Some Applications of αψ-P-Open Sets

R.Devi

Principal Kongunadu Arts and Science College Coimbatore-641029

ABSTRACT

In this paper we introduce some new separation axioms by utilizing the notions of $\alpha\psi$ -p-open sets and $\alpha\psi$ -preclosure

operator.

KEYWORDS

 $\alpha\psi$ -p-open, sober ($\alpha\psi$, p)-R₀, D_($\alpha\psi$,p)-set, ($\alpha\psi$, p)-D₀, ($\alpha\psi$, p)-D₁, ($\alpha\psi$, p)-D₂.

AMS SUBJECT CLASSIFICATION (2000): 54B05, 54C08, 54C10, 54D10.

, , , ,

1. INTRODUCTION

The concept of preopen sets and precontinuous functions in topological spaces are introduced by A.S. Mashhour et al. [10]. Recently, R.Devi et al. [4] introduced the notion of $\alpha\psi$ -open sets which are weaker than open sets. Since then, $\alpha\psi$ -open sets have been widely used in order to introduce new spaces and functions.

In this paper, we introduce the notion of $\alpha\psi$ -p-open sets and $\alpha\psi$ -p-continuity in topological spaces. By utilizing these notions we introduce some weak separation axioms. Also we show that some basic properties of $(\alpha\psi,\,p)$ -T_i, $(\alpha\psi,\,p)$ -D_i for i=0,1,2 spaces and we ofer a new class of functions called $(\alpha\psi,\,p)$ -continuous functions and a new notion of the graph of a function called an $(\alpha\psi,\,p)$ -closed graph and investigate some of their fundamental properties.

2. PRELIMINARIES

Let $A \subseteq X$, the closure of A and the interior of A will be denoted by cl(A) and int(A) respectively. A is regular open if A = int(cl(A)) and A is regular closed if its complement is regular open; equivalently A is regular closed if A = cl(int(A)), see [17].

Definition 2.1.

A subset A of a space (X, τ) is called a

1. semi-open set [9] if $A \subseteq cl(int(A))$ and a semi-closed set [9] if $int(cl(A)) \subseteq A$,

M.Parimala

Lecturer, Department of Mathematics Bannari Amman Institute of Technology Sathyamangalam-638401

2. α -open set [11] if $A \subseteq int(cl(int(A)))$ and an α -closed set [11] if $cl(int(cl(A))) \subseteq A$,

3. pre-open set [10] if $A \subseteq int(cl(A))$ and pre closed set [10] if $cl(int(A)) \subseteq A$,

4. $\delta\text{-open set [16] if for each }x\in A,$ there exists a regular open set G such that $x\in G\subset A$ and

5. pre-regular p-open set [6] if A = pint(pcl(A)).

The semi-closure (resp. α -closure) of a subset A of a space (X, τ) is the intersection of all semi-closed (resp. α -closed) sets that contain A and is denoted by scl(A) (resp. α cl(A)).

Definition 2.2.

A subset A of a space (X, τ) is called a

- 1. a semi-generalized closed (briefly sg-closed) set [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ). The complement of sg-closed set is called sg-open set,
- 2. a ψ -closed set [15] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ). The complement of ψ -closed set is called ψ -open set and

Let (X, τ) be a space and let A be a subset of X. A is called $\alpha\psi$ -closed set [4] if ψ cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is α -open set of (X, τ) . The complement of an $\alpha\psi$ -closed set is called $\alpha\psi$ -open. The intersection of all $\alpha\psi$ -closed (resp. δ -closed) sets containing A is called the $\alpha\psi$ -closure (resp. δ -closure) of A and is denoted by cl $\alpha\psi$ (A) (resp. cl δ (A)).

Definition 2.3.

A subset A of a topological space (X, τ) is said to be δ -preopen [10] if A \subseteq int(cl $_{\delta}$ (A)). A family of all δ -preopen sets in a topological space (X, τ) is denoted by δ PO(X, τ).

Definition 2.4.

A function $f : X \rightarrow Y$ is called perfectly continuous

[12] if for each open set $A \subset Y$, $f^{-1}(A)$ is open and closed in X.

Lemma 2.5. [7]

If A and B are pre-regular p-open sets of the space X and Y, respectively, then $A \times B$ is a pre-regular p-open set of $X \times Y$.

Lemma 2.6. [7] If a space is submaximal, then any finite intersection of pre- regular p-open sets is pre-regular p-open.

3. αψ-P-OPEN SETS

3.1 Definition

A subset A of a topological space (X, τ) is said to be $\alpha \psi$ -popen if $A \subseteq int(cl_{\alpha \cup \varphi}(A))$.

The complement of an $\alpha\psi$ -p-open set is said to be $\alpha\psi$ -pclosed. The family of all $\alpha\psi$ -p-open (resp. $\alpha\psi$ -p-closed) sets in a topological space (X, τ) is denoted by $\alpha\psi$ PO (X, τ) (resp. $\alpha\psi$ PC(X, τ)).

3.2 Definition

Let A be a subset of a topological space (X, τ) . The intersection of all $\alpha\psi$ -p-closed (resp. δ -preclosed) sets containing A is called the $\alpha\psi$ - p-closure (resp. δ -preclosure [14]) of A and is denoted by pcl $\alpha (A)$ (resp. pcl $_{\delta}(A)$).

