International Journal of Computer Applications (0975 — 8887)
Volume 5- No.1, August 2010

Some Applications of ap-P-Open Sets

R.Devi
Principal

Kongunadu Arts and Science College
Coimbatore-641029

ABSTRACT

In this paper we introduce some new separation axioms by
utilizing the notions of ay-p-open sets and ay-preclosure

operator.

KEYWORDS

ay-p-open, sober (ay, p)-R0, D(any,p)-set, (ay, p)-Do, (o,
p)'Dl, (U'Wl p)_DZ

AMS SUBJECT CLASSIFICATION (2000):
54B05, 54C08, 54C10, 54D10.

1. INTRODUCTION

The concept of preopen sets and precontinuous functions in
topological spaces are introduced by A.S. Mashhour et al. [10].
Recently, R.Devi et al. [4] introduced the notion of ay-open
sets which are weaker than open sets. Since then, ay-open
sets have been widely used in order to introduce new spaces
and functions.

In this paper, we introduce the notion of ay-p-open sets and
ay-p-continuity in topological spaces. By utilizing these
notions we introduce some weak separation axioms. Also we
show that some basic properties of (ay, p)-Tj, (ay, p)-Dj
fori = 0,1, 2 spaces and we ofer a new class of functions
called (aw, p)-continuous functions and a new notion of the
graph of a function called an (ay, p)-closed graph and
investigate some of their fundamental properties.

2. PRELIMINARIES

Let A € X, the closure of A and the interior of A will
be denoted by cl(A) and int(A) respectively. A is regular open
if A = int(cl(A))and A is regular closed if its complement is
regular open; equivalently A is regular closed if A =
cl(int(A)), see [17].

Definition 2.1.
A subset A of a space (X, ) is called a

1. semi-open set [9] if A < cl(int(A)) and a semi-closed set
[9] ifint(cl(A)) S A,
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2. a-open set [11] if A < int(cl(int(A))) and an a-closed
set [11] if cl(int(cl(A))) < A,

3. pre-open set [10] if A < int(cl(A)) and pre closed set
[10]if cl(int(A)) € A,

4. 3-open set [16] if for each x € A, there exists a regular
open set G such thatx € G C A and

5. pre-regular p-open set [6] if A = pint(pcl(A)).

The semi-closure (resp. a-closure) of a subset A of a
space (X, t) is the intersection of all semi-closed (resp. a-
closed) sets that contain A and is denoted by scl(A) (resp.
acl(A)).

Definition 2.2.
A subset A of a space (X, t) is called a

1. a semi-generalized closed (briefly sg-closed) set [1] if
scl(A) < U whenever A < U and U is semi-open in (X,
T). The complement of sg-closed set is called sg-open
set,

2. awy-closed set [15] if scl(A) < U whenever A < U and U is
sg-open in (X, t). The complement of y-closed set is
called y-open set and

Let (X, t) be a space and let A be a subset of X. A is
called ay-closed set [4] if ycl(A) < U whenever A < U and
U is a-open set of (X, t). The complement of an awy-closed
set is called awy-open. The intersection of all ay-closed
(resp. &-closed) sets containing A is called the ay-closure
(resp. 3-closure) of A and is denoted by clgny, (A) (resp. clg

(A)).

Definition 2.3.

A subset A of a topological space (X, t) is said to be &-
preopen [10] if A < int(clg (A)). A family of all 3-preopen
sets in a topological space (X, t) is denoted by 6P O(X, t
).

Definition 2.4.
A function f : X — Y s called perfectly continuous



[12] if for each open set A C Y, fﬁl(A) is open and
closed in X.

Lemma 2.5. [7]

If A and B are pre-regular p-open sets of the space X
and Y, respectively, then A xB is a pre-regular p-open set
of X xY.

Lemma 2.6. [7] If a space is submaximal, then any
finite intersection of pre- regular p-open sets is pre-regular
p-open.

3. ay-P-OPEN SETS

3.1 Definition
A subset A of a topological space (X, t) is said to be ay-p-
open if A ¢ int(cla\&A)).

The complement of an ay-p-open set is said to be ay-p-
closed. The family of all oy-p-open (resp. oy-p-closed) sets
in a topological space (X, t) is denoted by ayPO (X, T)
(resp. ayPC(X,T)).

