
International Journal of Computer Applications (0975 – 8887)

Volume 5– No.1, August 2010

17

Optimizing Up*/Down* Routing By Minimal Paths
Lalit Kishore Arora

Assistant Professor,MCA Dept,
AKG Engg College,

Ghaziabad, UK, India

Rajkumar

Reader,CSE Dept,

Gurukul Kangri Vishva Vidyalaya,
 Haridwar, UK, India

ABSTRACT
Networks of workstations (NOWs) often uses irregular

interconnection patterns. Up*/down* is the most popular routing

scheme currently used in NOWs with irregular topologies. One of

the main problem with up*/down* routing is difficult to route all

packets through minimal paths. Several solutions have been

proposed in order to improve the up*/down* routing scheme. In

this paper we discussed those solutions which provide minimal

paths to route most the packets to improve the performance of the

up*/down* routing.

General Terms
Computer Architecture, Parallel and distributed Computing,

Embedded Systems

Keywords

Networks Of Workstations, Irregular Topologies, Routing

Algorithms, Minimal Path, Spanning Tree.

INTRODUCTION
Networks of workstations (NOWs) are becoming increasingly

popular as a cost-effective alternative to parallel computers. In

these machines, the network connects processors using irregular

topologies, providing the wiring flexibility, scalability, and

incremental expansion capability required in this environment.

Also, when performance is the primary concern, these network

products are being used to build large commodity clusters with

regular topologies [13]. Some commercial interconnects for

NOWs are Myrinet [11], Servernet II [1], Autonet [10], Gigabit

Ethernet [14], and InfiniBand [4]. And several high-performance

interconnects have been recently introduced for NOWs, including

the Quadrics QsNet [2], and QsNet II [12], and Sun Fire Link

[16].

In some of these networks, packets are delivered using source

routing. In this kind of networks, the path to destination is built at

the source host and it is written into the packet header before it is

transmitted. Switches route packets through the fixed path found

at the packet header. One example of network with source routing

is Myrinet [11].

Usually, NOWs are arranged as switch-based networks whose

topology is defined by the customer in order to provide wiring

flexibility and incremental expansion capability. Often, due to

building constraints, the connections between switches do not

follow any regular pattern leading to an irregular topology. The

irregularity in the topology makes the routing and deadlock

avoidance quite complicate. In particular, a generic routing

algorithm suitable for any topology is required.

Up*/Down* [1] is the most popular routing algorithm used in the

NOW environment. In this paper we discussed the up*/down*

routing and the solutions to improve the performance of

up*/down* routing. Section II we discussed the up*/down*

routing and its drawbacks. Section III to VI explain the

methodologies to improve the performance of up*/down* routing

via route the maximum packets through minimal paths.

1. UP*/DOWN* ROUTING
Up*/down* routing is the most popular routing scheme currently

used in commercial networks, such as Myrinet [11]. It is a generic

deadlock-free routing algorithm valid for any network topology.

Up*/down* is a distributed deadlock-free routing algorithm that

provides partially adaptive routing in irregular networks. In order

to fill the routing tables, a breadth-first spanning tree (BFS) on the

graph of the network is computed first using a distributed

algorithm. Routing is based on an assignment of direction labels

(“up” or “down”) to the operational links in the network by

building a BFS spanning tree. To compute a BFS spanning tree a

switch must be chosen as the root. Starting from the root, the rest

of the switches in the network are arranged on a single spanning

tree [10].

After computing the BFS spanning tree, the “up” end of each link

is defined as: 1) the end whose switch is closer to the root in the

spanning tree; 2) the end whose switch has the lowest identifier, if

both ends are at switches at the same tree level. The result of this

assignment is that each cycle in the network has at least one link

in the “up” direction and one link in the “down” direction. To

avoid deadlocks while still allowing all links to be used, this

routing scheme uses the following up*/down* rule: a legal route

must traverse zero or more links in the “up” direction followed by

zero or more links in the “down” direction. Thus, cyclic channel

dependencies [15] are avoided because a packet cannot traverse a

link in the “up” direction after having traversed one in the “down”

direction.