3.3 Definition

Let (X, τ) be a topological space. A subset U of X is called a $(\alpha \psi, p)$ -neighbourhood of a point $x \in X$ if there exists an $\alpha \psi$ -p-open set V such that $x \in V \subseteq U$.

3.4 Theorem

For the $\alpha \psi$ -p-closure of subsets A, B in a topological space (X, τ), the following properties hold:

(1) A is $\alpha \psi$ -p-closed in (X, τ) if and only if A = pcl $\alpha \psi$ (A),

(2) If $A \subset B$, then pcl $\alpha (A) \subset pcl \alpha (B)$,

(3) pcl (A) is $\alpha \psi$ -p-closed, that is pcl (A) = pcl(pcl (A)) and

(4) $x \in \text{pcl}_{\alpha \cup V}(A)$ if and only if $A \cap V \neq \varphi$ for every $V \in \alpha \Psi P O(X, \tau)$ containing x.

Proof

It is obvious

3.5 Theorem

For a family $\{A_{\beta}; \beta \in \Delta\}$ of subsets a topological space (X, τ) , the following properties hold:

(1) pcl
$$_{\alpha \lambda}$$
 { A_{β} : $\beta \in \Delta$ } $\subset \cap$ { pcl $_{\alpha \lambda}$ (A_{β}) : $\beta \in \Delta$ }

(2) pcl
$$_{\alpha \downarrow \downarrow} \{ A_{\beta}; \beta \in \Delta \} \supset (pcl _{\alpha \downarrow \downarrow} (A_{\beta}); \beta \in \Delta)$$

- Proof.
 - (1) Since $\bigcap_{\beta \in \Delta} A_{\beta} \subset A_{\beta}$ for each $\beta \in \Delta$, by Theorem 3.4 we have pcl $\bigcap_{\alpha \leftarrow \beta \in \Delta} A_{\beta} \subset pcl_{\alpha \leftarrow \beta \in \Delta} (A_{\beta})$ for each $\beta \in \Delta$ and hence $pcl_{\alpha \leftarrow \beta \in \Delta} A_{\beta}$.
 - (2) Since $A_{\beta} \subset \bigcup_{\beta \in \Delta} A_{\beta}$ for each $\beta \in \Delta$, by Theorem 3.4 we have pcl $A_{\beta} \subset pcl \cup_{\beta \in \Delta} A_{\beta}$ for each $\beta \in \Delta$ and hence $\bigcup_{\beta \in \Delta} pcl (A_{\beta}) \subset pcl (A_{\beta}) \subset pcl (A_{\beta}) \subset pcl (A_{\beta})$.

3.6 Theorem

Every $\alpha \psi$ -p-open set is preopen.

Proof

It follows from the Definitions.

The converse of the above Theorem need not be true by the following Example.

3.7 Example

Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$. Here $\{a, c\}$ is not $\alpha \psi$ -p- open however it is preopen, since the $\alpha \psi$ -p-open sets are X, ϕ , $\{a\}$, $\{b\}$, $\{a, b\}$ and preopen sets are X, ϕ , $\{a\}$, $\{b\}$, $\{a, c\}$, $\{b, c\}$.

3.8 Theorem

(1) Every preopen set is δ -preopen [3].

(2) Every $\alpha \psi$ -p-open is δ -preopen.

Proof.

(2) It follows from (1) and Theorem 3.6.

3.9 Definition

A subset A of a topological space (X, τ) is called a $D_{(\alpha \Psi, p)}$ - set (resp. D_p -set [2,5], $D_{(\delta, p)}$ -set [3]) if there are two U, $V \in \alpha \Psi P O(X, r)$ (resp. P O(X, r), $\delta P O(X, r)$) such that $U \neq X$ and A = U - V.

It is true that every $\alpha\psi$ -p-open (resp. preopen) set U different from X is a $(\alpha\psi,p)$ -set (resp. D_p -set) if A = U and $V = \varphi$.

3.10 Definition

A topological space (X, $\neg p$ is said to be

(1) $(\alpha \psi, p)$ -D₀ (resp. pre-D₀ [2,5], (δ, p) -D₀ [3]) if for any distinct pair of points x and y of X there exist a

 $D_{(\alpha\psi,p)}$ -set (resp. D_p -set, $D_{(\delta,p)}$ -set) of X containing x but not y or a $D_{(\alpha\psi,p)}$ -set (resp. D_p -set, $D_{(\delta,p)}$ -set) of X containing y but not x.

- (2) $(\alpha \psi, p)$ -D₁ (resp. pre-D₁ [2,5], (δ, p) -D₁ [3]) if for any distinct pair of points x and y of X there exist a $D_{(\alpha \psi, p)}$ -set (resp. D_p -set, $D_{(\delta, p)}$ -set) of X containing x but not y and a $D_{(\alpha \psi, p)}$ -set (resp. D_p -set, $D_{(\delta, p)}$ -set) of X containing y but not x.
- (αψ, p)-D₂ (resp. pre-D₂ [2,5], (δ, p)-D₂ [3]) if for any distinct pair of points x and y of X there exists disjoint D_(αψ,p)-set (resp. D_p-set, D_(δ,p)-set) G and E of X containing x and y, respectively.

