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1. INTRODUCTION 

The concept of preopen sets and precontinuous functions in 

topological spaces are introduced by A.S. Mashhour et al. [10]. 

Recently, R.Devi et al. [4] introduced the notion of αψ-open 

sets which are weaker than open sets. Since then, αψ-open 

sets have been widely used in order to introduce new spaces 

and functions. 

In this paper, we introduce the notion of αψ-p-open sets and 

αψ-p-continuity in topological spaces.  By utilizing  these 

notions we introduce some weak separation axioms.   Also we 

show  that  some basic properties  of (αψ, p)-Ti , (αψ, p)-Di   

for i = 0, 1, 2 spaces and we ofer a new  class of functions 

called (αψ, p)-continuous functions  and  a new notion  of the  

graph  of a  function  called an (αψ, p)-closed graph and 

investigate  some of their  fundamental properties. 

 

2. PRELIMINARIES      

Let A ⊆ X , the closure of A and the interior of A will 

be denoted by cl(A) and int(A) respectively.  A is regular open 

if A = int(cl(A)) and A is regular closed if its  complement is 

regular open; equivalently A is regular closed if A = 

cl(int(A)), see [17]. 

 

 

Definition 2.1.   

A subset A of a space (X, τ ) is called a 

 

 

1. semi-open set [9] if A ⊆ cl(int(A)) and a semi-closed set 

[9] if int(cl(A)) ⊆ A, 

 

 

2. α-open set [11] if A ⊆ int(cl(int(A))) and an α-closed 

set [11] if cl(int(cl(A))) ⊆ A, 

 

 

3. pre-open set [10] if A ⊆ int(cl(A)) and pre closed set 

[10] if cl(int(A)) ⊆ A, 

 

4. δ-open set [16] if for each x ∈ A, there exists a regular 

open set G such that x ∈ G ⊂ A and 

 

5. pre-regular  p-open set [6] if A = pint(pcl(A)). 

 

 

The semi-closure (resp. α-closure) of a subset A of a 

space (X, τ ) is the intersection of all semi-closed (resp.  α-

closed) sets that  contain A and  is denoted  by scl(A) (resp.  

αcl(A)). 

 

 

Definition 2.2.   

A subset  A of a space (X, τ ) is called a 

 

1. a semi-generalized closed (briefly sg-closed) set [1] if 

scl(A)  ⊆ U whenever A ⊆ U and U  is semi-open in (X, 

τ ).  The complement  of sg-closed set is called sg-open 

set, 

 

2.  a ψ-closed set [15] if scl(A) ⊆ U whenever A ⊆ U and U is 

sg-open in (X, τ ). The complement of ψ-closed  set is 

called ψ-open set and 

 

Let (X, τ ) be a space and let A be a subset of X . A is 

called αψ-closed set [4] if ψcl(A) ⊆ U  whenever A ⊆ U and 

U is α-open  set of (X, τ ).  The complement of an αψ-closed 

set is called  αψ-open.   The intersection o f  all αψ-closed 

(resp. δ-closed) sets containing  A is called the αψ-closure  

(resp.  δ-closure) of A and is denoted  by clαψ (A) (resp.  clδ 

(A)). 

 

Definition 2.3.   

A subset A of a topological space (X, τ) is said to be δ-

preopen [10] if A ⊆ int(clδ (A)).  A family of all δ-preopen 

sets in a topological space (X, τ ) is denoted  by δP O(X, τ 

). 

 

Definition 2.4.     

A function  f : X  → Y   is called perfectly  continuous  
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[12] if for each open set A ⊂ Y , f 
−1

(A) is open and 

closed in X . 

 

Lemma 2.5.   [7] 

 If A and B are pre-regular  p-open sets of the space X  

and Y , respectively, then  A × B is a pre-regular  p-open set 

of X × Y . 

 

 

Lemma 2.6.   [7]  If a space is submaximal,  then  any 

finite intersection  of pre- regular p-open sets is pre-regular  

p-open. 

 

3.  αψ-P-OPEN SETS  

 

3.1 Definition  

A subset A of a topological space (X, τ ) is said to be αψ-p-

open if A ⊆ int(cl
α  (A)). 

