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Abstract

This article presents a prototype of an application for the
analysis of cDNA/gene expression data and contribution for
genome annotation from macroarrays. The application de-
scribed here allows the quantification of a set of experiments
with macroarrays of the same size. It generateshtml reports,
easily shared, showing the expression of genes contained in
each membrane and a global report comparing films (expo-
sitions) and probes. Although initially the objective of this
application was macroarray analysis, with minor adjustments,
it can be used for other densitometric analysis involving circu-
lar dish plates such as petri dish plates, or multiple cell plates.
It aims to be a simple, but effective, tool that does not require
the user to have previous knowledge in image processing.
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1 Introduction

Gene expression analysis, by cDNA macroarray construction
and hybridization[10], has been very useful for use in numer-
ous assays[2, 6]. Disease prevention and diagnosis[7] based
on gene expression patterns are some of the applications for
gene expression analysis. Some companies like Imagenes1

are still offering services based on macroarray analysis and,
despite all the recent developments in gene expression quan-
tification, macroarrays are still used as a entry-level tech-
nique. Experiments based on macroarray hybridization of-
ten produce a great amount of data, specially if the number
of conditions/genes is high. The final data usually consists
of autoradiography films with impressed signal, representing
relative gene expressions. This kind of experiments, very fre-
quently, require the densitometric quantification of each spot

1http://www.imagenes-bio.de/services/c_
macroarrays/

Figure 1: Macroarray film image.

in the macroarray and, also, that patterns are found among
the films/probes allowing simple comparisons between nor-
malized scenarios. In most cases, this work is done using
expensive software, or free but not very friendly software,
that also relies on pattern interpretation by the user. Work
has shown that, for a correct quantification, it is important
to be able to subtract the background noise from the spots’
intensity [3]. For all these reasons, it is very difficult, time
consuming and inaccurate for the users to extract conclusions
from such data, specially if the analysis was done manually
by visual inspection. There are applications that can help to
accomplish these tasks but, they require a lot of user input,
are complex to utilize and very expensive, like PDQuest and
Quantity One from Biorad, or Imagene from Biodiscovery. In
addition, most of the existing applications are not specificfor
this problem. An important aspect is also that this applica-
tion is distributed freely in line with the relatively inexpensive
technology of macroarrays.

The software application presented in this paper is sim-
ple and can be used by someone that does not have previous
knowledge in image processing; requiring only a few input
parameters. It also aims to be effective in suppressing the
background of the macroarray film images and to automati-
cally perform the normalization of the film results. The fi-
nal aim of this application is, not to introduce another way
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Figure 2: Mineralization from different fish cell lines.

to quantify gene expression, but to save time and assist on
results interpretation before passing to more sensitive tech-
niques like RT-qPCR. Another important aspect is the flexi-
bility of the software, that allows any quantification basedon
densitometric determination of round forms like, for example,
colorimetric assays in round plates/wells. A good example of
another application for this software is the analysis of Von
Kossa staining[8], a calcium quantification technique thatre-
lies on a densitometric analysis, i.e. measurement of cell min-
eralization (See Figure 2).

In Section 2 a brief explanation about the characteristics of
the images involved in this kind of experiments will be pre-
sented, then, in Section 3 it will be presented an overview of
the user interface. In Section 4, the technical details of the
internals of the software will be exposed. In the final section,
some results will be presented and discussed.

2 Macroarray Experiments

The typical results of a macroarray based experiment are im-
pressed on autoradiography films. Each film may have one
or more macroarrays represented, and each macroarray may
have hundreds or even thousands of spots. To be possible to
perform an automatic analysis, the films have to be scanned
and digital images produced. Figure 1 shows a typical scan of
a macroarray image.

The number of rows and columns may vary but, usually,
each experiment will have macroarrays with a specific number
of rows and columns. Each of the cells of the macroarray will
contain a spot if a given gene is being expressed. The intensity
of the spot will represent the level of expression of a given
gene in that sample. In the case of absence of a spot in a given
cell, it means that the cDNA/gene in study is not expressed in
that condition.

As it is noticeable in Figure 1, the scanned image includes
noise. That may be the result of the presence of artifacts re-
lated to probe cleaning, membrane reuse, hybridization pro-
cess, film processing and - even - scanning process. The dark-
ness of the background will vary according to the film prop-
erties and exposure. Also, although not so noticeable, there is

Figure 3: Ready.

a gradient present in the image. These are problems that have
to be dealt with before quantification.

