
International Journal of Computer Applications (0975 – 8887)

Volume 4– No.12, August 2010

1

A Transformation based New Algorithm for Transforming

Deletions in String Wise Operations for Wide-Area

Collaborative Applications
Santosh Kumawat

M.Tech Scholar
Poornima College of Engg.

Jaipur, Rajasthan, India

Ajay Khunteta

Asst Prof. Dept. of CS
Poornima College of Engg.

Jaipur, Rajasthan, India

ABSTRACT

Operational transformation (OT) is an established optimistic

consistency control method in collaborative applications. This

approach requires correct transformation functions. In general all

OT algorithms only consider two character-based primitive

operations and hardly two or three of them support string based

two primitive operations, insert and delete. In this paper we have

proposed a new algorithm MSITDD that consider transformation

of two deletions and give right result in all possible cases

satisfying user intentions and has removed the faults of previous

ITDD[1]. In this paper a comparative study is done of the new

proposed algorithm MSITDD with ITDD[1] taking an example

and is proved that new proposed algorithm MSITDD is giving

right output and ITDD[1] is giving wrong output. It also handles

overlapping and splitting of operations when concurrent

operations are transformed. These algorithms can be applied in a

wide range of practical collaborative applications.

General Terms

Operational transformation (OT), optimistic consistency control

method.

Keywords

Operational transformation, transformation functions, string

operations, deletion transformation, collaborative applications.

1. INTRODUCTION
Operational Transformation (OT) [1] is an established optimistic

consistency control method in collaborative applications network.

Operational Transformation (OT) was originally invented for

consistency maintenance in plain-text group editors [15]. In over

20 years, OT has evolved to support an increasing number of

applications, including group undo , group-awareness , operation

notification and compression , spreadsheet and table-centric

applications , HTML/XML and tree-structured document editing ,

word processing and slide creation , transparent and

heterogenous application-sharing , and mobile replicated

computing and database systems .To effectively and efficiently

support existing and new applications, it must continue to

improve the capability and quality of OT in solving both old and

new problems. The soundness of the theoretical foundation for

OT is crucial in this process. One theoretical underpinning of all

existing OT algorithms is causality/ concurrency causally related

operations must be executed in their causal order; concurrent

operations must be transformed before their execution. However,

the theory of causality is inadequate to capture essential OT

conditions for correct transformation.

Collaborative systems using OT typically adopt a replicated

architecture for the storage of shared documents to ensure good

responsiveness in high latency environments, such as the Internet.

The shared documents are replicated at the local storage of each

collaborating site, so editing operations can be performed at local

sites immediately and then propagated to remote sites. Remote

editing operations arriving at a local site are typically transformed

and then executed. The transformation ensures that application-

dependent consistency criteria are achieved across all sites. The

lock-free, non blocking property of OT makes the local response

time not sensitive to networking latencies. As a result, OT is

particularly suitable for implementing collaboration features such

as group editing in the Web/Internet context.

To address the challenge of transforming two deletions , this

paper proposes a OT algorithm MSITDD . It is based on the ABT

framework [13, 14] which formalizes two correctness condition,

causality and admissibility preservation. Causality preservation

needed whenever an operation o is executed at a site, all

operations that happen before o must have been executed at that

site. Conceptually, admissibility requires that the execution of

every operation not violate the relative position of effects

produced by operations that have been executed so far. In general

the ABT framework algorithms can be formally proved. The new

proposed algorithms is transforming two deletions removing the

unfeasibility of earlier algorithms like ITDD[1] and handles

overlapping and splitting of operations when concurrent

operations are transformed . These algorithms can be applied in a

wide range of practical collaborative applications . Moreover, the

design of these algorithms will provide a new starting point when

extending OT algorithms to support composite and block

operations that semantically must be applied together, such as cut-

paste and find-replace.

1.1 OT Functions- Inclusion and Exclusion

Transformation
OT functions used in different OT systems may be named

differently, but they can be classified into two categories.