3.2 Definition

Let A be a subset of a topological space (X, t).
The intersection of all ay-p-closed (resp. &-preclosed) sets
containing A is called the ay- p-closure (resp. &-preclosure
[14]) of A and is denoted by pcl a\&A) (resp. pclg (A)).

3.3 Definition

Let (X, T) be a topological space. A subset U
of X is called a (ay, p)-neighbourhood of a point x € X
if there exists an ay-p-open set V such that x € V < U.

3.4 Theorem

For the ay-p-closure of subsets A, B in a
topological space (X, t), the following properties hold:

(1) A is ay-p-closed in (X, t) if and only if A = pcl
(2) If AcB, then pcl 0L\&A) c pel a\JB)'
3) pcl (A) is ay-p-closed, that is pcl (A) = pcl
[CAND o ANV 4
(pcl (A)) and
s ongs
4) x e pcl a\p('A) ifand only if ArV # ¢ for every V e
ayP O(X, t) containing X.
Proof

It is obvious

3.5 Theorem

For a family {A;.peA} of subsets a topological
space (X, t), the following properties hold:
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(1) pcl a\i,AB:BEA}C ~{pcl OL\&AB)ZBEA}
(2) pcl a\&AB;BeA} >u{pcl a\&AB):BEA}
Proof.

(1) Since Npea Ap cABfOV each g ¢ A, by Theorem

3.4 we have pcION{(mBEA Ag)c pCIa\P(AB) for
eachgc o and hence pclomf(mBeA A-

5) S pea (PCla\P(AB)).
(2) Since Agcup., Ap for each peas by Theorem

3.4 we have pda\JAB)C DCION!(uBeA Ap) for

each BeA and hence

UBeApda\,(JAB)C

3.6 Theorem

Every ay-p-open set is preopen.
Proof

It follows from the Definitions.

The converse of the above Theorem need not be true
by the following Example.

3.7 Example

Let X = {a,b,c} and ©v= {X, ¢,{a,b}}. Here {a,c} is
not awy-p- open however it is preopen, since the oy-p-open
sets are X, ¢, {a}, {b}, {a, b} and preopen sets are X, o,
{a}. {b}.{a,b}. {a,c} {b.c}.

3.8 Theorem
(1) Every preopen set is 5-preopen [3].
(2) Every ay-p-open is §-preopen.
Proof.
(2) It follows from (1) and Theorem 3.6.

3.9 Definition

A subset A of a topological space (X, @ is called a
Doty ,p)- set (resp. Dp-set [2,5], D(g,p)-set [3]) if there
are two U, V eayP O(X, r) (resp. P O(X, r), 6P O(X, r))
such that U X and A=U-V.

It is true that every owy-p-open (resp. preopen) set
U different from X is a (oys,p) -set (resp. Dp -set) if A=

Uand V = o.

3.10 Definition
A topological space (X, g is said to be

(1) (ay, p)-Do (resp. pre-Dg [2,5], (3,p)-Do [3]) if for any
distinct pair of points x and y of X there exist a



Doy, p)-set (resp.  Dp -set, D¢ p)-set) of X
containing x but noty or a D(ony,p)-set (resp. Dp-
set, D(5,p)-set) of X containing y but not x.

(2) (ay, p)-Da (resp. pre-Dy [25], (3,p)-D1 [3])if for any
distinct pair of points x and y of X there exist a
D(ony,p)-set (resp. Dp -set, D(gyp)—set) of X
containing x but not y and a Doy, p)-set (resp. Dp
-set, D(g,,p)-set) of X containing y but not x.

() (ay, p)-D2  (resp. pre-Dp [2,5], (5,p)-D2 [3]) if for
any distinct pair of points x and y of X there exists
disjoint D(ony,p)-set (resp.  Dp-set, D(g p)-set) G
and E of X containing x and vy, respectively.

3.11 Definition
A topological space (X, ¥ is said to be

(1) (ay, p)-To (resp. pre-To [8,13], (5, p)-To [3])if for
any distinct pair of points x and y of X there exist
an ay-p-open (resp. preopen, 3-preopen) set U in X
containing x but not y or an ay-p-open (resp.
preopen, 3-open) set V in X containing y but not x.