The complement of an αψ-p-open set is said to be αψ-p-

closed.  The family of all αψ-p-open (resp.  αψ-p-closed) sets 

in a topological space (X, τ ) is denoted  by αψPO  (X, τ ) 

(resp.  αψPC (X, τ )). 

 
3.2 Definition 

  Let  A be a subset  of a topological  space (X, τ ).   

The  intersection of all αψ-p-closed (resp.  δ-preclosed) sets 

containing  A is called the  αψ- p-closure (resp.  δ-preclosure 

[14]) of A and is denoted by pcl
 α  (A) (resp.  pclδ (A)). 

 

3.3 Definition  

 Let (X, τ ) be a topological space.  A subset  U 

of X  is called a (αψ, p)-neighbourhood of a point x ∈ X 

if there exists an αψ-p-open set V  such that x ∈ V  ⊆ U . 

 

3.4 Theorem  

 For the αψ-p-closure of subsets A, B in a 

topological space (X, τ ), the following properties  hold: 

 

(1)  A is αψ-p-closed in (X,  ) if and only if A = pcl 

αψ(A),  

(2)  If A  B, then  pcl
 α  (A)  pcl

 α
 (B), 

(3)  pcl
 α

 (A) is αψ-p-closed, that  is pcl
 α

 (A) = pcl
 

α
 (pcl

 α
 (A)) and 

(4)  x  pcl
 α

 (A) if and only if A  V  ≠  υ for every V   

αψP O(X,  ) containing x. 

Proof  

It is obvious 

 

3.5 Theorem  

For a family { A : }

 

of subsets a topological 

space (X,  ), the following properties  hold: 

 

(1)  pcl
 α

{ A : }  { pcl
 α  (A  ) : } 

(2)  pcl
 α  { A : }

 

{ pcl
 α  (A  ) : }  

Proof.   

( 1 )  Since  A  A for each , by Theorem  

3.4 we have pcl
α (  A )  pcl

α
 ( A )  for 

each  and hence  pcl
α (  A-

)  (pcl
α

 ( A ) ) .  

(2) Since A  A  fo r  e a c h  , by Theorem  

3.4 we have pcl
α

 ( A )  pcl
α (  A )  for 

each  and hence pcl
α

( A )  

pcl
α (  A ) .  

 

3.6 Theorem   

Every αψ-p-open  set is preopen. 

Proof  

 It follows from the Definitions. 

The converse of the above Theorem need not be true 

by the following Example. 

 

3.7 Example  

Let X = {a, b, c} and  = {X, υ, {a, b}}.  Here {a, c} is 

not αψ-p- open however it is preopen, since the αψ-p-open 

sets are X, υ, {a}, {b}, {a, b} and preopen sets are X, υ, 

{a}, {b}, {a, b}, {a, c}, {b, c}. 

 

3.8 Theorem  

(1)  Every preopen set is δ-preopen [3].  

(2)  Every αψ-p-open  is δ-preopen. 

Proof.  

(2) It follows from (1) and Theorem 3.6. 

 
 

3.9 Definition  

    A subset A of a topological space (X,  ) is called a 

D(αψ,p)- set (resp.  Dp -set [2,5], D(δ,p)-set [3]) if there  

are two U, V αψP O(X, r ) (resp. P O(X, r ), δP O(X, r )) 

such that U ≠ X and A = U − V . 

It is true that every αψ-p-open  (resp.  preopen)  set  

U different  from X  is a (αψ,p)  -set (resp.  Dp -set) if A = 

U and V  = υ. 

 

 
3.10 Definition 

A topological space (X,  ) is said to be 

 

 

(1)  (αψ, p)-D0  (resp. pre-D0  [2,5], (δ, p)-D0  [3]) if for any 

distinct pair of points x and y of X there exist a 
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D(αψ,p)-set (resp.  Dp -set, D(δ,p)-set) of X 

containing x but  not y or a D(αψ,p)-set (resp.  Dp-

set, D(δ,p)-set) of X containing y but not x. 

 

(2)  (αψ, p)-D1  (resp. pre-D1  [2,5], (δ, p)-D1  [3]) if for any 

distinct pair of points x and y of X there exist a 

D(αψ,p)-set (resp.  Dp -set, D(δ,p)-set) of X 

containing x but not y and a D(αψ,p)-set (resp.  Dp 

-set, D(δ,p)-set) of X containing y but not x. 

