
International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.2, July 2010

5

Handling Fuzzy SQL on Crisp databases using Lex-YACC
Tejas Mehta

Nirma University
Ahmedabad, India

Pooja Shah
Nirma University

Ahmedabad, India

ABSTRACT

Conventional querying language presumes precision and certainty
in user queries. But in factual situations the queries may be
imprecise and may be desired to result in uncertain outcome.
Introducing fuzziness in querying permits the realistic querying on
the crisp data. In this paper, we propose the architecture for fuzzy
querying along with an experimental implementation of the same.
The implementation is using LEX and YACC that facilitate the

lexical analysis of fuzzy terms and parsing the fuzzy query
respectively. Fuzzy query is interpreted by the parser and the
consequent semantic actions are carried out on MySQL database.

General Terms

Fuzzy SQL

Keywords

Fuzzy database, LEX, YACC,

1. INTRODUCTION
Most of today’s database management system consists of the crisp
information. The primary goal of the DBMS system is to provide
the precise information at the time of retrieval. The conventional
database management system does not handle imprecise,
incomplete or vague information such as very high, approximately
some values. To triumph over this problem, the fuzzy database
system has been introduced.

In the real world scenario, every time the information we need can
not be precisely stated but rather than that there is a need to deal
with natural language and retrieving the pertinent information.
The paper has been divided in four parts. The essential idea is to
extend the SQL to incorporate fuzzy querying.

Section 1 and 2 presents introduction and the basics of fuzzy set
correspondingly. Section 3 presents fuzzy querying concept.
Section 4 describes our system architecture.. Section 5 gives the
implementation details and 6 and 7 portray the future

enhancements and conclusion respectively.

2. BASIC CONCEPTS: FUZZY SET
Normally sets are defined as the collection of objects having one
or more common characteristics. The objects that belong to the set
are called the member of the set.

Fuzzy sets [7] are sets whose boundaries are not precise and the
membership in the fuzzy set is not the matter of whether object
clearly belongs to the set or not that is the membership is not in
the form of either true or false but rather a matter of degree. A
fuzzy set extends the binary membership: {0, 1} of a conventional
set to a spectrum in the interval of [0, 1]. Furthermore unlike
conventional set all elements of the universal set are the member
of given set. Thus for each element x U

0 ≤ μ (x) ≤ 1

In theory, membership functions can take any form, but typical
functions are γ function, s-function, L-function, triangle and

Gaussian etc. [10] The various functions are described as. The γ
function has two parameters α and β.

γ(u; α, β) = 0 u<= α

 = (u- α) / (β – α) α<=u<= β

 = 1 u> β

The s-function is a smooth version of γ function. L-function
is the inverse of γ function. The triangle membership is
defined as

T(u; α, β, γ) = 0 u<= α

 = (u- α) / (β – α) α<=u<= β

 =(α-u) / (β – α) β<=u<= γ

 = 0 u> γ

The Π-function can be formally described as follows:

Π(u; α, β, γ,δ) = 0 u<= α

 = (u- α) / (β – α) α<=u<= β

 = 1 β<=u<= γ

 = (γ- δ) / (δ- γ) γ<=u<= δ

 = 0 u> δ

The Gaussian function is described as

G(u;m,σ) = exp[-{(u-m)/ √2σ }2]

3. NEED OF FUZZY QUERY
Fuzziness is introduced in database query language to allow
imprecise querying on conventional data. If we aim for
conventional crisp querying language it is precise and certain
querying. Precision assumes that the effect will be exactly our
perception and certainty assumes the structure and parameter are

exactly identified.

But for factual database there may be the understated
complications:

 Actual situations are very often not crisp and deterministic and

cannot be described precisely i.e. Real situations are very
often uncertain or vague in a number of ways.

 Complete description of a real system would entail far more

detailed data than a human being could ever be acquainted
with and process at the same time.

To get ride of these complications we need to be concerned about
the notion of uncertainty. We have implemented fuzzy SQL using
Lex and YACC to incorporate uncertainty in querying. Our
experiment includes creation of meta knowledge, grammar, parser

and enabling fuzzy querying on MySQL crisp database keeping
the default SQL intact.

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.2, July 2010

6

The constraint imposed on the system is that we have not changed
the database model and thus fuzziness can be archived at the
querying front end only.