3.11 Definition

A topological space (X, r is said to be

- (αψ, p)-T₀ (resp. pre-T₀ [8,13], (δ, p)-T₀ [3]) if for any distinct pair of points x and y of X there exist an αψ-p-open (resp. preopen, δ-preopen) set U in X containing x but not y or an αψ-p-open (resp. preopen, δ-open) set V in X containing y but not x.
- (2) (αψ, p)-T₁ (resp. pre-T₁ [8,13], (δ, p)-T₁ [3]) if for any distinct pair of points x and y of X there exist an αψ-p-open (resp. preopen, δ-preopen) set U in X containing x but not y and an αψ-p-open (resp. preopen, δ-preopen) set V in X containing y but not x.
- (3) (αψ, p)-T₂ (resp. pre-T₂ [8,13], (δ, p)-T₂ [3]) if for any distinct pair of points x and y of X there exist αψ-p-open (resp. preopen, δ-preopen) sets U and V in X containing x and y, respectively, such that U ∩ V = φ.

3.12 Remark

- (i) If $(X, \neg p)$ is $(\alpha \psi, p)$ -T_i, then it is $(\alpha \psi, p)$ -T_{i-1}, i = 1, 2.
- (ii) If (X, \mathbf{r}) is $(\alpha \psi, p)$ -T_i, then it is $(\alpha \psi, p)$ -D_i, i = 0, 1, 2.
- (iii) If (X, \overrightarrow{v} is $(\alpha \psi, p)$ -D_i, then it is $(\alpha \psi, p)$ -D_{i-1}, i = 1,
- (iv) If (X, \mathbf{r}) is $(\alpha \psi, p)$ -D_i, then it is pre-T_i, i = 0, 1, 2.

By Remark 3.12 and [2, Remark 3.1], we have the following diagram.

$$\begin{array}{cccc} (\alpha\psi, p)\text{-}T_2 \rightarrow (\alpha\psi, p)\text{-}D_2 \rightarrow \text{pre-}T_2 \rightarrow (\delta, p)\text{-}T_2 \rightarrow (\delta, p)\text{-}D_2 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ (\alpha\psi, p)\text{-}T_1 \rightarrow (\alpha\psi, p)\text{-}D_1 \rightarrow \text{pre-}T_1 \rightarrow (\delta, p)\text{-}T_2 \rightarrow (\delta, p)\text{-}D_2 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ (\alpha\psi, p)\text{-}T_0 \rightarrow (\alpha\psi, p)\text{-}D_0 \rightarrow \text{pre-}T_0 \rightarrow (\delta, p)\text{-}T_2 \rightarrow (\delta, p)\text{-}D_2 \end{array}$$

3.13 Theorem

A topological space (X, τ) is $(\alpha \psi, p)$ -D₁ if and

only if it is $(\alpha \psi, p)$ -D₂.

Proof

Sufficiency. This follows from Remark 3.12.

Necessity. Suppose X is a $(\alpha\psi, p)$ -D₁. Then for each distinct pair $x, y \in X$, we have $D_{(\alpha\psi,p)}$ -sets G_1 and G_2 such that $x \in G_1$, $y \notin G_2$, $x \notin G_2$. Let $G_1 = U_1/U_2$, $G_2 = U_3/U_4$, where $U_1, U_2, U_3, U_4 \in \alpha\psi P O(X, \tau)$. From x G_2 we have either x $\notin U_3$ or $x \in U_3$ and $x \in U_4$.

We discuss the two cases separately.

(1) x $\neq = 3$. From y $\neq = 1$ we have two sub cases:

(a) $y \notin \mathbb{H}_1$. From x U_1/U_2 we have x $U_1/(U_2 \cup U_3)$ and from y U_3/U_4 we have y $U_3/(U_1 \cup U_4)$. It is easy to see that $(U_1/(U_2 \cup U_3)) \cap (U_3/(U_1 \cup U_4)) = \varphi$.

(b) y U_1 and y U_2 . We have x U_1/U_2 , y U_2 and $(U_1/U_2) \cap U_2 = \varphi$. (2) x U_3 and x U_4 . We have y U_3/U_4 , x U_4 and $(U_3/U_4) \cap U_4 = \varphi$.

From the discussion above we know that the space X is $(\alpha \psi, p)$ -D₂.

3.14 Definition

A point x X which has only X as the $(\alpha \psi, p)$ -neighbourhood is called a $(\alpha \psi, p)$ -neat point.

3.15 Theorem

If a topological spaces (X, τ) is $(\alpha \psi, p)$ -D₁, then it has no $(\alpha \psi, p)$ -neat point.

Proof.

Since (X, τ) is $(\alpha \psi, p)$ -D₁, so each point x of X is contained in a $D_{(\alpha \psi, p)}$ - set O = U/V and thus in U. By definition $U \neq X$. This implies that x is not a $(\alpha \psi, p)$ -neat point.