() (ay, p)-Ty (resp. pre-Ty [8,13], (5, p)-T1 [3])if for
any distinct pair of points x and y of X there exist
an ay-p-open (resp. preopen, 3-preopen) set U in X
containing X but not y and an ay-p-open (resp.
preopen, &-preopen) set V in X containing y but not
X.

() (ay, p)-To (resp. pre-T2 [8,13], (3, p)-T2 [3]) if for
any distinct pair of points x and y of X there exist
ay-p-open (resp. preopen, 3-preopen) sets U and V
in X containing x and vy, respectively, such that U »
V =o.

3.12 Remark
(i) I (X, s (ay, p)-Tj, then it is (ay, p)-Tj—1,i =1,2.
(i) If (X, g is (o, p)-Tj, then it is (ay, p)-Dj,i =0,1,2.
(iii) If (X, g is (ay, p)-Dj, then it is (ay, p)-Dj—1,i = 1,
2.
(iv) If (X, ¢ is (ay, p)-Dj, then it is pre-Tj,i =0,1,2.

By Remark 3.12 and [2, Remark 3.1], we have the
following diagram.

(oo, p)-To—(ay, p)-Do—pre-T2—(3, p)-T2—(3, p)-D2

) ! ! ! !
(ooy, p)-T1—(ay, p)-D1—pre-T1—(3, p)-T2—(3, p)-D2
l ! ! ! !

(oy, p)-To—(ay, p)-Do—pre-To—(3, p)-T2—(3, p)-D2

3.13 Theorem
A topological space (X, ¢ is (ay,p)-D1 ifand
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only if it is (ay, p)-D2.
Proof
Sufficiency. This follows from Remark 3.12.

Necessity. Suppose X is a (ay, p)-D1. Then for each
distinct pair x,y € X, we have D(cys,p)-sets G1 and G2
such that x €G1,y «81;y € G2, x &G2. LetGy =
U1/U2, Go =U3z/Uyg, where U1,Up,U3,Uq € ayP O(X, t
). From x G2 we have either x «=tJ3 or x € U3 and x e
Ug.

We discuss the two cases separately.

(1) x <H3. From y <&7 we have two sub cases:

(@ y <1. Fom x U1/U2 we have x U1/(Up_, U3)
and fromy Us3z/Ug we havey  U3/(U1 _ Ug). It is easy to
see that (U1/(U2 ( U3))n(U3/(U1  Ug)) = .

(b)) y Ug andy Up. We have x Ujp/U2,y U2 and
(U1/U2 )nU2 =0. (2) x U3z and x Ug. We have y
U3/Ug, x Ug and (U3/Ug )nUg =o.

From the discussion above we know that the space X is (o,
p)-D2.

3.14 Definition

A point x X which has only X as the (ay, p)-
neighbourhood is called a (o, p)-neat point.

3.15 Theorem

If a topological spaces (X, t) is (ay, p)-D1, then it has
no (o, p)-neat point.

Proof.
Since (X, 1) is (ay, p)-D1, so each point x of X is
contained in a D(gys,p)-set O = U/V and thus in U. By

definition U # X. This implies that X is not a (ay, p)-neat
point.

3.16 Definition

A topological space (X, t) is (ay, p)-symmetric if x and
yin X, x  pclopny ({y}) implies y - pclogys ({X3).

3.17 Theorem

For a topological space (X, 1), the following properties hold.
(1) If {xF is ay-p-closed for each x X, then (X, 1) is
(ay, p)-T1.

(2) Every (ay, p)-T1 space is (ay, p)-symmetric.
Proof Suppose {p} is ay-p-closed for every p X. Let X,y
X with x #Zy. Nowx £y implies y X/{x}. Hence X/{x} is
an oy-p-open set contained in y but not containing X.
Similarly X/{y} is an oay-p-open set contained in x but not
containing y. Accordingly X is a (aw, p)-T1 space.