These images, produced for automatic analysis, should be
scanned at, at least, 300ppi. Lower resolution images will not
cope very well with smoothing filters because important de-
tails of the image may be destroyed by the smoothing opera-
tions. On the other hand, images with much higher resolution
will slow down the processing without many benefits.

3 Interface

The interface for the application is meant to be simple. The
first dialog that pops up at the beginning of a new experiment,
asks the user for the basic definitions of the experiment. It
asks for the name of the experiment, the number of probes, the
number of membranes/films and the size of the macroarrays.
After those basic parameters are defined, the user has to assign
images of each macroarray to each of the leafs of the tree
generated by the application (see Fig. 3). Then, it is possible
to define the film and global parameters for the experiment.
As the names show, film parameters define the parameters for
each film, and global parameters define the parameters for the
whole experiment. The process button is activated and the
user may start the automatic processing when every leaf of
the tree has been assigned a macroarray image, and all the
parameters are defined.

4 Technical Details

Some detailed technical information about the implementa-
tion of the several aspects of the presented application are
provided in the following subsections.

4.1 Array Detection

Most of the existing applications for macroarray processing
require the user to input the size of the macroarray and, only
then, a grid will be generated to be manually resized and
placed over the area of the macroarray. The objective is to



(a) Division by minima sum profile.

(b) Division by maxima sum profile.

Figure 4: Breaking in areas.

isolate each cell of the macroarray. In this way there will be
only one spot in each of the cells. Our approach tries to iso-
late the cells automatically. Using the information about the
macroarray size(n ∗m) provided on the first dialog, the divi-
sion is performed in the following way:

• Equally divide the image inm rows andn columns;

• Calculate the intensity sum profile of the rows and of the
columns, and find the minimum sum of each of the rows
and each of the columns (see Fig. 4(a));

• Find the maximum intensity sum in between each of the
limits determined on the previous step (see Fig. 4(b)).

It is very important that this division is made correctly be-
cause, in this way, it will be possible to know which macroar-
ray cell is being analyzed and, more important, it will be pos-
sible to perform regional processing of the image in terms of
spot detection and quantification.

4.2 Image Thresholding

For a good quantification of the spot, one of the most im-
portant steps, if not the most important, is to decide what is
background and what is foreground or, in our case, what is the
background and what is the spot. That may be achieved by a
technique called Thresholding. Image thresholding consists
of setting an intensity level that will define which pixels be-
long to the foreground. Only the pixels below a given intensity
level, the threshold level, will be maintained. As mentioned
on Section 2, these images may present a gradient in the back-
ground. This makes it impossible to define a threshold level

(a) Macroarray Cell.
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(b) Histogram.

Figure 5: Two classes are noticeable in the histograms.

for the whole image. Nevertheless, because a grid that sepa-
rates each spot into a cell has been defined, it is possible to
apply a regional threshold level or, in other words, apply a
threshold to each of the cells. As each experiment may have
many probes, each probe may have many macroarrays, and
each macroarray may have hundreds of spots, it is not conve-
nient for the scientist to be choosing one threshold level for
each cell on each macroarray.

After analyzing the histograms of the image of each cell on
the macroarrays, it was obvious that there were two distinct
classes (hills) and, so, the optimum threshold level would be
the one in the middle of those two classes (see Fig. 5(b)). For
more details see [1].

The more intuitive method to find the intensity level that
separates the two hills, is to find the minima between the two
paramounts. That is not trivial because the gradient of the
histogram is always changing its signal. To try to solve that
problem, one could smooth the histogram and, luckily, if the
chosen kernel was the right size and both hills had enough
representativity not to be swept by the smoothing operation,
it would be possible to find that minima.

A more robust technique was developed by [1]. It consists
of weighting the histogram. To better understand this idea a
brief explanation is given.

Assuming that an image is a 2D grayscale intensity func-
tion with N pixels with graylevels from0 to L and the num-
ber of pixels of grayleveli denoted byfi, lets consider an
histogram with two “hills”. If we imagine the histogram on a
scale, we will get what is represented by Figure 6.

It is possible to see that the scale is not balanced. There is
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Figure 6: Histogram on a scale.

more weight on its right side than on its left side. If weight is
removed from the heavier side until the lightest side weights
more and the indexes are adjusted, the scale will fall to the
opposite side. If this process keeps repeating, the base of the
scale (the triangle in Fig. 6) will end up at the intended posi-
tion.