3.16 Definition

A topological space (X, τ) is $(\alpha \psi, p)$ -symmetric if x and y in X, x $pcl_{\alpha \psi}(\{y\})$ implies y $pcl_{\alpha \psi}(\{x\})$.

3.17 Theorem

- For a topological space (X, τ) , the following properties hold. (1) If $\{x\}$ is $\alpha\psi$ -p-closed for each x = X, then (X, τ) is $(\alpha\psi, p)$ -T₁.
- (2) Every $(\alpha \psi, p)$ -T₁ space is $(\alpha \psi, p)$ -symmetric.

Proof Suppose {p} is $\alpha \psi$ -p-closed for every p X. Let x, y X with $x \neq y$. Now $x \neq y$ implies y X/{x}. Hence X/{x} is an $\alpha \psi$ -p-open set contained in y but not containing x. Similarly X/{y} is an $\alpha \psi$ -p-open set contained in x but not containing y. Accordingly X is a $(\alpha \psi, p)$ -T₁ space.

(2) Suppose that $y \operatorname{pcl}_{\boldsymbol{\alpha}\boldsymbol{\psi}}(\{x\})$. Then, since $x \neq y$, there exists an $\alpha\psi$ -p-open set U containing x such that y U and hence x $\operatorname{pcl}_{\boldsymbol{\alpha}\boldsymbol{\psi}}(\{y\})$. This shows that x $\operatorname{pcl}_{\boldsymbol{\alpha}\boldsymbol{\psi}}(\{y\})$ implies y $\operatorname{pcl}_{\boldsymbol{\alpha}\boldsymbol{\psi}}(\{x\})$. Therefore (X, r) is $(\alpha\psi, p)$ -symmetric.

3.18 Definition

A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $\alpha \psi$ -pre continuous if for each $x \in e X$ and each $\alpha \psi$ -p-open set V containing f(x), there is an $\alpha \psi$ -p-open set U in X containing x such that $f(U) \subseteq V$.

3.19 Theorem

If $f : (X, \tau) \to (Y, \sigma)$ is an $\alpha \psi$ -pre continuous surjective function and E is a $D_{(\alpha V , p)}$ -set in Y, then the inverse

image $f^{-1}(E)$ is a $D_{(\alpha \Psi, p)}$ -set in X.

Proof.

Let E be a $D(\alpha \psi, p)$ set in Y. Then there are $\alpha \psi$ -p-open sets U_1 and U_2 in Y such that $E = U_1/U_2$ and $U_1 \neq Y$. By the $\alpha \psi$ -precontinuity of f, $f^{-1}(U_1)$ and f $^{-1}(U_2)$ are $\alpha \psi$ -p-open in X. Since $U_1 \neq Y$, we have f $^{-1}(U_1) \neq X$. Hence $f^{-1}(E) = f^{-1}(U_1)/f^{-1}(U_2)$ is a $D(\alpha \psi, p)$ -set.

3.20 Theorem

If (Y, σ) is $(\alpha \psi, p)$ -D₁ and $f : (X, \tau) \rightarrow (Y, \sigma)$ is an $\alpha \psi$ -pre continuous bijection, then (X, r) is $(\alpha \psi, p)$ -D₁.

Proof

Suppose that Y is a $(\alpha \psi, p)$ -D₁ space. Let x and y be any pair of distinct points in X. Since F is injective and Y is $(\alpha \psi, p)$ -D₁, there exist $D_{(\alpha \psi, p)}$ -sets G_x and G_y of Y

containing f(x) and f(y), respectively, such that $f(y) = G_X$

and $f(x) = G_y$. By Theorem 3.19, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are $D_{(\alpha \psi, p)}$ -sets in X containing x and y, respectively, such

that $y = f^{-1}(G_X)$ and $x = f^{-1}(G_Y)$. This implies that X is a $(\alpha \psi, p)$ -D₁ space.

3.21 Theorem

A topological space (X, τ) is $(\alpha \psi, p)$ -D₁ if and only if for each pair of distinct points $x, y \in X$, there exists an $\alpha \psi$ -pre continuous surjective function $f : (X, \tau) \rightarrow (Y, \sigma)$ such that f(x) and f(y) are distinct, where (Y, σ) is a $(\alpha \psi, p)$ -D₁ space.

Proof.

Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in XBy hypothesis there exists an $\alpha\psi$ -pre continuous, surjective function f of a space X onto $(\alpha\psi, p)$ -D₁ space Y such that f $(x) \neq f(y)$. By Theorem 3.13, there exist disjoint $D_{(\alpha\psi,p)^{-1}}$ sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is $\alpha\psi$ -pre continuous and surjective, by Theorem 3.20,

 $f^{-1}(G_X)$ and $f^{-1}(G_Y)$ are disjoint $D_{(\alpha \Psi, p)}$ -sets in X containing x and y, respectively, hence by Theorem 3.13, X is a $(\alpha \Psi, p)$ -D₁ space.