(2) Suppose that y = pclgny, ({X}). Then, since x # 'y, there
exists an ay-p-open set U containing x such that y U and
hence x pclgny ({y}). This shows that X pelonys (fy3)
implies y pelonys (X}).  Therefore (X, r) is (ay, p)-
symmetric.

3.18 Definition

A function f: (X, t) — (Y,0) is said to be ay-pre continuous
if for each x ee X and each ay-p-open set V containing f(x),
there is an ay-p-open set U in X containing x such that f(U)
cV.

3.19 Theorem
If f: (X, 1) — (Y,0) is an oy-pre continuous surjective
function and E is a D(ON,,p)-set in Y, then the inverse
image f_l(E) is @ D(ony,p)-set in X.

Proof.
Let E be a D(ony,p) set in Y. Then there are

ay-p-open sets Up and Uzin Y such that E = U1/Up and
Ui 2« Y. By the ay-precontinuity of f, f_l(Ul) and f
_1(U2) are ay-p-open in X. Since Uy = Y, we have f
“Lu1) 2 X, Hence f7E) = £ uprFuy) isa
D(aw’p)-set.

3.20 Theorem

If (Y,0) is (ay, p)-D1 and T : (X, ) — (Y,0) is an
oy - pre continuous bijection, then (X, r) is (ay, p)-D1 .

Proof

Suppose that Y isa (ay, p)-D1 space. Let x and y be any

pair of distinct points in X. Since F is injective and Y is (ay,
p)-D1, there exist D(gys,p)-sets Gx and Gy of Y

containing f(x) and f(y), respectively, such that f(y) Gy

and f(x) Gy . By Theorem 3.19, f_l(GX) and f_l(Gy ) are
D(onys,p)-sets in X containing x and y, respectively, such

thaty f 1(Gy) and x F1(Gy). This implies that X is
a (ay, p)-D1 space.

3.21 Theorem

A topological space (X, t) is (ay, p)-D1 if and only if for
each pair of distinct points X,y € X, there exists an ay-pre
continuous surjective function f : (X, t) — (Y, o) such that
f(x) and f(y) are distinct, where (Y, o) is a (ay, p)-D1
space.

Proof.

Necessity. For every pair of distinct points of X, it suffices
to take the identity function on X.
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Sufficiency. Let x and y be any pair of distinct points in XBy
hypothesis there exists an ay-pre continuous,  surjective
function f of a space X onto (ay, p)-D1 space Y such that

(x) # f(y). By Theorem 3.13, there exist disjoint D(ony,p) -
sets Gx and Gy inY such that f(x) € Gx and f(y) € Gy.

Since f is owy-pre continuous angd surjective, by Theorem 3.20,

f_l(GX) and f_l(Gy) are disjoint D(cpy,p) -sets in X
containing x and Yy, respectively, hence by Theorem 3.13, X
is a (ay, p)-D1 space.

4. SOBER (ay, P)-Rg SPACES

4.1. Definition
Let Abe a subset of a topological space (X, ¢ The ay-
prekernel of A, denoted by pkeronys (A) is defined to be the

set pker gy (A)=n{Ue ayPO(X,1) : Ac U}.

4.2 Lemma
Let (X, & be a topological space and x &X. Then PKerauys (A)

={x x: Pelony ((XH)AZ @ }-

Proof

Let X € pkerony, (A) and suppose pCionys ({X}) \ A = ¢. Hence x ¢
X/lpcleny ({X}) which is an oty -p-open set containing A. This is
absurd, since X e pkerany (A). Consequently, pclon, (X3) VA F
. Next, let x be such that pcle, ({X}) \ A # ¢ and suppose that x
¢ pkereny, (A). Then, there exists an oy -p-open set D containing
Aand x ¢ D. Let ye pcl ay({X}) \ A. Hence, D is an (o, p)-
neighbourhood of y which does not containing x. By this
contradiction x € pker ,,, (A) and the claim is shown.

4.3 Definition
A topological space (X, t) is said to be sober (ay, p)-Rg
(resp. sober (3,p)-Ro  [3]) if mxeX pelonys (EX3) = ¢ (resp.
nxex pcls ({x3) = ¢).
4.4, Theorem
Every sober (ay, p)-Ro
space.

space is sober (3, p)-Rg

Proof.
Let (X, =) be a sober (ay, p)-Rp space, then nxeXx
pclonys (X3) = . There- fore, nxex pels ({x3) = o.