 

(3)  (αψ, p)-D2   (resp. pre-D2   [2,5], (δ, p)-D2   [3]) if for 

any distinct  pair of points x and y of X there exists 

disjoint D(αψ,p)-set (resp.  Dp-set, D(δ,p)-set) G 

and E of X containing x and y, respectively. 

  

3.11 Definition 

A topological space (X, ) is said to be 

 

(1)  (αψ, p)-T0  (resp. pre-T0  [8,13], (δ, p)-T0  [3]) if for 

any distinct  pair of points x and y of X there  exist 

an αψ-p-open  (resp.  preopen, δ-preopen) set U in X 

containing x but not y or an αψ-p-open (resp.  

preopen, δ-open) set V  in X containing y but  not x. 

 

(2)  (αψ, p)-T1  (resp. pre-T1  [8,13], (δ, p)-T1  [3]) if for 

any distinct  pair of points x and y of X there  exist 

an αψ-p-open  (resp.  preopen, δ-preopen) set U in X 

containing x but  not y and an αψ-p-open  (resp.  

preopen, δ-preopen) set V  in X containing y but  not 

x. 

 

(3)  (αψ, p)-T2  (resp. pre-T2  [8,13], (δ, p)-T2  [3]) if for 

any distinct  pair of points x and y of X there  exist 

αψ-p-open  (resp.  preopen, δ-preopen) sets U and V  

in X containing x and y, respectively, such that U  

V  = υ. 

 

3.12 Remark  

(i) If (X,  ) is (αψ, p)-Ti , then  it is (αψ, p)-Ti−1, i = 1, 2. 

(ii) If (X,  ) is (αψ, p)-Ti , then  it is (αψ, p)-Di , i = 0, 1, 2.  

(iii) If (X,  ) is (αψ, p)-Di , then  it is (αψ, p)-Di−1 , i = 1, 

2. 

(iv) If (X,  ) is (αψ, p)-Di , then  it is pre-Ti , i = 0, 1, 2. 

 By Remark  3.12 and [2, Remark  3.1], we have the 

following diagram.  

 

      (αψ, p)-T2→(αψ, p)-D2→pre-T2→(δ, p)-T2→(δ, p)-D2 

               ↓             ↓                 ↓      ↓             ↓ 

      (αψ, p)-T1→(αψ, p)-D1→pre-T1→(δ, p)-T2→(δ, p)-D2 

                 ↓            ↓                 ↓       ↓              ↓ 

      (αψ, p)-T0→(αψ, p)-D0→pre-T0→(δ, p)-T2→(δ, p)-D2 

 

3.13 Theorem  

A topological space (X,  ) is (αψ, p)-D1   if and 

only if it is (αψ, p)-D2. 

Proof 

Sufficiency. This follows from Remark  3.12. 

 

Necessity.   Suppose X  is a (αψ, p)-D1.  Then  for each 

distinct  pair  x, y  X , we have D(αψ,p) -sets G1   and G2   

such that x G1 , y G1 ; y  G2, x    G2.  Let G1   = 

U1/U2, G2  = U3/U4 , where U1, U2, U3 , U4   αψP O(X,  

).  From  x   G2   we have either  x  U3  or x  U3  and x  

U4.  

We discuss the two cases separately.  

(1)  x U3 . From y G1   we have two sub cases: 

     (a) y U1. From x   U1/U2   we have x   U1/(U2  U3)             

and from y   U3/U4 we have y     U3/(U1  U4). It is easy to 

see that (U1/(U2  U3))  (U3/(U1  U4)) = υ. 

  (b) y   U1  and y   U2. We have x   U1/U2, y    U2  and 

(U1/U2 )  U2  = υ.  (2)  x   U3  and x      U4. We have y   

U3/U4, x   U4  and (U3/U4 )  U4  = υ. 

From  the discussion above we know that the space X is (αψ, 

p)-D2. 

 

 

3.14 Definition  

A point x   X which has only X as the (αψ, p)-

neighbourhood is called a (αψ, p)-neat  point. 

 

3.15 Theorem  

If a  topological  spaces  (X,  )  is (αψ, p)-D1,  then  it  has  

no (αψ, p)-neat  point. 

 

Proof.  