To present it in a more formal way, letIs be the first
grayscale intensity occurrence andIe the last one. The base
of the scale will be always placed atIm, as defined byIm =
Is+Ie

2
. The weight functions of the left and right sides of

the scale are defined, respectively, asWl =
∑Im

i=Is
fi and

Wr =
∑Ie

i=I
m+1

fi, so that initiallyWl +Wr = N .
Now we can define the following algorithm:

Algorithm 4.1: GET-THRESHOLD(f, Is, Ie)

Im ←
Is+Ie

2

Wl ←
∑Im

i=Is
fi

Wr ←
∑Ie

i=I
m+1

fi

while Is 6= Ie

do
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then
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Wl ←Wl + fIs
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if Is+Ie
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> Im

then
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Wl ←Wl + fIm+1

Wr ← Wr − fIm+1

Im ← Im+1

return (Im)

Figure 7 illustrates the result of applying algorithm 4.1 to
the histogram presented on Figure 6.

As illustrated by Figure 8(a), in some cases there may be
a problem when applying this algorithm. If the histogram,
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(a) Problem.

Rmin
Is Im

Ie

(b) Correction.

Figure 8: Corrected with minimum representativity.

due to noise in the image, has tails at the left hand side of
the first peak or at the right hand side of the second peak, the
indexes may be misplaced. This will result in the indexIm
“jumping” out of the middle of the two peaks, producing a
bad result. This can be simply solved by passing a parameter
Rmin defining the minimum height that is to be accounted in
the histogram before the first peak and after the second peak.
This will allow to placeIs at the first occurrence offi =
Rmin if moving across the histogram from intensity level0 to
L, andIe if moving across the histogram fromL to 0.

Algorithm 4.1 is very fast withO(L) complexity in the
worst case. Even if there are algorithms with the same or-
der of complexity, like Otsu’s, the execution time of the pre-
sented algorithm is better. Nevertheless, this algorithm may
fail when the spot is very faint because in these cases the his-
togram may present only one peak (see Fig. 9).

For those cases, a different approach was taken. It consists
of performing dynamic thresholding using the Otsu’s thresh-
olding algorithm for each pixel in the cell.

4.3 Filtering the cell

In most cases, even after the thresholding operation, therewill
still be some particles remaining from the background. Thus,
the spot has to be distinguished from those particles. Two
measurements are used to accomplish that task. One is the
eccentricity and the other is the circularity. The eccentricity is
based on the second order central moments and is calculated
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Figure 7: Applying algorithm 4.1.

(a) Faint Spot.
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Figure 9: Algorithm 4.1 will fail in this case.

using equation 1.

ǫ =
(µ2,0 − µ0,2)

2 − 4µ2
1,1

(µ2,0 − µ0,2)2
(1)

The value ofǫ may vary between 0 and 1, whereǫ = 0 indi-
cates a perfectly round object andǫ = 1, a line shaped object
[4]. The formula used to calculate the circularity is formula 2.

k =
p2

4πA
(2)

On formula 2,p represents the perimeter of the component
being measured andA represents its area. For a perfect circle,
k will be equal to1 and greater than1 for other objects. After
analyzing hundreds of spots in regard to this measurements,
some conclusions were taken. First, each measure by itself
is not completely reliable for this problem. So, both mea-
surements complemented each other. Figure 10(a) and Fig-
ure 10(b) show components with very similar eccentricities
although the cell in Figure 10(b) does not have a valid spot.
Circularity had to be used to exclude the invalid components.
Figure 10(c) shows a component with a quite bad circular-
ity but with a very good eccentricity. Given these results the
approach that was taken was to accept all those with an eccen-
tricity lower that0.0005 and reject all the components with an
eccentricity higher than0.5. Eccentricities in between0.0005
and0.5 are subjected to verification of circularity. From these,
the components that have circularity higher than1.5 are re-
jected. This values were determined empirically.

4.4 Subtracting the background

Due to the process of exposure of the radioactive membrane
to the films, the time and conditions of exposure and develop-



(a) E:0.0239; C:1.30. (b) E:0.0253; C:5.00. (c) E:0.0003; C:1.96.