4.5. Theorem

A topological space (X, 9 is sober (ay, p)-Rg
only if pker gy, ({X}) # X for every x e X.

Proof.

Suppose that the space (X, =) be sober (ay, p)-Rp.
Assume that there is a point y in X such that pkergpy,
({yh = X. Let x be any point of X. Then xe V for every
ay-p-open set V containing y and hence y e pclaw {xD
for any x € X. This implies that y € n ., pclony (XD).

if and

9



But this is a contradiction. Now

assume that pkergny, ({x}) = X for every x ¢ X. |f
there exists a point of X. This implies that the space X is
the unique ay-preopen set containing y. Hence pkera\l,

{y} # X which is a contradiction. Therefore (X, ¥ is
sober (ay, p)-Rp space.

4.6. Definition

A function T : (X, § — (Y,o0) is called pre ay-p-closed
if the image of every ay-p-closed subset of X is ay-p-closed
inY.

4.7. Theorem

If £ : (X, 9 — (Y,o) is an injective pre ay-p-closed
function and X is sober (ay, p)-Rg, then Y is sober (v,
P)-Ro.

Proof.

Since X is sober (ay, p)-Ro, ~xeX PClony (X} = o.
Since T is a pre ay-p-closed injection, we have

¢ =f(rxeX Pelony (XD)
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(iii) For each subset A of X, f(ayclp (A)) c cl(f(A)),

(iv) For each subset B of Y, aycly (F _1(B)) cf
ENCIC)

Proof.
(i) < (ii): Obvious.

(iii) & (iv): Let B be any subset of Y. Then by (iii), we
have f (aycly (F 1(B)) < cI(f(F ~1(B)) c cI(B). This
implies ayclp (F1®)) < f (F(aycly F1@)) c
BRCIC)

Conversely, let B = f(A) where A is a subset of X.

Then, by (iv), we have, ayclp (A) € ayclp (f_l(f(A))) cf

L @), Thus, Flavelp (A) c dFA)). (i) = (iv):
Let B c Y. Since f L(cI(B)) is (ay, p)-closed and f
1) c £ L@®). then ayely (F1(®) < F1@(®)).

=nxeX f(pcl oy (1X1))
Srxex Peloys XD
2nxeX Pelony AYD.

Therefore, Y is sober (ay, p)-Ro. (iv) = (ii): Let K Y beaclosed set. By (iv), ayclp (F (K

) cf i) = F 1K) Thus, £ LK) is (ay, p)-
closed.

4.8 Theorem

If a topological space X is sober (ay, p)-Rg and Y is any
topo logical space, then the product X X Y is sober (ay, p)-
Ro.
Proof.
We show that ~ (x y)eX xY PClony (£(X,¥)}) = ¢. We have
N (x,y)eX xY Plony {(x,¥)1)
=N (x,y)eX XY (Plony {X}) x pclony Y1)
= nxeX pclaw({x})x ~yey pclonys YD)
— ¢XY

- (p.
5. (ay, p)-CONTINUOUS
FUNCTIONS AND (ay, p)-CLOSED
GRAPHS

5.1. Definition
A function f: X — Y issaid to be (ay, p)-continuous if for

every open set V of Y, f_l(V) is (ay, p)-open in X.

5.2. Theorem

The following are equivalent for a function f: X — Y:
(i) fis (ay,p)-continuous,
(ii) The inverse image of every closed set in Y is (ay, p)-
closed in X,

Recall that for a function £ : X — Y, the subset {(x,f
(X)) : x e X} of the product space X X Y is called the
graph of f and is denoted by G(f).

53 Definition

For a function f: X — Y, the graph G(f) ={(x,f(X)) : x =
X} is said to b =(ay, p)-closed if for each (x,y) =X XY
— G(f), there exist U <=ayPO(X, x) and an open set V of Y
containing y such that (U XV)G(f) = o.

5.4. Lemma

Let f : X — Y be a function. Then the graph G(f) is
(aw, p)- closed in X XY if and only if for each point (X, y)
=X XY — G(f), there exist a (ay, p)-open set U and an
open set V containing X and vy, respectively, such that f(U)
NV =o.