4. SOBER $(\alpha \psi, P)$ -R₀ SPACES

4.1. Definition

Let A be a subset of a topological space $(X, \mathbf{\tau})$. The $\alpha \psi$ -prekernel of A, denoted by $\operatorname{pker}_{\boldsymbol{\alpha} \boldsymbol{\psi}}(A)$ is defined to be the set $\operatorname{pker}_{\boldsymbol{\alpha} \boldsymbol{\psi}}(A) = \bigcap \{ U \in \alpha \psi PO(X, \tau) : A \subseteq U \}.$

4.2 Lemma

Let $(X, \mathbf{\tau})$ be a topological space and $\mathbf{x} \in \mathbf{X}$. Then $\mathsf{pker} \alpha \psi(A) = \{ \mathbf{x} \in \mathbf{X}: \mathsf{pcl} \alpha \psi(\{x\}) \cap A \neq \mathbf{0} \}.$

Proof

Let $x \in pker_{\alpha\psi}(A)$ and suppose $pc_{\alpha\psi}(\{x\}) \setminus A = \varphi$. Hence $x \notin X/pcl_{\alpha\psi}(\{x\})$ which is an $\alpha\psi$ -p-open set containing A. This is absurd, since $x \in pker_{\alpha\psi}(A)$. Consequently, $pcl_{\alpha\psi}(\{x\}) \setminus A \neq \varphi$. Next, let x be such that $pcl_{\alpha\psi}(\{x\}) \setminus A \neq \varphi$ and suppose that $x \notin pker_{\alpha\psi}(A)$. Then, there exists an $\alpha\psi$ -p-open set D containing A and $x \notin D$. Let $y \in pcl_{\alpha\psi}(\{x\}) \setminus A$. Hence, D is an $(\alpha\psi, p)$ -neighbourhood of y which does not containing x. By this contradiction $x \in pker_{\alpha\psi}(A)$ and the claim is shown.

4.3 Definition

A topological space (X, τ) is said to be sober $(\alpha \psi, p)$ -R₀ (resp. sober (δ, p) -R₀ [3]) if $\bigcap_{x \in X} pcl_{\alpha \psi}(\{x\}) = \phi$ (resp.

 $n_{X \in X} \operatorname{pcl}_{\delta}(\{x\}) = \varphi).$

4.4. Theorem

Every sober $(\alpha \psi, p)$ -R₀ space is sober (δ, p) -R₀ space.

Proof.

Let (X, τ) be a sober $(\alpha \psi, p)$ -R₀ space, then $\bigcap_{X \in X} pcl_{\alpha \psi}(\{x\}) = \varphi$. There- fore, $\bigcap_{X \in X} pcl_{\delta}(\{x\}) = \varphi$.

4.5. Theorem

A topological space (X, \neg) is sober ($\alpha \psi$, p)-R₀ if and only if pker_{GUU}({x}) \neq X for every x \in X.

Proof.

Suppose that the space (X, τ) be sober $(\alpha \psi, p)$ -R₀. Assume that there is a point y in X such that $pker_{\alpha\psi}$ $(\{y\}) = X$. Let x be any point of X. Then $x \in V$ for every $\alpha \psi$ -p-open set V containing y and hence $y \in pcl_{\alpha\psi}(\{x\})$ for any $x \in X$. This implies that $y \in \bigcap_{x \in X} pcl_{\alpha\psi}(\{x\})$. But this is a contradiction. Now

assume that $pker_{\alpha\psi}({x}) = X$ for every $x \in X$. If there exists a point of X. This implies that the space X is the unique $\alpha\psi$ -preopen set containing y. Hence $pker_{\alpha\psi}({y}) \neq X$ which is a contradiction. Therefore (X, \mathbf{r}) is sober $(\alpha\psi, p)$ -R₀ space.

4.6. Definition

A function $f : (X, \overrightarrow{\boldsymbol{v}} \rightarrow (Y, \sigma)$ is called pre $\alpha \psi$ -p-closed if the image of every $\alpha \psi$ -p-closed subset of X is $\alpha \psi$ -p-closed in Y.

4.7. Theorem

If $\mathbf{f} : (X, \mathbf{\tau}) \to (Y, \sigma)$ is an injective pre $\alpha \psi$ -p-closed function and X is sober $(\alpha \psi, p)$ -R₀, then Y is sober $(\alpha \psi, p)$ -R₀.

Proof.

Since X is sober $(\alpha \psi, p)$ -R₀, $\cap_X \in X \text{ pcl}_{\alpha \psi}(\{x\}) = \varphi$. Since f is a pre $\alpha \psi$ -p-closed injection, we have

 $\varphi = f(\bigcap_{X \in X} pcl_{\alpha \psi}(\{x\}))$ $= \bigcap_{X \in X} f(pcl_{\alpha \psi}(\{x\}))$

 $\supseteq \cap_{x \in X} \operatorname{pcl}_{\alpha \psi} f(\{x\})$

 $\supseteq \cap_{x \in X} \operatorname{pcl}_{\alpha \psi} (\{y\}).$

Therefore, Y is sober $(\alpha \psi, p)$ -R₀.

4.8 Theorem

If a topological space X is sober $(\alpha\psi, p)$ -R₀ and Y is any topological space, then the product $X \times Y$ is sober $(\alpha\psi, p)$ -R₀.

Proof.