One is Inclusion Transformation (or Forward Transformation):

IT(Oa, Ob) or T(op1,op2), which transforms operation Oa against

another operation Ob in such a way that the impact of Ob is

effectively included and the other is Exclusion Transformation

(or Backward Transformation) : ET (Oa, Ob) or T-1(op1,op2),

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.12, August 2010

2

which transforms operation Oa against another operation Ob in

such a way that the impact of Ob is effectively excluded.

2. Background and Related Work
Following the established conventions[1], it model the shared

data as a linear string s. Let the position of the first character in

any nonempty string be zero. Assume that every appearance of

any character has a different object id. Note that this assumption

only serves analysis purposes and it do not really need object ids

for characters in actual implementation. In this paper, a

“character” refers to the object that carries the character, whose

ASCII code is possibly only one of its attributes. If c is the ith

character in any nonempty string s, it say s[c]= i and c =s[i]. For

convenience, it also use s to denote the set of characters in s. For

simplicity, it only consider two primitive operations: ins(p; c),

which inserts a character c at position p, and del(p), which deletes

the character at position p. Apparently, the position parameter p of

any operation o is defined relative to some state s. If o is

generated in s, then s is called its generation state. If o is executed

in s, then s is called its execution state. Due to concurrency, an

operation‟s execution state is not necessarily equivalent to its

generation state if the operation is executed at a remote site

[12].Given operation o, function pos(o) returns its position value,

type(o) returns its operation type (ins or del), char(o) returns the

effect character to be inserted or deleted, id(o) returns the id of

the site that generates o, gst(o) denotes its generation state, and

est(o) denotes its execution state. The fact that the execution of o

in state s yields s' is denoted by exec(s; o) = s' . It use two long

established relations without further definition: For any

Fig. 1. OT transforms o2 and then executes o‟2 [1].

 two operations o1 and o2, o1 ll o2 iff o1 is concurrent with o2. Iff

o1 happened before o2 and o1 o2. The basic idea of OT is to

execute any local operation as soon as it is generated for high

local responsiveness. Remote operations are transformed against

concurrent operations that have been executed locally before its

execution. A history buffer HB is maintained at each site to keep

track of all executed operations in their order of execution.

As a simple example, consider the scenario in Fig.1. Suppose two

sites start from the same initial state s1
0 = s2

0 = „„ab:‟‟ Site 1

performs o1 = ins(1, „x‟) to insert character „x‟ before „b‟, yielding

s1
1 exec(s1

0 ; o1) = „„axb; ‟‟ while site 2 concurrently performs o2

= del(1) to delete character „b‟, yielding s2
1 = exec(s2

0 ; o2) = „„a:‟‟

When o2 = del(1) arrives at site 1, if it is executed as it is, then the

wrong character „x‟ will be deleted. This is because o2 is

generated in s2
0 without the knowledge of o1, but its execution

state s1
1 has been changed by the execution of o1, which

invalidates its position parameter. The intuition of OT is to shift

the position of o2 to incorporate the effect of o1 such that the

result o2‟ can be correctly executed in state s1
1 . This process is

called inclusion transformation (IT).

Because a character has been inserted by o1 on the left of its

intended position, o2 should delete the character currently at

position 2 instead of 1, i.e., o2
0 = IT(o2; o1) = del(2). The

execution of o2
0 in s1

1 leads to the correct state s1
2 = „„ax; ‟‟ which

is identical to the final state at site 2 after o2 and o1 are executed

in tandem. As a result, OT seems able to achieve convergence and

preserve intentions of operations despite the different orders of

execution at different sites.

Another type of transformation function is called exclusion

transformation (ET). In the above example, given o1 defined in s1
0

and o2
0 defined in s1

1 = exec(s1
0 ; o1), ET(o2

0; o1) excludes the

effect of o1 from o2
0 as if o1 had not been executed in s1

0 . The

result o2 = ET(o2
0; o1) = del(1) is exactly the execution form of o2

as defined relative to s1
0 .

It has been generally accepted that each OT algorithm consists of

two parts: a set of transformation functions (such as IT and ET)

that determine how one operation is transformed against another

and a control procedure that determines how an operation is

transformed against a given operation sequence (e.g., the history

buffer). The control procedure is also responsible for generating

and propagating local operations as well as executing remote

operations.