Proof.
It follows readily from the above definition.

5.5. Theorem
If f : X — Y isan injective function with the (avy, p)-
closed graph, then X is (ay, p)-T1.

Proof.

Let x and y be two distinct points of X. Then f(x) # f(y).
Thus there exist an (aw, p)-open set U and an open set V
containing x and f(y), respectively, such that f(U) nV = ¢.
Therefore y &) and it follows that X is (ay, p)-T1.

10



Recall that a space X is said to be Tp if for each pair of

distinct points X and y of X, there exist an open set U
containing X but not y and an open set V containing y but
not x.

5.6. Theorem
If f: X — Y s an surjective function with the (o, p)-
closed graph, then Y is Tq.

Proof.

Let y; and yp be two distinct points of Y. Since f is
surjective, there exist a point x in X such that f(x) = y2.
Therefore (X, y1)g G(F). By lemma5.4., there exist an (o,
p)-open set U and an open set V containing x and yi,
respectively, such that f(U) ~ V = ¢. It followsthat yp ¢ V.
Hence Y is Tq.

5.7. Definition
A function f : X — Y is said to be (ay, p)-W-continuous
if for each x ee X and each open set V of Y containing f(x),
there exists an (ay, p)- open set U in X containing x such
that f(U) ccl(V).

5.8. Theorem

If £ : X — Y is (ay, p)-W -continuous and Y is
Hausdorff, then G(f) is (ay, p)-closed.

Proof.

Suppose that (x, y) ¢ G(f), then f(x) #y. By the fact that
Y is Hausdorff, there exist open sets W and V such that f
X) e W,ye Vand V —~W = ¢. It follows that cl(W) —
V = ¢. Since T is (ay, p)-W-continuous, there exists U
e ayPO(X, x) such that f(U) c cl(W). Hence, we have f
(U) —V = ¢. This means that G(f) is (ay, p)-closed.

5.9. Corollary

If f : X - Y is (ay, p)-W -continuous and Y is
Hausdorff, then G(f) is (aw, p)-closed in X X Y.

5.10. Definition

A subset A of a space X is said to be (oy, p)-compact
relative to X if every cover of A by (ay, p)-open sets of X
has a finite subcover.

5.11. Theorem

Let f : X — Y have a (ay, p)-closed graph. If K is
(0w, p)- compact relative to X, then f(K) is closed in Y.
Proof.

Suppose that y ¢ f(K). For each x € K, f(x) =y. By
lemma 5.4., there exist Uy < ayP O(X, x) and an open
neighbourhood Vyx of y such that f(Ux) n Vx = ¢. The
family {Ux :x ¢ K} is a cover of K by (awy, p)-open sets of
X and there exists a fnite subset Ko of K such that K
cufUx X ¢ Ko} Put V= ~{Vx :x ¢ Ko} Then V is
an open neighbourhood of y and f(K) ~V = ¢. This means
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that f(K) is closed in Y.

5.12. Theorem

If f: X — Y has an (ay, p)-closed graph G(f) and g :Y
— Zis a perfectly continuous function, then the set {(x,y)
:F(X) = g(y)} is (ay, p)- closed in X X Y.

Proof.

Let A ={(x,y): f(x) =g()}and (x,y) ¢ (X XVY) -
G(f). Since fhas an (aw,p)-closed graph G(f), there exist
an (ay, p)-open set U and an open set V containing x and
g(y), respectively, such that f(U) ~nV = ¢. This implies
that there exists a pre-regular p-open set N containing x
such that N c U and £(N)~nV = ¢. Since g is a perfectly
continuous function, then there exist an open and closed set
G containig y such that g(G) ¢ V. We have f(U) n g(G)
= ¢. This implies that (N X G) ~ A = ¢. Since N X G is
pre-regular p-open, then (X, y) ¢ a\yclp (A). Thus, E is
(o, p)-closed in X X Y.

5.13. Corollary

If f: X — Z isan (ay, p)-continuous function and g:VY —
Z is a perfectly continuous function and Z is Hausdorff, then
the set {(x,y) : £(x) =g(y)} is (ay, p)-closed in X x Y
Proof.

