
International Journal of Computer Applications (0975 – 8887)

Volume 4– No.8, August 2010

5

Indexing for Efficient Term-Based Search Using
Mapping Functions

K.K.Basheer

Asst.Prof. CSE Dept.,
VITS, Proddatur,

Kadapa (dist), A.P. INDIA.

Srinivasa Rao.P

Asst. Prof, CSE Dept.,
GMRIT, Rajam, Srikakulam(dist)

A.P.,INDIA.

 V. Venkata Ramana

Asst. Prof., CSE Dept.,
SSITS, Raychoti,

Kadapa (dist), A.P. INDIA.

ABSTRACT

The transformation from the received item to the searchable

data structure is called Indexing. Indexing (originally called

Cataloging) [11] is the oldest technique for identifying the

contents of items to assist in their retrieval. The basic

difference between the existing methods and the one

discussed here is that these methods rely on a structure of

web page linkages that lead from or to the indexed page. In

contrast, our method uses the content of the pages linked to

or from the indexed page for indexing. So, our method uses

a structure of words used by the linked pages, whereas the

current methods use the structure of the connections

between linked pages.

GENERAL TERMS
Mapping function, DB2 Net Search Extender

KEYWORDS

Indexing, Catalog, Mapping, Crawl, Real time-scalable,

Data Centre, Audit Logs, Conventional Hosting,

Bandwidth, Administrative Privileges.

1. INTRODUCTION
Experimental results show that index size is manageable

and keyword query response time is interactive for typical

queries [2]. Update experiments demonstrate that our

concurrent incremental update mechanism does not

significantly hinder query performance [9]. We also present

a user study confirming the superiority of keyword-based

search over query processing for a range of database

retrieval tasks.

 By incorporating more structure into text

objects, we can exploit search met capabilities for semi

structured data [5]. We are going to investigate how to

generate text objects with structural information, focusing

first on “How to mapping the processing tokens using

efficient indexing mechanism”.

Indexing Performance: We plan to investigate better

computation sharing when constructing text objects, as well

as using parallelism to speed up indexing using index

mapping mechanism.

 We dealt with automatic indexing based on

A probabilistic model of the distribution of word tokens

within a document (text) [8]; here we will be concerned

with the distribution of index terms over the set of

documents making up a collection or file. We shall be

relying heavily on the familiar assumption that the

distribution of index terms throughout the collection, or

within some subset of it, will tell us something about the

likely relevance of the any given document or token.

 We shall attempt to use

simple probability theory to tell us what a matching

function should look like and how it should be used. The

arguments are mainly theoretical but in my view fairly

conclusive. The only remaining doubt is about the

acceptability of the assumptions, which we shall try and

bring out as we go along it. The data used to fix such a

matching function are derived from the knowledge of the

distribution of the index terms throughout the collection

of some subset of it. If it is defined on some subset of

documents then this subset can be defined by a variety of

techniques: sampling, clustering, or trial retrieval. The data

thus gathered are used to set the values of certain

parameters associated with the matching function. Clearly,

should the data contain relevance information then the

process of defining the matching function can be iterated

by some feedback mechanism [6]. In this way the

parameters of the matching function.

 Can be 'learnt'. It is on matching functions

derived from relevance information that we shall

concentrate. It will be assumed in the sequel that the

documents are described by binary state attributes, that is,

absence or presence of index terms [3].

2. RELATIONAL DATABASE

MANAGEMENT SYSTEMS BASED

SEARCH VERSUS KEYWORD BASED

SEARCH

Relational Database Management Systems provide a

convenient data model and versatile query capabilities over

structured data. However, casual users must learn SQL and

know the schema of the underlying data even to pose

simple searches. For example, suppose we have a customer

order database, shown in Figure 1, which uses the TPC-H

[4] schema in Figure 2. We wish to search for Bob’s

purchases related to his aquarium fish hobby. To answer

this query, we must know to join the Customer, Line item,

Orders, and Part relations on the appropriate attributes, and

we must know which attributes to constrain for ”Bob” and

”fish”. The following SQL query is formulated:

SELECT c.custkey, o.orderkey, p.partkey FROM Customer

c, Line item l, Orders o, Part p

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.8, August 2010

6

WHERE c.custkey = o.custkey AND l.partkey = p.partkey

AND o.orderkey = l.orderkey AND c.name LIKE

’%Bob%’ AND p.name LIKE ’%fish%’

In our example database instance, this query returns a

single tuple _custkey, orderkey, partkey_ of _100, 10001,

10_. In contrast, keyword-based search, exemplified by

web search engines, offers an intuitive interface for

searching textual content that requires little knowledge

about the underlying data. In this paradigm, for the above

example a user should be able to enter the keywords ”Bob

fish” and find the relevant information from the results.

3. WORKING OF KEYWORD BASED

SEARCH

The general architecture of the EKSO (Efficient Keyword

Search through Offline Indexing) consists of three main

components. This expressive keyword-based search over

interconnected relational database content that operates

within the database engine and performs full offline

indexing for highly efficient searches

1. The Crawler traverses the entire database offline,

constructing virtual documents from database content.

2. Virtual documents are sent to the Indexer, which

builds an inverted index over the virtual documents in

the usual Information Retrieval (IR) style

3. At search time, the Keyword Search Processor takes

a keyword query and probes the inverted index

(again in an IR style) to find the virtual documents

satisfying the query.

3.1 TYPES OF CRAWLERS

Verity crawls the content of relational databases and builds

an external text index for keyword searches,

1. As well as external auxiliary indexes to enable

parametric searches.

2. Data Spot extracts database content and builds an

external, graph-based representation called a

hyper base to support keyword search. Graph

nodes represent data objects such as relations,

tuples, and attribute values.

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.8, August 2010

7

3. DbSurfer [19] indexes the textual content of each

relational tuple as a virtual web page.

3.2 ESKO SYSTEM

EKSO, is an instantiation of the general architecture we

propose for keyword based search over structured

databases

4. TEXT OBJECTS AND VIRTUAL

DOCUMENTS

Our goal is to perform a full crawl of the database,

generating virtual documents from database content that

define the granularity of text search and retrieval in the

system.

In ESKO system we separate two concepts

Text objects are generated from interconnected tuples

based on joining relational tables.

Virtual documents are generated from text objects by

concatenating their string attributes.

This separation has two advantages

1. We can use SQL queries, which are optimized

automatically by the DBMS, to generate text objects.

2. We can independently plug in different functionality for

generating text objects from the database, or for generating

virtual documents from text objects.

4.1 Root relations and tuples

Root tuples are defined as all of the tuples in root relations.

Root relations can be designated automatically or set by the

database administrator.

Alternate definitions could be used for text objects from a

given root tuple. For example, we could follow equijoins as

well as foreign-key joins (with a second pass to handle

Dangling tuples), and we could backtrack.

4.2 Virtual Documents

After a text object has been computed, we concatenate all

textual attributes of all tuples in the text object to form the

virtual document. The order of the tuples selected during

traversal is nondeterministic due to SQL semantics, and in

the current system we are not concerned about the

concatenation order. However, if we extend the system to

richer virtual documents, as we will discuss next, we may

need to be careful about concatenation order.

4.3 Indexer

The Indexer is the box labelled NSE in the right-hand

portion of Figure 4. It is managed by the DB2 Net Search

Extender (NSE). NSE is a full-featured text search engine

integrated with the IBM DB2 DBMS product. NSE

supports the creation of text indexes on individual columns,

and can index the output of applying a user-defined

function to a column, which is the feature we exploit

4.4 User Study

A study was conducted involving 17 doctoral students and

faculty in the Stanford Database Group to quantify the

relative effectiveness of keyword and SQL interfaces in

accessing content in relational databases. We used a movie

database [15] consisting of three relations, Movies, Casts,

Actors, and a view, Movie actor. Using our API described

in Section 3.6, we deployed a servlet-based web interface

using Apache Tomcat on the same PC used in our system

evaluation. See technical report [14] for more details on the

user study.