 System Model and Notations
A number of collaborating sites is there in a system. The shared

data is replicated at all sites when a session starts. Local

operations are executed immediately and for local responsiveness,

each site submits operations only to its local replica. In the

background, local operations are propagated to remote sites. The

shared data is like a linear string of atomic characters. Objects are

referred to by their positions in the string, starting from zero . It

consider two only primitive operations, namely, insert(p, s) and

delete(p, s), which insert and delete a string s at position p in the

shared data, respectively. Any operation o has attributes like o.id

is the unique id of the site that originally submits o; o.type is the

operation type which is either insert or delete; o.pos is the

position in the shared data at which o is applied; o.str is the target

string which the operation inserts or deletes. For a operation o,

o.pos is always defined relative to some specific state of the

shared data.

In the following table1[1] general notations of operation are

summarized.

To support string wise transformation, we need to introduce a few

more notations. Given any string s, notation |s| is the number of

characters in s. If 0 <= i<j <= |s|, notation s[i:j] returns a substring

of s starting from position i to position j -1. If j is not specified, s

[i:] returns a substring from i to the end. For example, let

s="abc", then |s|=3 and s[0:2]="ab" and s[1:]="bc".

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.12, August 2010

3

2.2 Literature Survey
MOODS[2], a synchronous real-time cooperative editor for music

scores. Its architecture includes mechanisms for troubleshooting

conflicts in real-time, managing histories of commands and

versioning, and performing selective undo. The system also

includes specific solutions in order to control the editing of

permission profiles.

An integrating approach to concurrency control and group undo

that is based on the dOPT algorithm is given by Ellis and Gibbs. It

proved the correctness of our adOPTed-algorithm [6] by finding

necessary and sufficient preconditions to be satisfied for

producing identical application states in replicated groupware

architecture

The GRACE editor [3] pioneered the technique of creating

multiple versions of objects to accommodate conflicting,

concurrent changes. It are looking at an extension of the vanilla

GOTO algorithm which uses multiple versioning as an option in

cases where transformation is insufficient to preserve operation

intentions. It will investigate the utility of this extended GOTO,

and other techniques [5] [4] in the context of our grove work.

The difficulty of building correct transformation Functions[8] get

demonstrated . Even on a simple string object, all existing

transformation functions are incorrect or over- specified. The

difficulty stems from the complexity of correctness proof for

transformations functions.

A set of transformation functions [9] for structural operations on a

grove, that used with the GOTO operational transformation

control algorithm [10] and a set of transformations for mutation

operations such as [11] will enable synchronous collaborative

editing of any meta data rich hierarchical content. In addition, it

contribute a new operational transformation control algorithm

SLOT for concurrency control, which is significantly simpler and

more efficient than existing algorithms. Furthermore, it is free of

state vectors, free of ET transformation functions, and free of the

TP2 transformation condition.

In addition, it contribute a new operational transformation control

algorithm SLOT for concurrency control, which is significantly

simpler and more efficient than existing algorithms.

It have contributed the theory of operation context and the COT

(Context-based OT) algorithm. The theory of operation context is

capable of capturing essential relationships and conditions for all

types of operation in an OT system; it provides a new foundation

for better understanding and resolving OT problems.

To ensure the convergence of the copies while respecting the user

intention, it have proposed two new algorithms, called SOCT3

and SOCT4.

A novel state difference based transformation (SDT) approach

which ensures convergence in the presence of arbitrary

transformation paths.

It proposes an alternative framework, called admissibility-based

transformation (ABT), that is theoretically based on formalized,

provable correctness criteria and practically no longer requires

transformation functions to work under all conditions. Compared

to previous approaches, ABT simplifies the design and proofs of

OT algorithms.

Next it is having ABTS for string handling. First, it is based on a

recent theoretical framework with formal conditions such that its

correctness can be proved. Secondly, it supports two string-based

primitive operations and handles overlapping and splitting of

operations. As a result, this algorithm can be applied in a wide

range of practical collaborative applications.