Since (X,   ) is (αψ, p)-D1, so each point x of X is 

contained  in a D(αψ,p) - set O = U/V  and thus in U .  By 

definition U ≠ X .  This implies that  x is not  a (αψ, p)-neat  

point. 

 

3.16 Definition  

A topological  space (X,  ) is (αψ, p)-symmetric  if x  and  

y in X , x   pclαψ ({y}) implies y   pclαψ ({x}). 

 

3.17 Theorem  

For a topological space (X, ), the following properties  hold. 

 (1)  If {x} is αψ-p-closed for each x   X , then  (X,  ) is 

(αψ, p)-T1. 

 (2)  Every (αψ, p)-T1  space is (αψ, p)-symmetric. 

Proof Suppose {p} is αψ-p-closed for every p   X . Let x, y   

X with x ≠ y. Now x ≠ y implies y   X/{x}.  Hence X/{x} is 

an αψ-p-open  set contained in y but  not  containing  x.  

Similarly X/{y} is an αψ-p-open  set contained  in x but  not 

containing  y. Accordingly X  is a (αψ, p)-T1  space. 
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(2)  Suppose that  y      pclαψ ({x}). Then,  since x  ≠  y, there 

exists an αψ-p-open set U  containing x such that y      U and 

hence x    pclαψ ({y}).  This shows that x   pclαψ ({y})  

implies y   pclαψ ({x}).  Therefore  (X, r ) is (αψ, p)- 

symmetric. 

 

 

3.18 Definition 

 A function f : (X,  ) → (Y, σ) is said to be αψ-pre continuous  

if for each x e X  and each αψ-p-open set V  containing f (x), 

there is an αψ-p-open set U in X containing x such that f (U ) 

⊆ V. 

 

3.19 Theorem   

If f : (X,  ) → (Y, σ) is an αψ-pre continuous  surjective 

function and E is a D(αψ,p)-set in Y , then  the inverse 

image f 
−1

(E)  is a D(αψ,p)-set in X .  

Proof.   

Let E  be a D(αψ,p)  set in Y .  Then  there  are 

αψ-p-open  sets U1  and U2 in Y   such that E = U1/U2  and 

U1  ≠  Y .  By the αψ-precontinuity  of f , f 
−1

(U1) and  f 

−1
(U2) are αψ-p-open  in X .  Since U1 ≠ Y , we have f 

−1
(U1 ) ≠  X .  Hence f 

−1
(E)  =  f 

−1 
(U1)/f 

−1 
(U2 ) is a 

D(αψ,p) -set. 

 

3.20 Theorem  

If (Y, σ)  is (αψ, p)-D1    and  f :  (X,  )  → (Y, σ)  is an  

αψ- pre continuous  bijection, then  (X, r ) is (αψ, p)-D1 . 

Proof  

Suppose that Y  is a (αψ, p)-D1   space. Let x and y be any 

pair of distinct points in X . Since F  is injective and Y  is (αψ, 

p)-D1, there  exist D(αψ,p)-sets Gx and Gy   of Y   

containing  f (x)  and  f (y),  respectively,  such that f (y)   Gx    

and f (x)    Gy . By Theorem 3.19, f 
−1

(Gx) and f 
−1

(Gy ) are 

D(αψ,p) -sets in X containing x and y, respectively,  such 

that y    f 
−1

(Gx)  and x   f 
−1 

(Gy ). This implies that X is 

a (αψ, p)-D1  space. 

 

3.21 Theorem 

   A topological space (X,  ) is (αψ, p)-D1   if and only if for 

each pair of distinct points x, y  X , there exists an αψ-pre 

continuous  surjective function f : (X,  ) → (Y, σ) such  that 

f (x)  and f (y) are distinct,  where (Y, σ) is a (αψ, p)-D1   

space. 

Proof.  

Necessity. For every pair of distinct points of X, it suffices 

to take the identity function on X. 

Sufficiency. Let x and y be any pair of distinct points in X. By 

hypothesis there exists an  αψ-pre continuous,  surjective  

function  f of a space X  onto (αψ, p)-D1 space Y  such that  f 

(x) ≠ f (y). By Theorem 3.13, there exist disjoint D(αψ,p) –

sets Gx   and Gy  in Y  such that f (x)  Gx   and f (y)  Gy . 