When a message arrives at a switch, the routing algorithm is

computed by accessing the routing table. The address of the table

entry is obtained by concatenating the input port number with the

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.1, August 2010

18

address of the destination node stored in the message header. If

there are several suitable outgoing ports, one of them is selected.

Figure 1 BFS spanning tree and assignment of directions to

links for a 9 switch network

The main advantage of using up*/down* routing is the fact that it

is simple and easy to implement. However, there exist several

drawbacks that may noticeably reduce network performance. First

of all, this routing scheme does not guarantee all the packets to be

routed through minimal paths. This problem becomes more

important as network size increases. In general, up*/down*

concentrates traffic near the root switch, often providing minimal

paths only between switches that are allocated near the root switch

[8], [7]. Additionally, the concentration of traffic in the vicinity of

the root switch causes a premature saturation of the network, thus

obtaining a low network throughput and leading to an uneven

channel utilization.

There fore the main drawbacks of up*/down* routing are the

unbalanced channel utilization and the difficulties to route most

packets through minimal paths, which negatively affects network

performance.

Several solutions have been proposed in order to improve the

up*/down* routing scheme, such as the In-transit Buffer [5], the

DFS methodology [9] , Adaptive-trail routing [15] , and Smart

routing [19].

2. DFS METHODOLOGY
The DFS methodology [9] is a new methodology to compute the

up*/down* routing tables that makes a different assignment of

direction (“up” or “down”) to links in order to increase the

number of minimal paths followed by the messages. This

methodology is based on obtaining a depth-first search spanning

tree (DFS) instead of the BFS spanning tree used in the original

methodology of up*/down* routing.

Like in the up*/down routing with BFS spanning tree, an initial

switch must be chosen as the root before starting the computation

of the DFS spanning tree. The selection of the root is made by

using heuristic rules [8]. For instance, the switch with the highest

average topological distance to the rest of the switches will be

selected as the root node. The rest of the switches are added to the

DFS spanning tree following a recursive procedure. Unlike the

BFS spanning tree, adding switches is made by using heuristic

rules [8]. Starting from the root switch, the switch with the

highest number of links connecting to switches that already

belong to the tree is selected as the next switch in the tree. In case

of tie, the switch with the highest average topological distance to

the rest of the switches will be selected first. Next, in order to

assign directions to links, switches in the network must be labeled

with positive integer numbers.

When assigning directions to links, the “up” end of each link is

defined as the end whose switch has a higher label. Figure 2

shows the new link direction assignment for the same network

graph depicted in Figure 1. It has been shown that the DFS

methodology [9] provides more minimal paths than the BFS one,

resulting in a significant increase in network performance [8].

Figure 2 DFS spanning tree and assignment of directions to

links for a 9 switch network

3. ADAPTIVE-TRAIL ROUTING
Adaptive-trail routing algorithm [15] is applicable to any network

topology with Eulerian trails. Adaptive-trail routing (ATR)

algorithm is based on computing an Eulerian trail. The basic idea

of the ATR is to find two opposite unidirectional Eulerian trails to

provide reasonable routing paths and control the order of channel

dependency. The Eulerian trail is a sequence of channels, which

visits each channel once and exactly once so that it can maintain

the order of channel dependency. In order to maximize channel

utilization and allow more and shorter routing paths, shortcuts are

added to the two unidirectional Eulerian trails. The two

unidirectional trails with shortcuts are called adaptive trails. To

avoid deadlock, some shortcuts have to be removed or used in a

restricted way based on the channel dependencies along the

adaptive trails. However, a dependency cycle is allowed as long as

there is an escape channel for that cycle. The allowed paths

between pairs along the two adaptive trails define all legal routes.

A static routing table is maintained in each switch to carry routing

information.

The main drawback of Adaptive-trail routing is that it is

impossible to compute an Eulerian trail in some irregular

topologies, since all the switches must have even degree or

exactly two switches must have odd degree. This limited

applicability becomes important when the network dynamically

changes its topology, which is quite frequent in a LAN

environment because some links may fail or some components

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.1, August 2010

19

may be added/removed. In addition, this routing algorithm can

only be applied in networks with distributed routing.

