routing algorithm in C-

Programming with respect to hardware routing resources in an IP 

domain. We have tested our algorithm on a set of 50 nodes with 14 

routers. We explore the tradeoff between the performance of 

routing  with  generic, symmetric, IARS (implemented system) . 

Hardware forwarding routing table 

 Generic  
routers 

Symmetric 
routers 

IARS Benefits 

Technique 1  4 % 3.62 % 7.98 % 14.3 % 

Technique 2  12 % 11.8 % 13.68%  18.90  

 

 

CONCLUSION 

Both algorithms found equally good solutions in most of the cases, 

as demonstrated by our preliminary experiments. However, this 

adaptive algorithm  is more robust and stable than the greedy one. 

The algorithm based on evolutionary computing also demonstrated 

a better calculation time, although it had a little time overhead on 

small applications. As can be seen, this algorithm has a success 

ratio bigger than 18% for large applications. The fact that the 

success ratio of this algorithm increases with the application size is 

(or appears to be) due to an increased number of additional 

constraints imposed by the application components that greedy 

algorithm cannot handle. The limitation of the current 

implementation of this  algorithm is the resource model that 

supports only specific types of resources, such as hosts and network 
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link physical constraints. We identify a need to use a generic 

resource model, where each host can provide any kind of resource. 

This generic model has to take into use, for example, displays, 

microphones and other peripheral devices offering additional 

services for the user. Moreover, in a future implementation of the 

algorithm. 
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