Since f is αψ-pre continuous and surjective,  by Theorem  3.20, 

f 
−1

(Gx)  and f 
−1

(Gy) are disjoint  D(αψ,p) -sets in X  

containing x and y, respectively, hence by Theorem  3.13, X 

is a (αψ, p)-D1 space. 

 

4. SOBER (αψ, P)-R0   SPACES 

 

4.1. Definition    
Let  A be  a   subset  of a  topological  space  (X,  ). The  αψ-

prekernel of A, denoted by pkerαψ (A) is defined to be the 

set pkerαψ (A)= {U  α PO(X, ) : A  U}. 

 

4.2 Lemma 

 Let (X,  )  be a topological space and x  X. Then pkerαψ (A) 

= { x  X: pclαψ ({x}) A≠ υ }. 

 

Proof  

Let x  pkerαψ (A) and suppose pclαψ ({x}) \ A = υ. Hence x  

X/pclαψ ({x}) which is an αψ -p-open set containing A. This is 

absurd, since x    pkerαψ (A). Consequently, pclαψ ({x}) \ A ≠ 

υ.  Next, let x be such that pclαψ ({x}) \ A ≠ υ and suppose that x 

 pkerαψ (A). Then, there exists an α  -p-open set D containing 

A and x  D. Let y   pcl αψ({x}) \ A. Hence, D is an (α , p)-

neighbourhood of y which does not containing x. By this 

contradiction x  pker α  (A) and the claim is shown. 

 

4.3 Definition 

A topological space (X,  ) is said to be sober (αψ, p)-R0   

(resp. sober (δ, p)-R0   [3]) if x∈X pclαψ ({x}) = υ (resp.  

nx∈X pclδ ({x}) = υ). 
4.4.  Theorem  

Every sober (αψ, p)-R0   space is sober (δ, p)-R0   

space. 

Proof.  

Let (X,  ) be a sober (αψ, p)-R0   space, then x∈X 

pclαψ ({x}) = υ. There- fore, x∈X pclδ ({x}) = υ. 

 

4.5. Theorem  

A topological  space  (X,  )  is sober  (αψ, p)-R0    if and  

only  if pkerαψ ({x}) ≠ X for every x X . 

Proof.   

Suppose that  the space (X,   ) be sober (αψ, p)-R0.  

Assume that  there is a point  y in  X  such that pkerαψ 

({y})  = X .  Let x be any point  of X .  Then x  V  for every 

αψ-p-open  set V  containing y and hence y  pclαψ ({x}) 

for any x  X .  This implies that y  
x∈X pclαψ ({x}). 
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But  this is a contradiction.  Now 

assume that  pkerαψ ({x}) = X  for every x   X .   If 

there  exists a point  of X . This implies that the space X is 

the unique αψ-preopen  set containing  y. Hence pkerαψ 

({y}) ≠ X  which is a contradiction.  Therefore (X, ) is 

sober (αψ, p)-R0 space. 

 
4.6. Definition  
A function  f :  (X,  )  → (Y, σ)  is called  pre  αψ-p-closed  

if the image of every αψ-p-closed subset of X is αψ-p-closed 

in Y . 

4.7.   Theorem  

If f : (X,  ) → (Y, σ) is an injective pre αψ-p-closed 

function and X is sober (αψ, p)-R0 , then  Y  is sober (αψ, 

p)-R0. 

Proof.   

Since X  is sober  (αψ, p)-R0,  x∈X pclαψ ({x}) = υ.     

Since f is a  pre αψ-p-closed injection, w e have 

  υ =f( x∈X pclαψ ({x})) 

       = x∈X f(pclαψ ({x})) 

       x∈X pclαψ f({x}) 

    x∈X pclαψ ({y}). 

Therefore, Y  is sober (αψ, p)-R0. 

 

4 .8  Theorem  

If a topological space X  is sober (αψ, p)-R0   and Y   is any 

topo logical space, then  the product  X × Y  is sober (αψ, p)-

R0. 

Proof.  

We show that  (x,y)∈X ×Y pclαψ ({(x, y)}) = υ. We have 

(x,y)∈X ×Y pclαψ ({(x, y)}) 

                 (x,y)∈X ×Y ( pclαψ ({x})  × pclαψ ({y})) 

                 =   x∈X pclαψ ({x})× y∈Y 
pclαψ ({y}) 

 υ×Y 

=      υ. 