As an example consider the employee record in the database
system. Suppose we want to list out the employees whose salary is

greater than 20000 and age is greater than 25. The crisp query can
be specified as

Select emp_name from EMP where sale_amount > 20000 and age
< 25

The conventional query like above produces the required result

but the major drawback of above query is its rigid boundaries.
Here the employee whose sal_amount is 19000 and having age
less than 25 is not considered. Such employee should have been
considered but it is not. In realistic situation retrieval of such rigid
information is not useful in true sense. Instead we would be more
interested in finding out the employees who are young and made
good sale. The notion of fuzzy logic is helpful to produce such
results. The various distribution functions are shown in the figure
2.

4. ARCHITECTURE
Our proposed architecture is shown in the figure 2. This simply
shows that an actor/user can fire a fuzzy query which will then be
parsed by our query parser and the relevant semantic action will
be taken on MySQL crisp database. For incorporating fuzziness

we use metadata as explained in section 5.1. The user can also
directly enter the data into MySQL database as well as in the meta
data tables. [1][6][9]

Figure 1: System Architecture

5. IMPLEMENTATION
The implementation has been carried out using lexical analyzer
tool flex and parser generator tool YACC. Most of the terms
given by users can be handled by the lexical analyzer
implemented in the experiment and which in turn returns
appropriate tokens to the parser. The parser accepts the tokens
and parses the input query. Once the query is parsed successfully

then the semantic actions are carried out. In this way the fuzzy

query is taken as input and column name and terms are
recognized. The rows are fetched and displayed after looking at
the calculated value of membership. The membership of column
and in turn row to be displayed is determined by seeing the fuzzy
metadata which will be discussed later in this section. Once the

appropriate membership function is applied, the final membership
value is calculated as stated below:

Final membership value = membership value ^ n

Where n is the number of times the particular term repeats [10].

5.1 Meta Knowledge
We have implemented Fuzzy attribute type 1 Querying model
[GEFRED Model] [1][2][9]. This means we are introducing
fuzziness in querying leaving the database crisp. At the level of
meta knowledge we need to add only a single table, with the
following structure:

Level CName Alpha Beta Gamma Delta

This generic table is used to store the information of all the fuzzy
functions defined on all the attribute domains. A description of
each column in this table is as follows:

Level: This column indicates the level of fuzziness for the
database attribute specified in CName. Level stores tokens
associated with the various linguistic terms such as high, low etc. .
This facilitates the use of wide range of linguistic terms and its
corresponding functions. Stores the linguistic variable associated

with the given linguistic term. The rest of the attributes Alpha,
Beta, Gamma, Delta provides required information to calculate the
membership of the specified column and level [4].

Triangle function

Figure 2. Membership functions

As an instance if the values of Alpha and Beta are zero then L
function is considered. In the same way γ function is determined if
the values of Gamma and Delta are zero. Whenever values of beta
and gamma are same the triangular function is used. And when all
the four values are non-zero Π-function is used. The formal
specifications of all these functions are given in section II of this

paper. The graphical representation of these functions is shown in
figure 2

User

MySQL
Crisp DB

Fuzzy

Meta data

Read only Query

Parser

Semantic action

Alpha Beta = gamma delta

Alpha Beta gamma delta

γ - function L - function

 Π - function

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.2, July 2010

7

5.2 Grammar
The subsequent figure shows the YACC grammar for handling

fuzzy queries on MySQL database. The grammar mentioned here
handles read-only queries with single condition. The lexical
analyzer employed handles almost all real world linguistic terms.
The grammar is robust enough to handle uncertain query format
such as any number of white spaces between lexemes.

sqllist : sql sqllist
 |
 { printf("Bye ! Have a nice day"); }
 ;
sql : SELECT SPACE '*' SPACE
 FROM SPACE tablename SPACE wstart ';'
{
/* SEMENTIC ANALYSIS
// Get details from fuzzy meta data table
/* if(opt==1)
 if alpha=0 and beta =0
 calculate L- membership
 else
 if gemma=0 AND delta=0
 if col-value >= beta
 membership = 0
 else

 calculate γ – membership
 else if beta <>0 AND gemma <> 0
 if col-val > alpha AND col-val < beta
 calculation of pi membership
 if col-val >= beta AND col-val <= gemma
 membership = 1;
 if col-val > gemma
 calculate membership

 if any membership > THRESHOLD
 Print current row
else // option2 used for handling approximate query
 get the details from approximate table
 calculate fuzziness
 and display the results
end
 flag=0 //used in error handling
 count=1 //used to reset the count value