We show that $\cap_{(x,y)\in X\times Y} \operatorname{pcl}_{\alpha\psi}(\{(x,y)\}) = \varphi$. We have $\cap_{(x,y)\in X\times Y} \operatorname{pcl}_{\alpha\psi}(\{(x,y)\})$

5. (αψ, p)-CONTINUOUS FUNCTIONS AND (αψ, p)-CLOSED GRAPHS

5.1. Definition

A function $\mathbf{f} : \mathbf{X} \to \mathbf{Y}$ is said to be $(\alpha \psi, p)$ -continuous if for every open set V of Y, $\mathbf{f}^{-1}(V)$ is $(\alpha \psi, p)$ -open in X.

5.2. Theorem

The following are equivalent for a function $f: X \rightarrow Y$: (i) f is $(\alpha \psi, p)$ -continuous,

(ii) The inverse image of every closed set in Y is $(\alpha \psi, p)$ -closed in X,

(iii) For each subset A of X, $f(\alpha \psi cl_p(A)) \subset cl(f(A))$,

(iv) For each subset B of Y, $\alpha \psi cl_p$ (f⁻¹(B)) C f ⁻¹(cl(B)).

Proof.

(i) \Leftrightarrow (ii): Obvious.

(iii) \Leftrightarrow (iv): Let B be any subset of Y. Then by (iii), we have $f(\alpha \psi cl_p (f^{-1}(B))) \subset cl(f(f^{-1}(B))) \subset cl(B)$. This implies $\alpha \psi cl_p (f^{-1}(B)) \subset f^{-1}(f(\alpha \psi cl_p (f^{-1}(B)))) \subset f^{-1}(cl(B))$.

Conversely, let B = f(A) where A is a subset of X. Then, by (iv), we have, $\alpha \psi cl_p(A) \subset \alpha \psi cl_p(f^{-1}(f(A))) \subset f^{-1}(cl(f(A)))$. Thus, $f(\alpha \psi cl_p(A)) \subset cl(f(A))$. (ii) \Rightarrow (iv): Let B \subset Y. Since $f^{-1}(cl(B))$ is $(\alpha \psi, p)$ -closed and $f^{-1}_{(B)} \subset f^{-1}(cl(B))$, then $\alpha \psi cl_p(f^{-1}(B)) \subset f^{-1}(cl(B))$.

(iv) \Rightarrow (ii): Let K **C** Y be a closed set. By (iv), $\alpha \psi cl_p (f^{-1}(K)) = f^{-1}(cl(K)) = f^{-1}(K)$. Thus, $f^{-1}(K)$ is $(\alpha \psi, p)$ -closed.

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\}$ of the product space $X \times Y$ is called the graph of f and is denoted by G(f).

53. Definition

For a function $f : X \to Y$, the graph $G(f) = \{(x, f(x)) : x \in X\}$ is said to $b \in (\alpha \psi, p)$ -closed if for each $(x, y) \in X \times Y - G(f)$, there exist $U \in \alpha \psi PO(X, x)$ and an open set V of Y containing y such that $(U \times V) \cap G(f) = \varphi$.

5.4. Lemma

Let $f : X \to Y$ be a function. Then the graph G(f) is $(\alpha \psi, p)$ - closed in $X \times Y$ if and only if for each point $(x, y) \in X \times Y - G(f)$, there exist a $(\alpha \psi, p)$ -open set U and an open set V containing x and y, respectively, such that $f(U) \cap V = \varphi$.

Proof.

It follows readily from the above definition.

5.5. Theorem

If $f : X \to Y$ is an injective function with the $(\alpha \psi, p)$ -closed graph, then X is $(\alpha \psi, p)$ -T₁.

Proof.

Let x and y be two distinct points of X. Then $f(x) \neq f(y)$. Thus there exist an $(\alpha \psi, p)$ -open set U and an open set V containing x and f(y), respectively, such that $f(U) \cap V = \varphi$. Therefore $y \not \in U$ and it follows that X is $(\alpha \psi, p)$ -T₁.

5.6. Theorem

If $f : X \to Y$ is an surjective function with the $(\alpha \psi, p)$ -closed graph, then Y is T_1 .

Proof.

Let y_1 and y_2 be two distinct points of Y. Since f is surjective, there exist a point x in X such that $f(x) = y_2$. Therefore $(x, y_1) \notin G(f)$. By lemma 5.4., there exist an $(\alpha \psi, p)$ -open set U and an open set V containing x and y_1 , respectively, such that $f(U) \cap V = \phi$. It follows that $y_2 \notin V$. Hence Y is T_1 .

5.7. Definition

A function $\mathbf{f} : X \to Y$ is said to be $(\alpha \psi, p)$ -W-continuous if for each $x \in \mathbf{e} X$ and each open set V of Y containing $\mathbf{f}(x)$, there exists an $(\alpha \psi, p)$ - open set U in X containing x such that $\mathbf{f}(U) \subset cl(V)$.

5.8. Theorem

If $f : X \to Y$ is $(\alpha \psi, p)$ -W-continuous and Y is Hausdorff, then G(f) is $(\alpha \psi, p)$ -closed.

Proof.