5. (αψ, p)-CONTINUOUS 

FUNCTIONS AND (αψ, p)-CLOSED 

GRAPHS 
 

 

5.1. Definition  

A  function f : X → Y  is said to be (αψ, p)-continuous if for 

every open set V  of Y , f 
−1 

(V ) is (αψ, p)-open in X . 

 

 

5.2. Theorem    

The following are equivalent for a function f : X → Y :  

    (i)  f is (αψ, p)-continuous, 

(ii) The inverse image of every closed set in Y  is (αψ, p)-

closed in X , 

 

 

(iii) For each subset  A of X , f (αψclp (A)) c cl(f (A)), 

 

(iv) For each subset B of Y , αψclp (f 
−1

(B))  c f 

−1
(cl(B)). 

 

 

Proof.  

     (i) ⇔ (ii): Obvious. 

 

(iii) ⇔ (iv): Let B be any subset of Y . Then by (iii), we 

have f (αψclp (f 
−1

(B)))  c cl(f (f 
−1

(B))) c cl(B).  This 

implies αψclp (f 
−1

(B))  c f 
−1

(f (αψclp (f 
−1

(B)))) c f 

−1 
(cl(B)). 

 

      Conversely, let B = f (A) where A is a subset of X .  

Then,  by (iv), we have, αψclp (A) c αψclp (f 
−1

(f (A))) c f 

−1
(cl(f (A))).  Thus, f (αψclp (A)) c cl(f (A)). (ii) ⇒ (iv):   

Let  B  c Y .   Since f 
−1 

(cl(B))  is (αψ, p)-closed and  f 

−1
(B)  c f −1 (cl(B)),  then  αψclp (f −1(B))  c f −1(cl(B)). 

 (iv) ⇒ (ii): Let K c Y  be a closed set. By (iv), αψclp (f 
−1

(K 

)) c f 
−1

(cl(K )) = f 
−1 

(K ). Thus, f 
−1

(K ) is (αψ, p)-

closed. 

 

Recall that for a function  f : X  → Y , the  subset {(x, f 

(x))  : x  X } of the product  space X × Y  is called the 

graph  of f and is denoted  by G(f ). 

 

5.3. Definition  

For a function f : X → Y , the graph G(f ) = {(x, f (x)) : x  

X } is said to b   (αψ, p)-closed if for each (x, y)  X × Y  

− G(f ), there  exist  U  αψPO(X, x) and an open set V  of Y  

containing y such that  (U × V )  G(f ) = υ. 

 

5.4. Lemma  

Let f : X  → Y   be a function.   Then  the graph  G(f ) is 

(αψ, p)- closed in X × Y  if and only if for each point (x, y) 

 X × Y  − G(f ), there exist a (αψ, p)-open set U and an 

open set V  containing x and y, respectively, such that  f (U ) 

 V  = υ. 

 

Proof.  

It follows readily from the above definition. 

 

5 . 5 .  Theorem    

If f : X  → Y   is an injective  function  with  the  (αψ, p)-

closed graph,  then  X  is (αψ, p)-T1. 

Proof.  

Let x and y be two distinct  points  of X . Then  f (x) ≠ f (y).  

Thus there exist an (αψ, p)-open set U and an open set V  

containing x and f (y), respectively, such that f (U )  V  = υ.  

Therefore y  U and it follows that X is (αψ, p)-T1 . 
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Recall that  a space X  is said to  be T1   if for each pair  of 

distinct  points  x and y of X , there  exist an open set U 

containing x but  not y and an open set V containing y but  

not x. 

 

5.6. Theorem  

If f : X  → Y   is an surjective  function  with the  (αψ, p)-

closed graph,  then  Y  is T1. 

Proof.   

Let y1   and y2   be two  distinct  points  of Y .  Since f is 

surjective,  there exist a point x in X  such that f (x)  = y2.  

Therefore   (x, y1)  G(f ).  By lemma 5.4., there  exist an (αψ, 

p)-open set U and an open set V   containing  x and y1 , 

respectively, such that  f (U )   V  = υ. It follows that y2   V . 

