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ABSTRACT: 

Breast cancer is one of the major causes of death among women. 

An improvement of early diagnostic techniques is critical for 

women’s quality of life. Mammography is the main test used for 

screening and early diagnosis. Contrast-enhanced magnetic 

resonance of the breast is the most attractive alternative to 

standard mammography. This paper presents a vector quantization 

segmentation method to detect cancerous mass from mammogram 

images. In order to increase radiologist’s diagnostic performance, 

several computer-aided diagnosis (CAD) schemes have been 

developed to improve the detection of primary signatures of this 

disease: masses and microcalcifications. 
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1. INTRODUCTION: 
Breast cancer can be most effectively treated when it is detected at 

its early stage. Ultrasonography is widely used for the detection 

and evaluation of many diseases. In the case of breast cancer, it is 

a very useful complementary imaging technique to 

mammography. The most effective method for early detection and 

screening of breast cancers is X-ray mammography. However, 

reading mammography is a demanding job for radiologists, and 

cannot provide consistent results from time to time. The 

judgments depend on training, experience, and subjective criteria. 

In addition, mammography produces a high false positive rate, 

and only about 525 of 1800 lesions [1]. 

Segmentation will help in the computer-aided evaluation of the 

tumors and the distinction of benign and malignant nodules. Since 

screening mammography is currently the main test for early 

detection of breast cancer, a huge number of mammograms need 

to be examined by a limited number of radiologists. In order to 

improve the diagnostic efficiency, computer-aided diagnosis has 

been introduced into the screening process [2]. 

Mammography is the main test used for screening and early 

diagnosis. Early detection performed on X-ray mammography is 

the key to improve breast cancer prognosis. In order to increase 

radiologist’s diagnostic performance, several computer-aided 

diagnosis (CAD) schemes have been developed to improve the 

detection of primary signatures of this disease: masses and 

microcalcifications [3]. 

A number of image processing methods have been proposed to 

perform this task. S. M. Lai et al [4] and W. Qian et al [5] have 

proposed using modified and weighted median filtering, 

respectively, to enhance the digitized image prior to object 

identification. D. Brzakovic et all [6] used thresholding and fuzzy 

pyramid linking for mass localization and classification. Other 

investigators have proposed using the asymmetry between the 

right and left breast images to determine possible mass locations. 

Yin et al. uses both linear and nonlinear bilateral subtraction [7] 

while the method by Lau et al. [8] relies on “structural 

asymmetry” between the two breast images. Recently Kegelmeyer 

[9] has reported promising results for detecting speculated lesions 

based on local edge characteristics and Laws texture features [10, 

11].The above methods produced a true positive detection rate of 

approximately 90%.The work we have done till now is to propose 

a segmentation process which identifies on a mammogram the 

opaque areas, suspect or not, present in the image using vector 

quantization [12-21]. 

Tumors or calcifications are embedded in an inhomogeneous 

background. In mammograms, background objects may even 

appear brighter. Therefore, global threshold methods suffer 

considerable drawback. The work we have done is to propose a 

segmentation process which identifies on a mammogram the 

opaque areas, suspect or not, present in the image using vector 

quantization which consumes moderate time but provide good 

accuracy with less complexity. Watershed algorithm has a 

drawback of over-segmenting the image making it obscure for 

identification of tumor. Segmentation using gray level co-

occurrence matrix required huge time for tumor demarcation with 

less accuracy. Vector quantization segmentation algorithm 

attempts to overcome such drawbacks.  

1.1 Vector Quantization: 
Vector quantization is a classical quantization technique from 

signal processing which allows the modeling of probability 

density functions by the distribution of prototype vectors. It was 

originally used for data compression. It works by dividing a large 

set of points (vectors) into groups having approximately the same 

number of points closest to them. Each group is represented by its 

centroid point as in K-means some and other clustering 

algorithms. 

The density matching property of vector quantization is powerful, 

especially for identifying the density of large and high-

dimensioned data. Since data points are represented by the index 

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Coordinate_vector
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of their closest centroid, commonly occurring data have low error, 

and rare data high error. This is why VQ is suitable for lossy data 

compression. It can also be used for lossy data correction 

and density estimation [6]. 

Vector Quantization (VQ) [22-30] is an efficient technique for 

data compression and has been successfully used in various 

applications such as index compression [31, 32]. VQ has been 

very popular in a variety of research fields such as speech 

recognition and face detection [33, 34]. VQ is also used in real 

time applications such as real time video-based event detection 

[35] and anomaly intrusion detection systems [36], image 

segmentation [37-40], speech data compression [41], content 

based image retrieval CBIR [42] and face recognition [43]. 

The rest of the paper is organized as follows. Section 2 describes 

Gray Level Co-occurrence Matrix (GLCM), Watershed algorithm 

and Kekre’s Median Codebook Generation (KMCG) algorithm 

used for image segmentation of mammographic images. Followed 

by the experimental results for mammographic images for 

comparison in section 3 and section 4 concludes the work.  

2. ALGORITHMS FOR SEGMENTATION 

In this section we explain segmentation by Gray level co-

occurrence matrix [44], basic watershed algorithm [45-49] and 

Kekre’s Median Codebook Generation (KMCG) algorithm which 

are used for comparative performance of tumor detection. 