3. Algorithms
In this section we are considering the algorithm ITDD[1] and a

newly proposed algorithm MSITDD. Taking an example we are

analyzing the output of both algorithms in a particular situation

and proving that ITDD[1] fails in case when R2 is included in R1

where two target regions, R1= s [b1 : e1] for operation o1 and R2

= s[b2 : e2] for operation o2.

Algorithm ITDD
Algorithm ITDD[1] is for transforming two deletions. Both o1 and

o2 are to delete an existing substring in their definition state s. We

need to consider the following cases regarding the relations

between the two target regions, R1= s [b1 : e1] and R2= s [b2 : e2]

In this algorithm in line-15 when R2 is included in R1, it fails and

gives unexpected and unfeasible output which cannot be accepted.

So this algorithm fails in transforming two deletions when o2 is

substring of o1. We explain it in more details using the following

example.

3.2 Example 1
In this example we are considering the case when R2 is included in

R1. Let s be common definition state of o1 and o2:

s.str= RamBhaktHanumanKiJayHoSansarMae

o1.str = BhaktHanumanKiJayHo

o2.str=Hanuman.

b2 = o2.pos = 8

b1 = o1.pos = 3

lo2.strl = 7

lo1.strl = 19

According to algorithm ITDD

1)From step1 o1' o1

2) Step 2 and step 3 get executed

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.12, August 2010

4

3) Conditions at step 4, 6, 8, 10, 13 is false for given o1 and o2 so

switch to line-15 step by step .

4) Condition at line-15 is true so enter in if-block

5) From step16 we have oL = o1 and oR= o1

6) From step17 oL.str o1.str[0:5]=Bhakt

7) From step16 oL. pos = o1.pos = 3

8) From step18 oR. pos = o2.pos = 8

9)From step19 oL.stro1.str[14-3:] = o1.str[11:] = KiJayHo

10)From step19 and step16 oL.str = KiJayHo and oL. pos =3 .

Also oR. pos =8 from step18 and oR= o1 from step16.

11) o1'.sol =[oL , oR] from step 20

Note here o1'.sol =[oL , oR] is not possible because oL. pos =3 and

oL.str = KiJayHo , so loL.strl=7 and oL. pos+ loL.strl=10 , so oL.str

is ending at position 9 and oR. pos = o2.pos = 8 from step 8 of

example. So there is overlapping between oL and oR at position 8

and 9 ,so o1'.sol =[oL , oR] not possible because according to

traditional notations from table1 [oL , oR] means concatenation of

two strings operations in a sequence or order, so overlapping of

oL and oR is infeasible and unaccepted.

Also in string s when we substitute o1'.sol at place of o1 then

lo1'.strl= loL.strl + loR.strl =7+19=26 and lo1.strl=19 so again there

is overlapping between o1'.sol and given string s, so again the

resulting string is totally unaccepted.

3.3 Algorithm MSITDD(o1, o2): o1'
1. o1' o1

2. if o1.pos< o2.pos and (lo2.strl + o2.pos) < (lo1.strl+

o1.pos) then

3. oA o1 and oB o1

4. oA.str o1.str[0: (o2.pos- o1.pos)]

5. oB.pos o2.pos

6. oB.str o1.str[{(o2.pos+ lo2.strl)- o1.pos)}:]

7. o1'.sol [oA , oB]

8. elseif (o2.pos+ lo2.strl)<= o1.pos then

9. o1'.pos o1.pos- lo2.strl

10. elseif o1.pos>= o2.pos

11. if (lo1.strl+ o1.pos)<= (o2.pos+ lo2.strl) then

12. o1' ¢

13. endif

14. elseif o1.pos< o2.pos

15. if (lo1.strl+ o1.pos) <=(o2.pos+ lo2.strl) then

16. o1'.str o1.str[0: (o2.pos- o1.pos)]

17. endif

18. elseif o1.pos>= o2.pos and (lo1.strl+ o1.pos) >(o2.pos+

lo2.strl) then

19. o1'.pos o2.pos

o1'.str o1.str[{(o2.pos+ lo2.strl)-o1.pos) }:]

20. endif

21. return o1'

We need to consider the following cases regarding the relations

between the two target regions, R1 = s [o1.pos: (lo1.strl+ o1.pos)]

and R2 = s [o2.pos: (o2.pos+ lo2.strl)]

1. When R2 is completely on the right of R1. Deletion of R2 does

not affect o1. Hence o1 is returned as-is.