Figure 10: Eccentricity Vs Circularity.

ment, and even the nature of the film, the resulting film will
look darker than it is in reality. This will result in spots hav-
ing an intensity that is the sum of the real spot intensity with
the background intensity. The present application offers the
possibility to correct that problem. In summary, it generates a
synthetic background that will be subtracted from the image
at the end of all processing. The synthetic background is gen-
erated by using the information gathered in the Section 4.1.
As shown in Figure 4(b) there are areas known, for sure, to
be background only. Using the lines that divide the cells, itis
possible to generate a background by interpolation. To avoid
pixels that are affected by long tailed noise such as salt-and-
pepper noise, in each position of the grid it is calculated the
median. The result will be a “medianized” grid with repre-
sentative values of the background. Using the intensity values
at the position of the vertical lines of the grid, the intensity
values for each row in between each of the vertical lines, is
calculated by interpolation. The interpolated intensity level is
calculated by the linear equationy = mx+ b, whereb is the
intensity value of the first grid line being used at the pixel row
being generated,m is the slope between the intensity values
of the grid lines at the pixel row being generated, andy is
the interpolated intensity. The same process is used vertically,
using the horizontal lines of the grid, to generate an interpo-
lated vertical background. After having both backgrounds,it
is calculated an average background. This will improve the
estimation of the synthetic background. Figure 11(b) repre-
sents the final generated background and it can be seen that
the synthetic background is quite representative of the real
background.

4.5 Equalizing the films

Due to different levels of exposure, different films will of-
ten have different corresponding signal intensities. The result
is that, when comparing the signal intensities among the dif-
ferent films, the results will be misleading. For that reason,
it is mandatory that, previously to any comparison, the films
are equalized. Obviously, this is a time consuming task and,
for someone without any experience in image processing, this
will be difficult to accomplish. To avoid manual equalization
of the films, a process to automatically equalize them has been
developed. It consists of calculating the average brightness of
each film, excluding the areas of the previously detected spots

(a) Original image.

(b) Synthetic background.

Figure 11: Macroarray film and approximate background.

Figure 12: Background only.

(see Fig. 12). In this way it is calculated the average bright-
ness of the background of each film and, thus, there can be
established a correlation between level of brightness among
all films. That information is used to equalize the results.

4.6 Reporting the results

Two kinds of reports are generated by this tool. The first one
is produced for each of the films and, the second, is a global
report. A sample of the first report mentioned can be seen in
Table 1.

At the bottom of the report, an image of the processed film
is also shown (see Fig. 13(a) or Fig. 13(b)), for spot identifi-
cation purposes.

Although the data in the report is intended to be quite sim-
ple to understand, it is worth to discuss how some of the fields
are determined. For instance, the field Area is the result of the
multiplication of the number of pixels of the spot by the area
of each pixel. The area of each pixel is calculated from the res-
olution of the image and that is done automatically without the



Table 1: Part of the report for each film.

Spot # of Area Integrated Relative Class
(x,y) pixels (cm2) Intensity Intensity (1-20)
(1,1) 1574 5.25 351895 2.50% 7
(1,2) 3641 12.14 866699 6.15% 16
(1,3) 2902 9.67 688067 4.88% 13
(1,4) 4486 14.95 1075301 7.63% 20
(1,5) 2869 9.56 678416 4.81% 13
(1,6) 1412 4.71 187220 1.33% 3
(1,7) 0 0.00 0 0.00% N/A
(2,1) 4081 13.60 964232 6.84% 18
(2,2) 2052 6.84 475476 3.37% 9
(2,3) 1640 5.47 363844 2.58% 7
(2,4) 1352 4.51 281412 2.00% 5
(2,5) 1737 5.79 398881 2.83% 7
(2,6) 4315 14.38 1021936 7.25% 19
(2,7) 1685 5.62 337142 2.39% 6
(3,1) 0 0.00 0 0.00% N/A
(3,2) 2569 8.56 613734 4.35% 11
(3,3) 1976 6.59 466974 3.31% 9
(3,4) 2819 9.40 673115 4.77% 13
(3,5) 3145 10.48 746663 5.30% 14
(3,6) 2196 7.32 519574 3.69% 10
(3,7) 2003 6.68 464221 3.29% 9
(4,1) 2257 7.52 528679 3.75% 10
(4,2) 2374 7.91 551845 3.91% 10
(4,3) 0 0.00 0 0.00% N/A
(4,4) 0 0.00 0 0.00% N/A
(4,5) 1895 6.32 420883 2.99% 8
(4,6) 2247 7.49 533388 3.78% 10
(4,7) 3757 12.52 888709 6.30% 17

(a) Processed without background subtraction.