Two classes of questions were formulated. The first class,

questions 1, 2, and 3, clearly favours keyword searches. For

example, for question 1, the 3-keyword query”Burton

Taylor Cinecitta” returns a single movie tuple for the movie

Cleopatra, which is the correct answer. On the other hand,

questions 4-7 were more difficult with keyword search: The

best keyword queries return many result tuples that the user

must browse to find the answer. Furthermore, for questions

5 and 6 the user must submit two consecutive keyword

queries to find the correct answer. In comparison, all 7

questions could be answered with a single SQL query.

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.8, August 2010

8

5. CONCLUSION AND FUTURE

WORK

We presented a general architecture for supporting

keyword-based search over structured databases, and an

instantiation of the architecture in our fully implemented

system EKSO. EKSO indexes interconnected textual

content in relational databases, providing intuitive and

highly efficient keyword search capabilities over this

content. Our system trades storage space and offline

indexing time to significantly reduce query time

computation compared to previous approaches.

Experimental results show that index size is manageable

and keyword query response time is interactive for typical

queries. Update experiments demonstrate that our

concurrent incremental update mechanism does not

significantly hinder query performance. We also present a

user study confirming the superiority of keyword-based

search over SQL for a range of database retrieval tasks.

We have identified at least three main directions for future

work:

• Indexing Performance: We plan to investigate better

computation sharing when constructing text objects, as well

as using parallelism to speed up indexing.

• Enhanced Search: By incorporating more structure into

text objects, we can exploit (future) search capabilities for

semi structured data. We will investigate how to generate

text objects with structural information, focusing first on

XML and exploiting work on publishing relational content

as XML

• User Interface: We plan to refine and enhance our

current search result presentation and navigation schemes.

REFERENCES

[1]. BENTLEY, J.L. and FRIEDMAN, J.H., Fast

Algorithm for Constructing Minimal Spanning Trees in

Coordinate Spaces, Stanford Report, STAN-CS-75-529

(1975).

[2]. B. Babcock, M. Datar, and R. Motwani. Load shedding

for aggregation queries over data streams. In Proc. of IEEE

ICDE, 2004.

[3]. BOOKSTEIN, A. and KRAFT, D., 'Operations

research applied to document indexing and retrieval

decisions', Journal of the ACM, 24, 410-427 (1977).

[4]. GERALD J.KOWALSKI and MARK T.MAYBURY,

‘Information storage and retrieval systems’, vol 2, pp. 51-

52 (2002)

[5]. GOFFMAN, W., 'A searching procedure for

information retrieval', Information Storage and Retrieval,

2, 294-304 (1977).

[6]. HARPER, D. and van RIJSBERGEN, C.J., 'An

evaluation of feedback in document retrieval using co-

occurrence data', Journal of Documentation, 34, 189-216

(1978).

[7]. Helen J. Peat and Peter Willett ' The Limitations of

Term Co-Occurrence Data for Query Expansion in

Document Retrieval Systems', JOURNAL OF THE

AMERICAN SOCIETY FOR INFORMATION SCIENCE.

42(5):378-383, 1991

[8]. KU, H.H. and KULLBACK, S., 'Approximating

discrete probability distributions', IEEE Transactions on

Information Theory, IT-15, 444-447 (1969).

[9]. Qi Su and Jennifer Widom, ‘Indexing Relational

Database Content Offline for Efficient Keyword-Based

Search’, Proceedings of the 9th International Database

Engineering & Application Symposium (IDEAS’05).

 [10]. VAGELIS.H, LUIS.G, YANNIS.P, Efficient IR-

Style Keyword Search over Relational Databases,

Proceedings of the 29th VLDB Conference, Berlin,

Germany, 2003

[11]. WHITNEY, V.K.M., 'Minimal spanning tree,

Algorithm 422', Communications of the ACM, 15, 273-274

(1972).

[12]. YU, C.T. and SALTON, G., 'Effective information

retrieval using term accuracy', Communications of the

ACM, 20, 135-142 (1977).

[13] Transaction Processing Council. http://www.tpc.org

[14] Q. Su and J.Widom. Indexing elational database

content offline for efficient keyword-based search. Stanford

University Technical Report, 2003.

[15] G. Wiederhold. Movie database. http://www-

db.stanford.edu/pub/movies/doc.html.