2.1. Gray Level Co-occurrence Matrix 
Haralick [50] suggested the use of gray level co-occurrence 

matrices (GLCM) for definition of texture features. The values of 

the co-occurrence matrix elements present relative frequencies 

with which two neighboring pixels separated by distance d appear 

on the image, where one of them has gray level i and other j. Such 

matrix is symmetric and also a function of the angular relationship 

between two neighboring pixels. The co-occurrences matrix can 

be calculated on the whole image, but by calculating it in a small 

window which scanning the image, the co-occurrence matrix can 

be associated with each pixel. By using gray level co-occurrence 

matrix we can extract different features like probability, entropy, 

energy, variance, inverse moment difference etc. Using co-

occurrence matrix the major textural features are defined as:  

Maximum Probability:  max(Pij) (2.1) 

Variance: 

)P)μ(j)(P)μ(i( ij

2

jij

2

i
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Correlation:  
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where µx and µy  are means and σx , σy are standard 

deviation 
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Entropy:

j
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)log(PP  (2.4) 

 Amongst all these features entropy has given us the best results. 

Hence in this paper we extracted entropy using gray level co-

occurrence matrix and the results are displayed in Fig.5 (b) along 

with that of watershed and KMCG algorithms for comparison. 

2.2.Watershed Algorithm 
Watershed segmentation [48] classifies pixels into regions using 

gradient descent on image features and analysis of weak points 

along region boundaries. The image feature space is treated, using 

a suitable mapping, as a topological surface where higher values 

indicate the presence of boundaries in the original image data. It 

uses analogy with water gradually filling low lying landscape 

basins. The size of the basins grows with increasing amount of 

water until they spill into one another. Small basins (regions) 

gradually merge together into larger basins. Regions are formed 

by using local geometric structure to associate the image domain 

features with local extremes measurement. Watershed techniques 

produce a hierarchy of segmentations, thus the resulting 

segmentation has to be selected using either some a priory 

knowledge or manually. These methods are well suited for 

different measurements fusion and they are less sensitive to user 

defined thresholds. We implemented watershed algorithm for 

mammographic images as mentioned in [2].Results for 

mammographic images are displayed in Fig 5(c). 

2.3 Proposed Algorithm 

 

 

 

 

 

 

 

 

 

 

   Fig. 1 Block Diagram of Proposed Algorithm 

Steps for the algorithm 
Step1:  Divide the image into non overlapping blocks. 

Step2: Convert each block into training vector. Entire Training 

matrix is considered as one cluster (X) 

Step3:  Codebook of desired size is generated using KMCG. 

Step 4:  Reconstruct image using first codevector 

Step 5:  Post processing is applied on reconstructed image to 

segment exact tumor 

2.3.1 Kekre’s Median Fast Codebook 

Generation (KMCG) Algorithm [26]:-  
 In this algorithm image is divided in to blocks and blocks are 

converted to the vectors of size k. The Fig. 2 below represents 

matrix T of size M x k consisting of M number of image training 

vectors of dimension k. 

Divide Image into 2*2 non overlapping 

blocks 

Create initial training matrix 

Reconstruct the image using first Code 

Vector 

Using VQ clustering algorithms generate 

Codebook of desired size 

Apply post processing to segment exact 

tumor  

http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Density_estimation
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Each row of the matrix is the image training vector of dimension 

k. 

kM,x....M,2xM,1x
.
.

.

.
.
.

.

.
k2,x....2,2x2,1x
k1,x....1,2x1,1x

T
  

   Fig.2 Matrix of image training vector 

The training vectors are sorted with respect to the first member of 

all the vectors i.e with respect to the first column of the matrix T 

and the entire matrix is considered as one single cluster. The 

median of the matrix T is chosen (codevector) and is put into the 

codebook, and the size of the codebook is set to one. The matrix is 

then divided into two equal parts and the each of the part is then 

again sorted with respect to the second member of all the training 

vectors i.e. with respect to the second column of the matrix T and 

we obtain two clusters both consisting of equal number of training 

vectors. The median of both the parts is the picked up and written 

to the codebook, now the size of the codebook is increased to two 

consisting of two codevectors and again each part is further 

divided to half. Each of the above four parts obtained are sorted 

with respect to the third column of the matrix T and four clusters 

are obtained and accordingly four codevectors are obtained. The 

above process is repeated till we obtain the codebook of desired 

size. Here quick sort algorithm is used. 

2.3.2. Post processing  
In post processing step the image obtained after VQ segmentation 

is taken as input image. The VQ segmented image is labeled and 

area of each region is calculated. The region with larger area is 

extracted. The boundary of extracted region is superimposed on 

original image. Results for proposed method on mammographic 

images are displayed in Fig 3(a-e) and Fig.4 (a-e). 

  

RESULTS: 

 

 

 

 

 

 

Fig.3: (a) Original Breast tumor Mammogram Image,(b) Image after VQ segmentation, (c)  ROI  Extracted Image,(d)Boundary 

Extracted Image ,(e) Superimposed Image 

 

   

 

 

 

 

Fig.4: (a) Original Breast tumor Mammogram Image,(b) Image after VQ segmentation, (c)  ROI  Extracted Image,(d)Boundary 

Extracted Image ,(e) Superimposed Image 
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Fig.5: (a) Probability image using GLCM, (b) Entropy image 

using GLCM, (c) Segmented image using   Watershed 

algorithm 

4. CONCLUSION: 
Mammograms contain low signal to noise ratio (low contrast) and 

a complicated structured background. Breast tissue contrast and 

density vary with age, thus mammography produces varying 

image qualities. In addition, mammographic images are not 

bimodal. As a result, any segmentation method which utilizes an 

a-priori or single threshold value method is highly likely to 

generate serious segmentation errors. Moreover, tumors or 

calcifications are embedded in an inhomogeneous background. In 

mammograms, background objects may even appear brighter. 

Therefore, global threshold methods suffer considerable 

drawback. 

Vector quantization segmentation algorithm attempts to overcome 

such drawbacks. Vector quantization is based on clustering 

algorithm. It is observed form the results that the KMCG 

algorithm takes least time to generate codebook, since it does not 

require Euclidean distance computation. The programs are tested 

on thirty five mammogram images. Identification rate for 

proposed method is 68.5%. 
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