(b) Processed with background subtraction.

Figure 13: Original and processed images.

Table 2: Summary report (uncolored).

Spot Probe 00 Probe 00
(x,y) Film 00 Film 01 Film 00 Film 01
(1,1) 7 7 7 6
(1,2) 16 17 12 12
(1,3) 13 13 13 12
(1,4) 20 20 20 20
(1,5) 13 12 13 12
(1,6) 3 3 3 3
(1,7) N/A N/A N/A N/A
(2,1) 18 18 18 17
(2,2) 9 9 9 9
(2,3) 7 7 7 7
(2,4) 5 5 N/A N/A
(2,5) 7 7 7 7
(2,6) 19 19 19 18
(2,7) 6 6 6 6
(3,1) N/A N/A N/A N/A
(3,2) 11 11 5 5
(3,3) 9 9 9 9
(3,4) 13 12 13 12
(3,5) 14 14 14 14
(3,6) 10 10 10 10
(3,7) 9 9 9 9
(4,1) 10 10 10 10
(4,2) 10 10 9 9
(4,3) N/A N/A N/A N/A
(4,4) N/A N/A N/A N/A
(4,5) 8 8 8 7
(4,6) 10 10 10 10
(4,7) 17 16 17 16

need to input the resolution of the image or the size of a pixel.
The column Integrated Intensity, also called Optical Density
in other publications [5], is calculated by

∑

x,y
I(x, y), with

I(x, y) representing the graylevel intensity at the coordinates
x andy. (x, y) represents all the pixels belonging to the spot.
The Relative Intensity is relative to the sum of the intensities
of all the spots in the image. Also, the Class of intensity of
the spot is determined according to the Integrated Intensity of
the spot and the number of defined classes, which is a user
defined parameter.

The global report is more straightforward to understand
than the film report. It allows the user to find patterns, sim-
ilarities or differences in a fast way. The class to which the
spot belongs is placed side by side according to its probes and
film. On top of that, each class is colored differently. The
uncolored version of the report is presented in Table. 2.

5 Conclusion

In this article we have presented an algorithm for automatic
spots densitometry analysis and comparison that can be used
in image analysis within macroarray hybridization technol-
ogy, giving a classification according to gene expression pat-
terns. The algorithm demonstrates high level of robustness
and flexibility in terms of macroarray design and size, if the
analyzed images do not deviate strongly from an overall grid
of regular spots. The user intervention is minimal, just pro-
viding the size of the array (number of spots in horizontal and
vertical directions of the array). In the parameters section it
is possible to control the background subtraction, apply two



Table 3: Comparison of the results of processing image in Figure 14.

Our Software Quantity One v.4.6.5

Prepared # of Area Integrated Relative Class Volume %Adjusted
Dilutions Pixels (cm2) Intensity Intensity (1-20) INT*mm2 Volume

1:1 27165 17.82 6417520 48.12% 20 1236 50.44075029
1:100 7760 5.09 1757682 13.18% 5 300 12.23835282

1:10000 97 0.06 8145 0.06% N/A 37 0.01
1:10 12498 8.20 2839304 21.29% 9 472 19.2736867

1:1000 1772 1.16 268186 2.01% 1 42 1.747317103
1:5 8807 5.78 2046901 15.35% 6 399 16.2877317

Figure 14: Dilutions used for testing.

different methods of segmentation, although these do not nor-
mally need adjusting. Practical usage of this program also
revealed to be very intuitive and the entire process from film
scanning to software processing is very fast, taking 5 minutes
at maximum. The results are presented in a clear way and in a
couple of minutes the user can evaluate different patterns be-
tween two different membranes, outperforming academic and
commercial packages, with some extra functions like the class
value, whereas for good quality images its efficiency is com-
parable (see Table 3). Other applications are possible due to
the flexibility of the software allowing the usage of this appli-
cation in a variety of fields in biology, specially in molecular
biology and biochemistry. Even so, a final evaluation of this
software should take in consideration that it is just an alter-
native to provide an easy approach to evaluation of patterns
of gene expression on macroarrays; being at the same time a
user friendly and free software.
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