Hence Y  is T1. 

 

5.7.   Definition  

A function  f : X  → Y   is said to be (αψ, p)-W -continuous  

if for each x e X and each open set V  of Y  containing f (x), 

there exists an (αψ, p)- open set U in X  containing x such 

that f (U ) c cl(V ). 

 

 

5.8. Theorem  

If f :  X  → Y   is (αψ, p)-W -continuous  and  Y   is 

Hausdorff, then  G(f ) is (αψ, p)-closed. 

Proof.  

Suppose that (x, y) G(f ), then f (x) ≠ y. By the fact that  

Y  is Hausdorff, there exist open sets W and V  such that f 

(x)  W , y  V  and V  W = υ. It  follows that cl(W )  
V   =  υ.   Since f is (αψ, p)-W -continuous,  there  exists U 

 αψPO(X, x) such that  f (U ) c cl(W ).  Hence, we have f 

(U )  V  = υ. This means that  G(f ) is (αψ, p)-closed. 

5.9. Corollary  

If f :  X  → Y   is (αψ, p)-W -continuous  and  Y   is 

Hausdorff, then  G(f ) is (αψ, p)-closed in X × Y . 

 

 

5.10. Definition      

A subset  A of a space X  is said to be (αψ, p)-compact  

relative to X if every cover of A by (αψ, p)-open sets of X 

has a finite subcover. 

 

5.11.   Theorem  

Let f : X  → Y   have a (αψ, p)-closed graph.   If K  is 

(αψ, p)- compact relative to X , then  f (K ) is closed in Y . 

Proof.   

Suppose that  y  f (K ).  For  each x  K , f (x)  = y.  By 

lemma 5.4., there  exist  Ux     αψP O(X, x)  and  an  open  

neighbourhood  Vx   of y such  that  f (Ux)  Vx  = υ. The 

family {Ux  : x  K } is a cover of K by (αψ, p)-open sets of 

X  and  there exists a fnite subset K0   of K  such that  K 

c {Ux   : x  K0}.  Put V  =  {Vx  : x  K0}.  Then  V  is 

an open neighbourhood  of y and f (K )  V  = υ. This means 

that f (K ) is closed in Y . 

 

5.12. Theorem  

If f : X → Y  has an (αψ, p)-closed graph  G(f ) and g : Y  

→ Z is a perfectly continuous function,  then  the  set {(x, y) 

: f (x) = g(y)} is (αψ, p)- closed in X × Y. 

Proof.   

Let A = {(x, y) : f (x) = g(y)} and (x, y)  (X × Y ) − 
G(f ).  Since f has an (αψ, p)-closed graph G(f ), there exist 

an (αψ, p)-open set U and an open set V  containing x and 

g(y), respectively,  such that  f (U )  V  = υ.  This implies 

that there  exists a pre-regular  p-open set N  containing x 

such that  N c U and f (N ) n V  = υ. Since g is a perfectly 

continuous function, then there exist an open and closed set  

G  containig  y such that g(G) c V .  We have f (U )  g(G) 

= υ. This  implies that (N × G)  A  = υ.  Since N × G is 

pre-regular  p-open,  then (x, y)  αψclp (A).  Thus, E is 

(αψ, p)-closed in X × Y . 

 

5.13. Corollary  

If f : X → Z is an (αψ, p)-continuous function and g : Y  → 
Z is a perfectly continuous function and Z is Hausdorff, then 

the set {(x, y) : f (x) = g(y)} is (αψ, p)-closed in X × Y  

Proof.  

It follows from Corollary 5.9 and Theorem  5.12. 

 

 

5.14. Theorem  

If f :  X  → Y   is an  (αψ, p)-continuous  function  and  Y   is 

Hausdorff, then the set {(x, y)  X × Y  : f (x) = f (y)} is (αψ, 

p)-closed in X × X .  

Proof.  

Let {(x, y) : f (x) = f (y)} and let {(x, y)  (X × Y ) − A}.  It 

follows tat f (x) ≠ f (y).  Since Y  is Hausdorff, there exist open 

set U and V  containing f (x) and f(y), respectively, such that 

U  V  = υ. Since f is (αψ, p)-continuous,  there exist pre-

regular p-open set in X × X containing (x, y). Hence, A is 

(αψ, p)-closed in X × X . 

