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ABSTRACT 

This paper emphasizes text dependent speaker identification 

system on Principal Component Analysis based Genetic 

Algorithm which deals with detecting a particular speaker from a 

known population under noisy environment. At first, the system 

prompts the user to get speech utterance. Noises are eliminated 

from the speech utterances by using wiener filtering technique. To 

extract the features from the speech, various types of feature 

extraction techniques such as RCC, LPCC, MFCC, MFCC and 

MFCC have been used. Principal Component Analysis has 

been used to reduce the dimensionality of the speech feature 

vector. To classify the speech utterances, Genetic Algorithm has 

been used. NOIZEOUS speech database has been used to measure 

the performance of this system under the condition of various 

SNRs. Experimental results show the superiority of the proposed 

close-set text dependent speaker identification system which can 

be used for security and access control purposes. 
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1. INTRODUCTION 
Biometrics are seen by many researchers as a solution to a lot of 

user identification and security problems now a days [1]. Speaker 

identification is one of the most important areas where biometric 

techniques can be used. There are various techniques to resolve 

the automatic speaker identification problem [2, 3, 4, 5, 6, 7, 8].  

 

Most published works in the areas of speech recognition and 

speaker recognition focus on speech under the noiseless 

environments and few published works focus on speech under 

noisy conditions [9, 10, 11, 12]. In some research work, different 

talking styles were used to simulate the speech produced under 

real stressful talking conditions [13, 14, 15].  

 

In this proposed system, Principal Component Analysis (PCA) 

based Genetic Algorithm(GA) with cepstral based features such  

 

as Real Cepstral Coefficients (RCC), Mel Frequency Cepstral 

Coefficients (MFCC), Delta Mel Frequency Cepstral Coefficients 

(ΔMFCC), Delta Delta Mel Frequency Cepstral Coefficients 

(ΔΔMFCC), Linear Prediction Coefficients (LPC) and Linear 

Prediction Cepstral Coefficients (LPCC) has been used to 

improve the performance of the text dependent speaker 

identification system under noisy environment. Results are 

compared according to different feature extraction techniques on 

the experimental and performance analysis section.  

We ask that authors follow some simple guidelines. In essence, 

we ask you to make your paper look exactly like this document. 

The easiest way to do this is simply to down-load a template from 

[2], and replace the content with your own material.  

2. PARADIGM OF THE PROPOSED 

SPEAKE IDENTIFICATION SYSTEM 
The basic building blocks of speaker identification system are 

shown in the figure 1. Noises are eliminated from the speech 

utterances after acquisition of the speech. Then pre-emphasis 

filtering and silence part removal algorithm has been applied. 

Speech signal is segmented into some blocks, windowing 

technique is applied and features are extracted. Finally Genetic 

Algorithm has been used to classify the speech utterances.  

 

 
 

Figure 1: Block Diagram of the proposed automated speaker 

identification system 

3. SPEECH SIGNAL PROCESSING FOR 

SPEAKER IDENTIFICATION 
Sampling frequency of 11025 HZ, sampling resolution of 16-bits, 

mono recording channel and recorded file format = *.wav have 

been considered to capture the speech utterances. The speech 

preprocessing part has a vital role for the efficiency of learning. 

After acquisition of speech utterances, wiener filter has been used 

to remove the background noise from the original speech 
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utterances [16, 17, 18]. Speech end points detection and silence 

part removal algorithm has been used to detect the presence of 

speech and to remove pulse and silences in a background noise 

[19, 20, 21, 22, 23]. To detect word boundary, the frame energy is 

computed using the sort-term log energy equation [24],   
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Pre-emphasis has been used to balance the spectrum of voiced 

sounds that have a steep roll-off in the high frequency region [25, 

26, 27]. The transfer function of the FIR filter in the z-domain is 

[26], 

10 , .1)( 1zZH                      (2) 

Where is the pre-emphasis parameter. 

Frame blocking has been performed with an overlapping of 25% 

to 75% of the frame size. Typically a frame length of 10-30 

milliseconds has been used. The purpose of the overlapping 

analysis is that each speech sound of the input sequence would be 

approximately centered at some frames [28, 29].  

From different types of windowing techniques, Hamming window 

has been used for this system. The purpose of using windowing is 

to reduce the effect of the spectral artifacts that results from the 

framing process [30, 31, 32]. The hamming window can be 

defined as follows [33]: 
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4. SPEECH FEATURE EXTRACTION AND 

DIMENSIONALITY REDUCTION OF THE 

SPEECH FEATURE VECTOR 
RCC, LPCC, MFCC, MFCC, MFCC based various standard 

speech feature extraction techniques [34, 35, 36, 37] has been 

used to enhance the efficiency of the system because the quality of 

the system depends on the proper feature extracted values.  A 

large dimension of speech features are extracted after applying the 

feature extraction values. To reduce the dimension of the feature 

vector, Principal Component Analysis method [38, 39, 40] has 

been used. After getting PCA values, vector normalization is used 

to normalize the features that will be further used in the speaker 

modeling. 