2. (line-8) R1 is on the right of R2. After R2 is deleted, we shift

o1'.pos by 1 o2.strl characters to the left.

3. (line10-13) R1 is included in R2. Hence after o2 is executed, R1

is already deleted. There is no longer need to execute o1. We

return an empty operation ¢.

4. (line-18) R2 partially overlaps with R1 around the left border of

R1. After o2 is executed, the left part of R1 is already deleted.

Hence, we need to reset o1. pos so that it will start from (o2.pos).

And o1.str only needs to include the right part that is not deleted

by o2, starting from (o2.pos+ lo2.strl) - o1.pos in the original o1.st.

5. (line-14) R2 partially overlaps with R1 around the right border

of R1. This case is similar to case (4). After o2 is executed, o1 only

needs to delete the left part that is not deleted by o2.

6. (line-2) R2 is included in R1. The deletion of R2 within R1

divides R1 into three parts, among which the middle overlapping

part is already deleted by o2. Hence o1 must be split into two sub-

operations that delete the two remaining substrings, respectively.

3.4 Example 2
In this example we are considering the case when R2 is included in

R1. In this situation algorithm ITDD[1] fails what we have proved

by example 1. Now we are considering the same situation using

our newly proposed algorithm MSITDD and proving that it is

giving right output in this condition also. Due to space reasons we

are not considering other cases but our new proposed algorithm

work well not only in this condition but also in all other situations

whatever is possible in case of transforming two deletions.

 In this example all parameters like s.str, o1.str, o2.str are

taken like example1. so that comparison in ITDD and MSITDD

becomes more clear.

Let s be common definition state of o1 and o2

s.str= RamBhaktHanumanKiJayHoSansarMae

o1.str = BhaktHanumanKiJayHo

o2.str=Hanuman.

b2 = o2.pos = 8

b1 = o1.pos = 3

lo2.strl = 7

lo1.strl = 19

According to algorithm MSITDD

1) From step1 o1' o1

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.12, August 2010

5

2) Condition at line-2 is true so enter in if-block

3) From step3 we have oA = o1 and oB= o1

4) From step4 oA.str o1.str[0:5]=Bhakt

5) From step3 oA . pos = o1.pos = 3

6) From step 5 oB . pos = o2.pos = 8

7) From step6 oB.stro1.str[14-3:] = o1.str[11:] = KiJayHo

8) o1'.sol =[oA , oB] from step 7

From step 4 and step5 of example we have oA.str = Bhakt and oA .

pos =3 . Also oB . pos =8 from step 6 and oB.str = KiJayHo from

step7 of example. So o1'.sol =[oA , oB] is totally feasible here and

o1'.str= BhaktKiJayHo and there is no overlapping between oA

and oB because oA . pos+l oA.str l is less than or equal to oB . pos.

Also no overlapping with given string s of o1' because o1'. pos =

o1. pos and l o1'.str l is less than lo1.strl . So the output of

MSITDD is totally feasible in the case when R2 is included in R1

but in this case ITDD[1] totally fails.

Also MSITDD satisfy all other possible cases also in case of

transforming two deletions. Also MSITDD cover all cases what

get covered by ITDD.

4. CONCLUSION
In this paper we have also proposed a new algorithm called

MSITDD for transformation of two deletions in all possible cases.

Also taking an example have explained that MSITDD work well

in all possible cases but ITDD[1] fails in some particular cases. So

MSITDD has removed the faults what was earlier in ITDD[1].

To address the challenge of transforming two deletions, this paper

proposes a OT algorithm MSITDD. It is based on the ABT

framework [13, 14] which formalizes two correctness condition,

causality and admissibility preservation. These algorithms can be

applied in a wide range of practical collaborative applications that

require string operations. In general the ABT framework

algorithms can be formally proved. The new proposed algorithms

is transforming two deletions removing the unfeasibility of earlier

algorithms like ITDD[1] and handles overlapping and splitting of

operations when concurrent operations are transformed.