4. SMART ROUTING
Up*/down* routing is fast and simple and guaranteed to find a

deadlock-free routing. However, it tends to concentrate traffic at

the root node, which restricts the performance. Since balancing

the traffic in an irregular topology requires a relatively expensive

solution to a multi-commodity flow problem, it seems reasonable

to use a more complex deadlock-free routing algorithm that does

not suffer from the root-node congestion problem.

The paper [19] attempting this point using Smart routing. Rather

than break the buffer cycles by arbitrarily picking a root node and

performing a search from that node, instead building an explicit

buffer dependency graph and search it for cycles. For each cycle,

algorithm break the dependency that minimizes some heuristic

cost function. The procedure terminates when the buffer

dependency graph has no cycles. The routing is represented

implicitly by the buffer dependency graph: it is the paths of

connected buffers in the buffer dependency graph that lead from

the source node to the destination node.

Thus, smart routing is a greedy technique guided by a heuristic

function. Ideally, the heuristic cost function would be the actual

topology throughput. Since computing this requires a multi-

commodity flow solution, putting this in the inner loop of the

routing search would be prohibitively costly. Instead, algorithms

use a much simpler heuristic: the average path length. A secondary

heuristic attempts to distribute the cuts among the various

switches in the topology.

The Smart routing algorithm [19] is based on a linear

programming solver to balance traffic while it tries to break the

deadlock cycles. Although the Smart routing algorithm can be

applied to both source and distributed routing, this routing

algorithm is impractical due to its high computational overhead,

especially in large networks. Smart routing balances channel

utilization assuming a uniform traffic. However, in real networks,

non-uniform traffic is commonly observed.

5. IN-TRANSIT BUFFER MECHANISM
In the In-transit Buffer mechanism [5], all the minimal paths are

allowed by absorbing the messages in those intermediate nodes of

the path where there is a forbidden transition (“down” → “up”)

according to the up*/down* routing algorithm.

Basically, this mechanism avoids routing restrictions by ejecting

packets at intermediate hosts and later re-injecting them. This

mechanism can be easily implemented in Myrinet by modifying

the network control program at the network interface card without

changing the network hardware. This mechanism was originally

proposed to provide minimal routing to up*/down*. In this

routing algorithm, ITBs are put in all the down-up transitions. The

mechanism has been extensively evaluated for both irregular [5]

and regular networks [6] under different traffic patterns, network

topologies, network sizes, and different message sizes. Overall,

this mechanism improves on the performance achieved by

up*/down*. Moreover, as network size increases, more benefits

are obtained since the up*/down* routing does not scale well.

The basic idea of the mechanism is to break cyclic dependences

with host buffering. The paths between source-destination pairs

are computed following any given rule and the corresponding

CDG is obtained. Then, the cycles in the CDG are broken by

splitting some paths into sub-paths. To do so, an intermediate host

inside the path is selected and used as an in-transit buffer (ITB); at

this host, packets are ejected from the network as if it were their

destination. The mechanism works similarly to the cut-through

switching technique. Therefore, packets are re-injected into the

network as soon as possible to reach their final destination. Notice

that the dependences between the input and output channels of the

switch are completely removed because, in the case of network

contention, packets will be completely ejected from the network at

the intermediate host. The CDG is made acyclic by repeating this

process until no cycles are found. Notice that more than one

intermediate host may be needed for a particular path [17].

 As an example [17], Fig. 3.a shows a network and the

assignment of link directions following the up*/down* rule.

Although there is a minimal path between switch 4 and switch 1

(4 → 6 → 1), it is forbidden because it uses an up link after a

down link at switch 6.

Figure 3 (a): Link direction assignment and use of the ITB

mechanism for an irregular network.

Figure 3 (b): Link direction assignment and use of the ITB

mechanism for an irregular network.

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.1, August 2010

20

However, with the ITB mechanism (see Fig. 3.b), this path is

allowed by using one host at switch 6 as an in-transit host to break

the dependence. By using ITBs, minimal routing can be

guaranteed while keeping deadlock freedom.

Although this mechanism can be applied in networks with both

source and distributed routing, it requires large enough buffers to

store the ejected packets, DMA support, processors at the NICs in

order to manage the in-transit messages, and the use of a new

message format in the network to distinguish the in-transit

messages. Moreover, it requires at least one host to be attached to

every switch in the network.