5. SPEAKER MODELING 
To identify the speaker, an unknown utterance is captured by the 

system. By applying preprocessing technique, features are 

extracted from the unknown speech. Then try to match with the 

existing all entire speaker utterance database. Finally the system 

identifies that speaker which has maximum similarity with the 

unknown speaker utterance. In the testing phase, for each 

unknown speaker to be recognized, the processing shown in 

figure 2 has been carried out. 

 

Figure 2: Speaker identification model 

6. EXPERIMENTAL RESULTS AND 

PERFORMANCE ANALYSIS 
Experimental results and performance analysis has been analyzed 

in various dimensions. To select the optimum parameters values 

of the Genetic Algorithm such as crossover rate and number of 

generations, various experiment have been performed. Figure 3 

and figure 4 show the results of the optimum parameters selection 

for GA. After finding out the optimum parameters, results of the 

close-set text dependent speaker identification system has been 

populated according to the NOIZEOUS speech database based on 

various speech feature extraction techniques which are shown the 

following sections. 

6.1 Optimum Parameter Selection for GA 

6.1.1 Experiment on the Crossover Rate of GA 
The change of cross over rate for GA can enhance the 

performance of the system. In this experiment, crossover rate has 

been changed in various ways which are shown in figure 3. The 

highest speaker identification rate of (96%) was found at 

crossover rate 30.  

 

Performance Measurements according to the Crossover Rate
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Figure 3: Speaker identification accuracy according to various 

crossover rates. 
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6.1.2 Experiment on the Number of Generations of 

GA 
Different values of the number of generations have been tested to 

achieve the optimum number of generations for GA. Figure 4 

shows the results of the accuracy measurement according to 

various numbers of generations. Finally the maximum 

identification rate of 98% was found at the number of generations 

15.  
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Figure 4: Identification rate according to the no. of generation at 

15. 

6.2 Performance Measurements of the 

Proposed System Based on GA 
NOIZEOUS speech database [41, 42] has been used to measure 

the performance of the proposed speaker identification system. To 

measure the accuracy of the system, eight different types of 

environmental noises (i.e. Airport, Babble, Car, Exhibition, 

Restaurant, Street, Train and Train station) of NOIZEOUS 

database have been considered with four different SNRs such as 

0db, 5db, 10db and 15db. The following tables show the 

experimental results of speaker identification rate at different 

types of noisy environments with various SNRs. 

Table 1. Airport Noise Average Identification Rate (%) for 
NOIZEOUS Speech Corpus 

            

Method 

   SNR 

MFCC MFCC 
MFC

C 
RCC LPCC 

15dB 
88.33 90.33 72.00 75.67 84.00 

10dB 
85.67 86.33 64.67 68.33 82.67 

5dB 
83.00 84.67 62.67 64.33 80.33 

0dB 
82.33 82.00 45.00 60.00 77.00 

Average 
84.83 85.83 61.09 67.08 81.00 

Table 2. Babble  Noise  Average Identification Rate (%) for 
NOIZEOUS Speech Corpus 

            Method 

   SNR 
MFCC 

MFC

C 

MFC

C 
RCC LPCC 

15dB 
90.00 92.33 70.33 75.00 88.00 

10dB 
87.67 88.00 62.33 72.67 83.33 

5dB 
83.67 82.67 60.00 72.67 80.00 

0dB 
77.33 80.67 50.00 57.33 65.67 

Average 
84.67 85.92 60.67 69.42 79.25 

Table 3. Car Noise Average Identification Rate (%) for NOIZEOUS 
Speech Corpus 

            Method 

   SNR 
MFCC 

MFC

C 

MFC

C 
RCC LPCC 

15dB 
90.67 92.67 70.00 72.67 83.00 

10dB 
86.00 87.33 60.33 62.33 75.33 

5dB 
79.67 80.67 54.00 62.00 70.33 

0dB 
76.33 77.33 57.67 58.33 65.00 

Average 
83.17 84.50 60.50 63.83 73.42 

Table 4. Exhibition Hall Noise Average Identification Rate (%) for 
NOIZEOUS Speech Corpus 