Moreover, the design of these algorithms will provide a new

starting point when extending OT algorithms to support

composite and block operations that semantically must be applied

together, such as cut-paste and find-replace.

4.1 Future Work
There is a lot of efforts needed to preserve intention preservation

and also to preserve semantic consistency and syntactic

consistency. There is still scope to extend the support to other

composite operations of string handling and char handling. Also it

can support other better data structures also. A lot of work is done

to reduce space complexity and time complexity. Still there is a

scope to reduce space complexity and time complexity.

5. REFERENCES
[1] ABTS: A Transformation-Based Consistency Control

Algorithm for Wide-Area Collaborative Applications Bin

Shao , Du Li , Ning Gu . IEEE Paper published in 2009

[2] P. Bellini, P. Nesi, and M.B. Spinu, “Cooperative Visual

Manipulation of Music Notation,” ACM Trans. Computer-

Human Interaction, vol. 9, no. 3, pp. 194-237, Sept. 2002.

[3 Chengzheng Sun and David Chen. Consistency

maintenance in real-time collaborative graphics editing

systems. ACM Transactions on Computer-Human

Interaction, 9(1):1–41, March 2002.

[4] Chengzheng Sun. Optional and responsive fine-grain

locking in internet-based collaborative systems. IEEE

Transactions on Parallel and Distributed Systems,

28(9):994–1008, September 2002.

[5] Chengzheng Sun. Undo as concurrent inverse in group

editors. ACM Transactions on Computer-Human

Interaction, 10(1), March 2003. (to appear).

[6] Ressel, D. Nitsche-Ruhland, and R. Gunzenha¨user, “An

Integrating, Transformation-Oriented Approach to

Concurrency Control and Undo in Group Editors,” Proc.

ACM Conf. Computer- Supported Cooperative Work

(CSCW ‟96), pp. 288-297, Nov. 1996.

 [7] C. Sun and C. Ellis. Operational transformation in real-time

group editors: issues, algorithms, and achievements. In

ACM CSCW‟98, pages 59–68, Dec. 1998.

[8] R. Li and D. Li. “A new operational transformation

framework for real-time group editors”. IEEE Transactions

on Parallel and Distributed Systems, 18(3):307-319, Mar.

2007.

[9] A.H. Davis, C. Sun, and J. Lu, “Generalizing Operational

Transformation to the Standard General Markup

Language,” Proc. ACM Conf. Computer-Supported

Cooperative Work (CSCW ‟02), pp. 58-67, Nov. 2002.

[10]. Chengzheng Sun and Clarence A. Ellis. Operational

transformation in real-time group editors: Issues,

algorithms, and achievements. In Proceedings of ACM

Conference on Computer Supported Cooperative Work,

pages 59–68. ACM, May 1998.

[11] Chengzheng Sun, Xiaohua Jia, Yanchung Zhang, Yun

Yang, and David Chen. “Achieving convergence causality-

preservation, and intention-preservation in real-time

cooperative editing systems”. ACM Transactions on

Computer-Human Interaction, 5(1):63–108, March 1998.

 [12] C. Sun and C. Ellis, “Operational Transformation in Real-

Time Group Editors: Issues, Algorithms, and

Achievements,” Proc. ACM Conf. Computer-Supported

Cooperative Work (CSCW ‟98), pp. 59-68, Dec. 1998.

[13] R. Li and D. Li. Commutativity-based concurrency control

in groupware. In Proceedings of the First IEEE Conference

on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom '05), San Jose, CA, Dec.

2005.

[14] D. Li and R. Li. An admissibility-based operational

transformation framework for collaborative editing systems.

Computer Supported Cooperative Work: The Journal of

Collaborative Computing, Aug. 2009. Accepted.

[15] D. Sun, S. Xia, C. Sun, and D. Chen, “Operational

Transformation for Collaborative Word Processing,” Proc.

ACM Conf. Computer- Supported Cooperative Work

(CSCW ‟04), pp. 162-171, Nov. 2004.