It follows from Corollary 5.9 and Theorem 5.12.

5.14. Theorem

If f: X — Y is an (ay, p)-continuous function and Y is
Hausdorff, then the set {(x,y) € X XY : f(x) = f(y)}is (ay,
p)-closed in X X X.

Proof.

Let {(x,y) : F(x) = f(y)} and let {(x,y) e (X XY)—-A} It
follows tat f(x) # f(y). Since Y is Hausdorff, there exist open
set U and V containing f(x) and f(y), respectively, such that
U~V =g¢. Since f is (ay, p)-continuous, there exist pre-
regular p-open set in X X X containing (X, y). Hence, A is
(ay, p)-closed in X X X.

5.15. Definition
A function f : X — Y s called contra (ay, p)-open if
the image of every (awy, p)-open set in X is closed in Y.

5.16. Theorem

If f:X — Y isa contra (oy, p)-open funcion such that
the inverse image of each opoint of Y is (o, p)-closed, then
f has an (ay, p)-closed graph G(f).

Proof.
Let (x, y) € X —G(F). We have xg fL(y). Since ¥ L(y)
is (ay, p)-closed, there exists a pre-regular p-open set A

containing x such that A mf_l(y) = ¢. Since, T is
contra (ay, p)-open, then f(A) is closed. This implies
that there exist an open set B in Y containing y such
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that f(A) n B = ¢. Hence, f has an (ay, p)-closed
graph G(f).

5.17. Theorem

If f: X — Y has an (ay, p)-closed graph G(f), then
foreach x eX, {f(X)} = rreAc oy P O(X,1) cI(F(A)).
Proof.

Suppose that y # f(x) and y enxeAconyP O(X.t)
cl(fF(A)). Then y <c|(f(A) for each x € A e ayP
O(X, r). This implies that for each open set B containing
y, B ~nf(A) # ¢. Since (X, y) ¢ G(f) and G(f) is an (av,
p)- closed graph, this is a contradiction.

5.18. Definition
A function f : X — Y s called an (ay, p)-open if the
image of every (ay, p)-open set in X is open in Y.

5.19. Theorem

If f : X — Y is a surjective (ay, p)-open function with
an(ay, p)-closed graph G(F), then Y is T2..

Proof.

Let y; and yp be any two distinct points of Y. Since
f is surjective f(x) =yp for some x € X and (X, y2) € (X
X Y) — G(F). This implies that there exist an (ay, p)-open
set A of X and an open set B of Y such that (x, y2) € (AXB)
and (A X B) nG(f) = 9. We have f(A) nB = ¢. Since f
is (ay, p)-open, then f(A) is open such that f(x) =y e f
(A). Thus, Y is Top.

5.20 Theorem
If f: X — Y isan (ay, p)-continuous injective function and
Y is T2, then X is (ay, p)-T2.

Proof.
Let x and y in X be any pair of distinct points, then
there exist disjoint open sets A and B in Y such that f(x)

1
(A
and f_l(B) are (ay, p)-open in X containing x and y

respectively, we have f_l(A) n f_l(B) = ¢. Thus, X is
((Wx p)_TZ

e A and f(y) eB. Since T is (ay, p)-continuous,

5.21. Theorem

If f,g : X — Y are (ay, p)-continuous functions, X is
sub- maximal and Y is Hausdorff, then the set {x X : f
(X) =g(x)}is (ay, p)-closed in X.

Proof.

Let A={x X : f(x) =g(x)}. Take x e X —A. We have f
(X) # g(x). Since Y is Hausdorff, then there exist open sets
U and V in Y containing f(x) and g(x), respectively, such

that U~ = ¢. Since f and g are (aoy, p)-continuous, then f
_1(U) and g_l(V) are (o, p)-open in X with x ef_l(U)
and x ¢ g7 (V). Then there exist pre-regular p-open sets
G and H such that x €eG C f_l(U) and X eH C
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g_l(V). Take K = G ~nH . By lemma 2.6, K is pre-
regular p-open. Thus, f(K) ng(K) = ¢ and hence x ¢
a\yclp (A). This shows that A is (ay, p)-closed in X.
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