            Method 

   SNR 
MFCC 

MFC

C 

MFC

C 
RCC LPCC 

15dB 
89.00 91.00 67.67 78.00 86.67 

10dB 
87.33 87.67 65.00 76.67 82.33 

5dB 
78.33 80.00 56.67 67.00 75.00 

0dB 
82.00 85.33 53.33 61.00 68.33 

Average 
84.17 86.00 60.67 70.67 78.08 

Table 5. Restaurant Noise Average Identification Rate (%) for 
NOIZEOUS Speech Corpus 

            Method 

   SNR 
MFCC 

MFC

C 

MFC

C 
RCC LPCC 

15dB 
90.00 89.67 65.33 72.00 87.67 

10dB 
85.33 85.33 56.67 66.67 77.00 

5dB 
83.33 85.33 55.33 60.00 75.33 

0dB 
80.00 80.00 50.00 56.67 73.00 

Average 
84.67 85.08 56.83 63.84 78.25 

Table 6. Street Noise Average Identification Rate (%) for 
NOIZEOUS Speech Corpus 

            Method 

   SNR 
MFCC 

MFC

C 

MFC

C 
RCC LPCC 

15dB 
88.33 90.00 65.00 75.00 85.00 

10dB 
86.67 87.67 60.33 65.33 78.67 

5dB 
83.00 84.00 56.67 64.00 70.00 

0dB 
80.00 82.00 50.00 60.00 67.67 

Average 
84.50 85.92 58.00 66.08 75.34 

Table 7. Train Noise Average Identification Rate (%) for 
NOIZEOUS Speech Corpus 

            Method 

   SNR 
MFCC 

MFC

C 

MFC

C 
RCC LPCC 

15dB 
88.00 88.33 65.33 73.33 84.00 

10dB 
86.67 87.67 60.00 68.67 82.33 

5dB 
86.67 85.00 60.00 63.33 80.00 

0dB 
80.00 82.33 55.00 60.00 72.00 

Average 
85.34 85.83 60.08 66.33 79.58 
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Table 8. Train Station Noise Average Identification Rate (%) for 
NOIZEOUS Speech Corpus 

            Method 

   SNR 
MFCC 

MFC

C 

MFC

C 
RCC LPCC 

15dB 90.00 92.00 67.67 70.00 78.67 

10dB 87.67 86.67 65.00 70.00 75.00 

5dB 83.33 85.00 60.00 60.00 72.33 

0dB 83.33 83.33 50.00 55.33 70.00 

Average 86.08 86.75 60.67 63.83 74.00 

 

Table 9 shows the overall average speaker identification rate for 

NOIZEOUS speech corpus. By comparing different feature 

extraction techniques, it was shown that MFCC has higher 

performance (i.e. 85.73%) than any other methods. Figure 5 

shows the performance comparison among different types of 

speech feature extraction techniques and it is clearly visible that 

MFCC method dominated over all others though the 

performance between MFCC and MFCC are nearly equal.  

Table 9. Overall Average Speaker Identification Rate (%) for 
NOIZEOUS Speech Corpus 

                       Method 

Various Noises 
MFCC 

 

MFCC 

 

MFCC 
RCC LPCC 

Airport Noise 84.83 85.83 61.09 67.08 81.00 

Babble Noise 84.67 85.92 60.67 69.42 79.25 

Car Noise 83.17 84.50 60.50 63.83 73.42 

Exhibition Hall Noise 84.17 86.00 60.67 70.67 78.08 

Restaurant Noise 84.67 85.08 56.83 63.84 78.25 

Street Noise 84.50 85.92 58.00 66.08 75.34 

Train Noise 85.34 85.83 60.08 66.33 79.58 

Train Station Noise 86.08 86.75 60.67 63.83 74.00 

Average Identification 

Rate (%) 
84.68 85.73 59.81 66.39 77.37 

 

Performance Comparison Among Various Speech Feature 

Extraction Techniques
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Figure 5: Identification rate according to various feature 

extraction technique. 

7. CONCLUSIONS AND OBSERVATIONS 
The parameters of genetic algorithm such as crossover rate and 

number of generations have a great impact on the identification 

performance of a GA based close set text dependent ASIS. The 

highest identification rate was 85.73% which has been achieved at 

MFCC feature extraction technique. The system has some 

limitations such as when testing by the NOIZEOUS speech 

database, vocabulary was limited and the numbers of users were 

limited. The performance of this system can also be improved by 

improving the noise removing technique of the speech signal and 

by introducing the hybrid technique. By enhancing the speech 

independent speaker identification, increasing the number of user 

scan and identification of a male, female, child and adult can be 

the possible further research of this work. 
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