6. CONCLUSION
Several solutions are proposed to improve up*/down* routing, but

we find and discussed best solutions. The In-transit Buffer [5],

Smart routing [19] and the DFS methodology [9] increase the

number of minimal paths. But the In-transit Buffer mechanism

requires large enough buffers, DMA support and processors at

NICs. Where Smart routing balances channel utilization assuming

a uniform traffic but maximum time non-uniform traffic observed

in real networks. Therefore, DFS methodology [9], unlike other

approaches that require specific hardware support, provide a low-

cost alternative to improve the performance of the Up*/down*

routing algorithm.

In the next step we are designing a simulation environment where

we compare above approaches at different traffic patterns. Above

approaches may perform best at specific parameters but the cost

and performance are to observed at any type regular or irregular

topologies.

7. REFERENCES
[1] Horst, R.,1996, “ServerNet deadlock avoidance and

fractahedral topologies”, in Proc. of the Int. Parallel

Processing Symp. .

[2] Petrini,F. et.al, 2003, “Performance Evaluation of the

Quadrics Interconnection Network”, Journal of Cluster

Computing, pp. 125-142.

[3] Silla, F. and Duato,J., 1997,“Improving the Efficiency of

Adaptive Routing in Networks with Irregular Topology”, Int.

Conference on High Performance Computing.

[4] InfiniBandTM Trade Association, InfiniBandTM

architecture. Specification Volume 1. Release 1.0.a.

Available at http://www.infinibandta.com.

[5] Flich, J. et.al,2000, “Performance Evaluation of a New

Routing Strategy for Irregular Networks with Source

Routing”, Proc. Int’l Conf. Supercomputing.

[6] Flich, J. et.al, 2000, “Improving the Performance of Regular

Networks with Source Routing”, Proc. Int’l Conf. Parallel

Processing.

[7] Flich, J. et.al, 2000, “Combining In-Transit Buffers with

Optimized Routing Schemes to Boost the Performance of

Networks with Source Routing”, Proc. of Int. Symp. on High

Performance Computing.

[8] Sancho, J. and Robles, A.,2000, “Improving the Up*/Down*

Routing Scheme for Networks of Workstations”, in Proc. of

Euro-Par.

[9] Sancho, J. et.al,2000, “New Methodology to Compute

Deadlock-Free Routing Tables for Irregular Networks”, in

Proc. of 4thWorkshop on Communication, Architecture and

Applications for Networkbased Parallel Computing.

[10] Schroeder, M. et al.,1990, “Autonet: A high-speed, self-

configuring local area network using point-to-point links”,

SRC research report 59.

[11] Boden,N.J. et al.,1995, “Myrinet - A gigabit per second local

area network”, IEEE Micro, vol. 15.

[12] Quadrics. Available: http://www.quadrics.com.

[13] Riesen, R.et al,1999, “CPLANT”, in Proc. of the 2nd.

Extreme Linux Workshop, June 1999.

[14] Sheifert, R., 1998, “Gigabit Ethernet”, Addison-Wesley.

[15] Qiao, W. and Ni, L.M.,1996, “Adaptive routing in irregular

networks using cut-through switches,” in Proc. of the 1996

International Conference on Parallel Processing.

[16] Qian, Y. et.al, 2004, “Performance Evaluation of the Sun

Fire Link SMP Clusters”, 18th International Symposium on

High Performance Computing Systems and Applications,

HPCS 2004, pp. 145-156.

[17] Flich, J. et.al,2003, “Applying In-Transit Buffers to Boost

the Performance of Networks with Source Routing”, IEEE

Transactions On Computers, Vol. 52, No. 9.

[18] Silla,F. et.al,1997, “Efficient Adaptive Routing in Networks

of Workstations with Irregular Topology,” in Workshop on

Communications and Architectural Support for Network-

based Parallel Computing.

[19] L. Cherkasova, V. Kotov, and T. Rockicki,1996, “Fibre

Channel Fabrics: Evaluation and Design,” Proc. 29th Hawaii

Int’l Conf. System Sciences, Jan. 1996.