 

 

 

5.15. Definition  

A function  f : X  → Y   is called contra  (αψ, p)-open if 

the image of every (αψ, p)-open set in X is closed in Y . 

 

 

5.16. Theorem     

If f : X  → Y   is a contra  (αψ, p)-open funcion such that  

the inverse image of each opoint of Y  is (αψ, p)-closed, then  

f has an (αψ, p)-closed graph G(f ). 

Proof.  

Let (x, y)  X −G(f ). We have x  f 
−1

(y).  Since f 
−1 

(y) 

is (αψ, p)-closed, there exists  a pre-regular  p-open set A 

containing  x such that  A f 
−1

(y) = υ. Since, f is 

contra (αψ, p)-open, then  f (A) is closed.  This implies 

that  there  exist an open set B in Y  containing  y such 



International Journal of Computer Applications (0975 – 8887)  

Volume 5– No.1, August 2010 

12 

 

that f (A)  B = υ.  Hence, f has an (αψ, p)-closed 

graph G(f ). 

 

5.17. Theorem  

If f :  X  → Y   has  an  (αψ, p)-closed graph  G(f ),  then  

for each x X , {f (x)} = x∈A∈αψP O(X,τ ) cl(f (A)). 

Proof.   

Suppose  that y  ≠ f (x)  and  y  x∈A∈αψP O(X,τ ) 

cl(f (A)).  Then  y   cl(f (A)) for each x  A  αψP 

O(X, r ).  This implies that  for each open set B containing  

y, B  f (A) ≠ υ.  Since (x, y)  G(f ) and G(f ) is an (αψ, 

p)- closed graph,  this is a contradiction. 

 

5.18. Definition  

A function  f : X  → Y   is called an (αψ, p)-open if the  

image of every (αψ, p)-open set in X is open in Y . 

 

5.19.    Theorem  

If f : X  → Y   is a surjective  (αψ, p)-open function  with  

an(αψ, p)-closed graph G(f ), then  Y  i s  T 2 . .  

Proof.   

Let  y1   and y2   be any two  distinct  points  of Y .   Since 

f is surjective f (x) = y1  for some x  X and (x, y2 )  (X 

× Y ) − G(f ). This implies that there exist an (αψ, p)-open 

set A of X and an open set B of Y  such that (x, y2)  (A×B) 

and (A × B) G(f ) = υ.  We have f (A)  B = υ.  Since f 

is (αψ, p)-open, then f (A) is open such that  f (x) = y1   f 

(A).  Thus, Y  is T2. 

 

5.20 Theorem  

If f : X → Y  is an (αψ, p)-continuous injective function and 

Y is T2 , then  X is (αψ, p)-T2. 

Proof.   

Let x and  y in X  be any pair  of distinct  points,  then  

there  exist  disjoint  open sets  A  and  B  in Y   such that f (x)  

 A and  f (y)  B.   Since f is (αψ, p)-continuous,  f 
−1

(A) 

and f 
−1 

(B) are (αψ, p)-open in X containing x and y 

respectively, we have f 
−1 

(A) n f 
−1

(B) = υ.  Thus, X is 

(αψ, p)-T2. 

 

5.21. Theorem  

If f, g : X  → Y   are (αψ, p)-continuous  functions,  X  is 

sub- maximal and Y  is Hausdorff, then the set {x  X : f 

(x) = g(x)} is (αψ, p)-closed in X . 

Proof.  

Let A = {x X : f (x) = g(x)}.  Take x X − A. We have f 

(x) ≠ g(x). Since Y   is  Hausdorff, then  there  exist open sets 

U and V   in Y   containing  f (x) and g(x), respectively, such 

that  U  V  = υ. Since f and g are (αψ, p)-continuous, then f 

−1 (U ) and g−1(V ) are (αψ, p)-open in X with x f −1(U ) 

and x  g−1(V ). Then there  exist  pre-regular  p-open sets 

G and  H  such that  x G c f 
−1

(U ) and  x  H  c  

g
−1

(V ).   Take  K  = G H  .   By lemma  2.6, K  is pre-

regular p-open.  Thus, f (K ) g(K ) = υ and hence x  

αψclp (A).  This shows that A is (αψ, p)-closed in X . 
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