*/ }
;
tablename : NAME
 { strcpy(tname,name);};
wstart : WHERE SPACE columnname
 SPACE IS SPACE st { opt =1; }
 | WHERE SPACE columnname
 SPACE IS SPACE APPR SPACE VAL
 { opt = 2; }
;
columnname : NAME
 { strcpy(colname,name); } ;
st : adj level
 | level ;
level : HIGH { tok = HIGH; }
 | LOW { tok = LOW; }
 | MED { tok = MED; }
 | MODERATE { tok = MODERATE; }

 | LESS { tok = LESS; }
 ;
adj : adj SPACE adj
 | VERY { count = count+1; }
 | APPR
 | EXTR { count = count + 4; }
 |
 ;
It should be noted that the care is taken for the use of the words
such as extremely where the count value is incremented to 4 when
EXTR token for the word extremely is matched. This is
equivalent to specifying the word “very” four times. Whenever
the valid syntax is found the count value is reset so as to handle
the newer query. Whenever the wrong query is given the error
message should be given only once as parser calls yyerror ()
function multiple times for each wrong term. To achieve this

value of flag is used [8].

5.3 Results
The output of the FSQL implementation is shown in the figure 3.
As after compilation the output file is executed the FSQL prompt
appears.

Figure 3. Implementation Outcome

One can give any selection query with any condition leading to
uncertain outcome. As it can be seen that for the queries select *
from emp where salary is very high or very very high or
extremely high or very low, high etc. These queries may generate
different or similar outputs depending on the application of
membership function [5][8]. Moreover user can specify his own
fuzzy function to be incorporated. In such situation, it is required

to specify the required meta information which can be used to
calculate membership function.

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.2, July 2010

8

5.4 Constraints
There are a few constraints along with the experiment that has

been carried out. As mentioned earlier the concentration was on
having fuzziness in querying, the database involved is still crisp.
The implementation works for read only queries for retrieval of
data. The queries with simple conditions can only be parsed.

6. FUTURE ENHANCEMENTS
With this concept and its implementations we can look forward
for the following future enhancements [5][8].

 Processing of complex as well as manipulation queries.

 Implementation of fuzzy database along with the fuzzy

queries.

 Automatic mapping of crisp and fuzzy database.

7. CONCLUSION
It is found that lexical analyzer tool such as flex and parser
generator tool such as YACC are suitable for writing down
entirely new grammar for handling the real world scenario of
querying. The grammar can be enhanced to as per the future
needs of the user. The same way more terms can be incorporated
in Lexical analyzer. This approach facilitates users to fire the
fuzzy queries in natural way. In near future we may work upon
making the implementation fully equipped with all sorts of queries
rather than just read only ones and that too upon fuzzy database.

8. REFERNCES
[1] Jose Golindo, A. Urrutia, M. Piattini 2004. Representation of

Fuzzy Knowledge in Relational Databases. In Proceedings of
the 15th International Workshop on Database and Expert
Systems Applications.

[2] Amel Grissa Touzi and Mohamed Ali Ben Hassine 2009.
“New architecture of fuzzy database management system”.

The International Arab Journal of Information Technology,
Vol. 6, No. 3.

[3] A.H.M. Sajedul Hoque, Md. Sadek Ali, Md. Aktaruzzaman,

Sujit Kumer Mondol, and Dr. Babul Islam 2008.
Performance Comparison of Fuzzy Queries on Fuzzy
Database and Classical Database. In 5th International
Conference on Electrical and Computer Engineering.

[4] Hrudaya Ku. Tripathy, B.K.Tripathy, Pradip K Das and
Saraju Pr. Khadanga 2008. Application of Parallelism SQL

in Fuzzy Relational Databases International Conference on
Computer Science and Information Technology.

[5] T.C. Ling, Mashkuri Hj . Yaacob, K.K. Phang 1997. Fuzzy

Database Framework - Relational Versus Object-oriented.

In Proceedings of the 1997 IASTED International

Conference on Intelligent Information Systems.

[6] Claudia González, Marlene Goncalves and Leonid Tineo
2009. A New Upgrade to SQLf: Towards a Standard in

Fuzzy Databases. In Proceedings of 20th International
Workshop on Database and Expert Systems Application.

[7] Zhu Yanqin, Li Fanzhang, and Hu Yuemei, Soochow
University 2005. The Design and Application of Dynamic
Fuzzy Expert Database System.

[8] Qi Yang', Chengwen Liu2, Jing Wu', Clement Yu', Son
Dao3, Hiroshi Nakajima4 1995. Efficient Processing of
Nested Fuzzy SQL Queries*

[9] Angélica Urrutia, José Galindo, Mario Piattini 2002.
Modeling Data Using Fuzzy Attributes*. In Proceedings of

the XXII International Conference of the Chilean Computer
Science Society

[10] Amit Konar. Computational Intelligence. ISBN 3-540-20898-
4. Springer Berlin Heidelberg New York.