Suppose that $(x, y) \notin G(f)$, then $f(x) \neq y$. By the fact that Y is Hausdorff, there exist open sets W and V such that f $(x) \in W, y \in V$ and $V \cap W = \varphi$. It follows that $cl(W) \cap V = \varphi$. Since f is $(\alpha \psi, p)$ -W-continuous, there exists U $\in \alpha \psi PO(X, x)$ such that $f(U) \subset cl(W)$. Hence, we have f $(U) \cap V = \varphi$. This means that G(f) is $(\alpha \psi, p)$ -closed.

5.9. Corollary

If $f : X \to Y$ is $(\alpha \psi, p)$ -W-continuous and Y is Hausdorff, then G(f) is $(\alpha \psi, p)$ -closed in $X \times Y$.

5.10. Definition

A subset A of a space X is said to be $(\alpha\psi, p)$ -compact relative to X if every cover of A by $(\alpha\psi, p)$ -open sets of X has a finite subcover.

5.11. Theorem

Let $f : X \to Y$ have a $(\alpha \psi, p)$ -closed graph. If K is $(\alpha \psi, p)$ - compact relative to X, then f(K) is closed in Y. **Proof.**

Suppose that $y \notin f(K)$. For each $x \in K$, f(x) = y. By lemma 5.4., there exist $U_X \in \alpha \psi P O(X, x)$ and an open neighbourhood V_X of y such that $f(U_X) \cap V_X = \varphi$. The family $\{U_X : x \in K\}$ is a cover of K by $(\alpha \psi, p)$ -open sets of X and there exists a fnite subset K_0 of K such that K $C \cup \{U_X : x \in K_0\}$. Put $V = \cap \{V_X : x \in K_0\}$. Then V is an open neighbourhood of y and $f(K) \cap V = \varphi$. This means that f(K) is closed in Y.

5.12. Theorem

If $f : X \to Y$ has an $(\alpha \psi, p)$ -closed graph G(f) and $g : Y \to Z$ is a perfectly continuous function, then the set $\{(x, y) : f(x) = g(y)\}$ is $(\alpha \psi, p)$ - closed in $X \times Y$.

Proof.

Let $A = \{(x, y) : f(x) = g(y)\}$ and $(x, y) \in (X \times Y) - G(f)$. Since f has an $(\alpha \psi, p)$ -closed graph G(f), there exist an $(\alpha \psi, p)$ -open set U and an open set V containing x and g(y), respectively, such that $f(U) \cap V = \varphi$. This implies that there exists a pre-regular p-open set N containing x such that N **C** U and $f(N) \cap nV = \varphi$. Since g is a perfectly continuous function, then there exist an open and closed set G containing y such that $g(G) \subset V$. We have $f(U) \cap g(G)$ $= \varphi$. This implies that $(N \times G) \cap A = \varphi$. Since N $\times G$ is pre-regular p-open, then $(x, y) \notin \alpha \psi cl_p(A)$. Thus, E is $(\alpha \psi, p)$ -closed in $X \times Y$.

5.13. Corollary

If $f: X \to Z$ is an $(\alpha \psi, p)$ -continuous function and $g: Y \to Z$ is a perfectly continuous function and Z is Hausdorff, then the set $\{(x, y) : f(x) = g(y)\}$ is $(\alpha \psi, p)$ -closed in $X \times Y$ **Proof.**

It follows from Corollary 5.9 and Theorem 5.12.

5.14. Theorem

If $f : X \to Y$ is an $(\alpha \psi, p)$ -continuous function and Y is Hausdorff, then the set $\{(x, y) \in X \times Y : f(x) = f(y)\}$ is $(\alpha \psi, p)$ -closed in $X \times X$.

Proof.

Let $\{(x, y) : f(x) = f(y)\}$ and let $\{(x, y) \in (X \times Y) - A\}$. It follows tat $f(x) \neq f(y)$. Since Y is Hausdorff, there exist open set U and V containing f(x) and f(y), respectively, such that $U \cap V = \varphi$. Since f is $(\alpha \psi, p)$ -continuous, there exist preregular p-open set in X × X containing (x, y). Hence, A is $(\alpha \psi, p)$ -closed in X × X.

5.15. Definition

A function $f : X \to Y$ is called contra $(\alpha \psi, p)$ -open if the image of every $(\alpha \psi, p)$ -open set in X is closed in Y.

5.16. Theorem

If $f : X \to Y$ is a contra $(\alpha \psi, p)$ -open function such that the inverse image of each opoint of Y is $(\alpha \psi, p)$ -closed, then f has an $(\alpha \psi, p)$ -closed graph G(f).

Proof.

Let $(x, y) \in X - G(f)$. We have $x \notin f^{-1}(y)$. Since $f^{-1}(y)$ is $(\alpha \psi, p)$ -closed, there exists a pre-regular p-open set A containing x such that $A \cap f^{-1}(y) = \varphi$. Since, f is contra $(\alpha \psi, p)$ -open, then f(A) is closed. This implies that there exist an open set B in Y containing y such

that $f\left(A\right)\cap B=\phi.$ Hence, f has an $(\alpha\psi,\,p)\text{-closed}$ graph G(f).

5.17. Theorem

If $f : X \to Y$ has an $(\alpha \psi, p)$ -closed graph G(f), then for each $x \in X$, $\{f(x)\} = \bigcap_{X \in A \in \alpha \psi PO(X,\tau)} cl(f(A))$. **Proof.**

Suppose that $y \neq f(x)$ and $y \in \cap_X \in A \in \alpha \psi P O(X, \tau)$ cl(f(A)). Then $y \in cl(f(A))$ for each $x \in A \in \alpha \psi P$ O(X, r). This implies that for each open set B containing $y, B \cap f(A) \neq \phi$. Since $(x, y) \notin G(f)$ and G(f) is an $(\alpha \psi, p)$ - closed graph, this is a contradiction.

5.18. Definition

A function $f : X \to Y$ is called an $(\alpha \psi, p)$ -open if the image of every $(\alpha \psi, p)$ -open set in X is open in Y.

5.19. Theorem

If $f : X \to Y$ is a surjective $(\alpha \psi, p)$ -open function with an $(\alpha \psi, p)$ -closed graph G(f), then Y is T2.

Proof.

Let y_1 and y_2 be any two distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) - G(f)$. This implies that there exist an $(\alpha \psi, p)$ -open set A of X and an open set B of Y such that $(x, y_2) \in (A \times B)$ and $(A \times B) \cap G(f) = \varphi$. We have $f(A) \cap B = \varphi$. Since f is $(\alpha \psi, p)$ -open, then f(A) is open such that $f(x) = y_1 \in f$ (A). Thus, Y is T₂.

5.20 Theorem

If $f: X \to Y$ is an $(\alpha \psi, p)$ -continuous injective function and Y is T_2 , then X is $(\alpha \psi, p)$ - T_2 .

Proof.

Let x and y in X be any pair of distinct points, then there exist disjoint open sets A and B in Y such that $f(x) \in A$ and $f(y) \in B$. Since f is $(\alpha \psi, p)$ -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are $(\alpha \psi, p)$ -open in X containing x and y respectively, we have $f^{-1}(A) n f^{-1}(B) = \varphi$. Thus, X is $(\alpha \psi, p)$ -T₂.

5.21. Theorem

If f, g : X \rightarrow Y are $(\alpha \psi, p)$ -continuous functions, X is sub-maximal and Y is Hausdorff, then the set {x $\in X$: f (x) = g(x)} is $(\alpha \psi, p)$ -closed in X.

Proof.

Let $A = \{x \in X : f(x) = g(x)\}$. Take $x \in X - A$. We have $f(x) \neq g(x)$. Since Y is Hausdorff, then there exist open sets U and V in Y containing f(x) and g(x), respectively, such that $U \cap V = \varphi$. Since f and g are $(\alpha \psi, p)$ -continuous, then f $^{-1}(U)$ and $g^{-1}(V)$ are $(\alpha \psi, p)$ -open in X with $x \in f^{-1}(U)$ and $x \in g^{-1}(V)$. Then there exist pre-regular p-open sets G and H such that $x \in G \ c \ f^{-1}(U)$ and $x \in H \ c$

 $g^{-1}(V)$. Take $K = G \cap H$. By lemma 2.6, K is preregular p-open. Thus, $f(K) \cap g(K) = \varphi$ and hence $x \notin a\psi cl_p(A)$. This shows that A is $(a\psi, p)$ -closed in X.

RFERENCES

[1] P. Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987) 375-382.

[2] M. Caldas, A separation axiom between $pre-T_0$ and $pre-T_1$, East West J. Math., 3(2)(2001), 171-177.

[3] M. Caldas, T. Fukutake, S. Jafari and T. Noiri, Some applications of δ - preopen sets in topological spaces, Bull. Inst. Math. Acad. Sinica, Vol.33 No. 3 (2005), 261-276.

[4] R. Devi, A. Selvakumar and M. Parimala, $\alpha \psi$ -closed sets in topological spaces (submitted).

[5] S. Jafari, On a weak separation axiom, Far East J. Math. Sci., 3(5)(2001), 779-787.

[6] S. Jafari, Pre-rarely-p-continuous functions, Far East J. Math. Sci. (FJMS) Special Vol. (2000), Part I (Geometry and Topology), 87-96.

[7] S. Jafari, On certain types of notions via preopen sets, Tamkang J. Math. 37(4)(2006), 391-398.

[8] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta Math. Soc., 82(1990), 415-422.

[9] N.Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[10] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc., Egypt, 53 (1982), 47-53.

[11] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

[12] T. Noiri, Super-continuity and some strong forms of continuity, Indian J.Pure Appl. Math., 15 (1984), 17-22.

[13] T.M.J. Nour, Contributions to the theory of bitopological spaces, Ph.D. The- sis, Univ. of Delhi, 1989.

[14] S. Raychaudhuri and M.N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357-366.

[15] M.K.R.S. Veera kumar, Between semi-closed sets and semi-pre-closed sets, Rend. Istit. Mat. Univ. Trieste XXXII, (2000), 25-41.

[16] N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.

[17] S. Willard, General Topology, Addison - Wesley, Reading, Mass, USA (1970).