

Some Applications of $\alpha\psi$ -P-Open Sets

R.Devi

Principal

Kongunadu Arts and Science College
 Coimbatore-641029

M.Parimala

Lecturer, Department of Mathematics
 Bannari Amman Institute of Technology
 Sathyamangalam-638401

ABSTRACT

In this paper we introduce some new separation axioms by utilizing the notions of $\alpha\psi$ -p-open sets and $\alpha\psi$ -preclosure operator.

KEYWORDS

$\alpha\psi$ -p-open, sober ($\alpha\psi$, p)-R0, $D(\alpha\psi, p)$ -set, ($\alpha\psi$, p)-D0, ($\alpha\psi$, p)-D1, ($\alpha\psi$, p)-D2.

AMS SUBJECT CLASSIFICATION (2000):
 54B05, 54C08, 54C10, 54D10.

1. INTRODUCTION

The concept of preopen sets and precontinuous functions in topological spaces are introduced by A.S. Mashhour et al. [10]. Recently, R.Devi et al. [4] introduced the notion of $\alpha\psi$ -open sets which are weaker than open sets. Since then, $\alpha\psi$ -open sets have been widely used in order to introduce new spaces and functions.

In this paper, we introduce the notion of $\alpha\psi$ -p-open sets and $\alpha\psi$ -p-continuity in topological spaces. By utilizing these notions we introduce some weak separation axioms. Also we show that some basic properties of ($\alpha\psi$, p)-T_i, ($\alpha\psi$, p)-D_i for $i = 0, 1, 2$ spaces and we offer a new class of functions called ($\alpha\psi$, p)-continuous functions and a new notion of the graph of a function called an ($\alpha\psi$, p)-closed graph and investigate some of their fundamental properties.

2. PRELIMINARIES

Let $A \subseteq X$, the closure of A and the interior of A will be denoted by $cl(A)$ and $int(A)$ respectively. A is regular open if $A = int(cl(A))$ and A is regular closed if its complement is regular open; equivalently A is regular closed if $A = cl(int(A))$, see [17].

Definition 2.1.

A subset A of a space (X, τ) is called a

1. semi-open set [9] if $A \subseteq cl(int(A))$ and a semi-closed set [9] if $int(cl(A)) \subseteq A$,

2. α -open set [11] if $A \subseteq int(cl(int(A)))$ and an α -closed set [11] if $cl(int(cl(A))) \subseteq A$,

3. pre-open set [10] if $A \subseteq int(cl(A))$ and pre closed set [10] if $cl(int(A)) \subseteq A$,

4. δ -open set [16] if for each $x \in A$, there exists a regular open set G such that $x \in G \subset A$ and

5. pre-regular p-open set [6] if $A = pint(pcl(A))$.

The semi-closure (resp. α -closure) of a subset A of a space (X, τ) is the intersection of all semi-closed (resp. α -closed) sets that contain A and is denoted by $scl(A)$ (resp. $acl(A)$).

Definition 2.2.

A subset A of a space (X, τ) is called a

1. a semi-generalized closed (briefly sg-closed) set [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of sg-closed set is called sg-open set,
2. a ψ -closed set [15] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ) . The complement of ψ -closed set is called ψ -open set and

Let (X, τ) be a space and let A be a subset of X . A is called $\alpha\psi$ -closed set [4] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open set of (X, τ) . The complement of an $\alpha\psi$ -closed set is called $\alpha\psi$ -open. The intersection of all $\alpha\psi$ -closed (resp. δ -closed) sets containing A is called the $\alpha\psi$ -closure (resp. δ -closure) of A and is denoted by $cl_{\alpha\psi}(A)$ (resp. $cl_{\delta}(A)$).

Definition 2.3.

A subset A of a topological space (X, τ) is said to be δ -preopen [10] if $A \subseteq int(cl_{\delta}(A))$. A family of all δ -preopen sets in a topological space (X, τ) is denoted by $\delta PO(X, \tau)$.

Definition 2.4.

A function $f : X \rightarrow Y$ is called perfectly continuous

[12] if for each open set $A \subset Y$, $f^{-1}(A)$ is open and closed in X .

Lemma 2.5. [7]

If A and B are pre-regular p-open sets of the space X and Y , respectively, then $A \times B$ is a pre-regular p-open set of $X \times Y$.

Lemma 2.6. [7] If a space is submaximal, then any finite intersection of pre-regular p-open sets is pre-regular p-open.

3. $\alpha\psi$ -P-OPEN SETS

3.1 Definition

A subset A of a topological space (X, τ) is said to be $\alpha\psi$ -p-open if $A \subseteq \text{int}(\text{cl}_{\alpha\psi}(A))$.

The complement of an $\alpha\psi$ -p-open set is said to be $\alpha\psi$ -p-closed. The family of all $\alpha\psi$ -p-open (resp. $\alpha\psi$ -p-closed) sets in a topological space (X, τ) is denoted by $\alpha\psi\text{PO}(X, \tau)$ (resp. $\alpha\psi\text{PC}(X, \tau)$).

3.2 Definition

Let A be a subset of a topological space (X, τ) . The intersection of all $\alpha\psi$ -p-closed (resp. δ -preclosed) sets containing A is called the $\alpha\psi$ -p-closure (resp. δ -preclosure [14]) of A and is denoted by $\text{pcl}_{\alpha\psi}(A)$ (resp. $\text{pcl}_\delta(A)$).

3.3 Definition

Let (X, τ) be a topological space. A subset U of X is called a $(\alpha\psi, p)$ -neighbourhood of a point $x \in X$ if there exists an $\alpha\psi$ -p-open set V such that $x \in V \subseteq U$.

3.4 Theorem

For the $\alpha\psi$ -p-closure of subsets A, B in a topological space (X, τ) , the following properties hold:

- (1) A is $\alpha\psi$ -p-closed in (X, τ) if and only if $A = \text{pcl}_{\alpha\psi}(A)$,
- (2) If $A \subset B$, then $\text{pcl}_{\alpha\psi}(A) \subset \text{pcl}_{\alpha\psi}(B)$,
- (3) $\text{pcl}_{\alpha\psi}(A)$ is $\alpha\psi$ -p-closed, that is $\text{pcl}_{\alpha\psi}(\text{pcl}_{\alpha\psi}(A)) = \text{pcl}_{\alpha\psi}(\text{pcl}_{\alpha\psi}(A))$ and
- (4) $x \in \text{pcl}_{\alpha\psi}(A)$ if and only if $A \cap V \neq \emptyset$ for every $V \in \alpha\psi\text{PO}(X, \tau)$ containing x .

Proof

It is obvious

3.5 Theorem

For a family $\{A_\beta : \beta \in \Delta\}$ of subsets a topological space (X, τ) , the following properties hold:

$$(1) \text{pcl}_{\alpha\psi}\{A_\beta : \beta \in \Delta\} \subset \cap\{\text{pcl}_{\alpha\psi}(A_\beta) : \beta \in \Delta\}$$

$$(2) \text{pcl}_{\alpha\psi}\{A_\beta : \beta \in \Delta\} \supset \cup\{\text{pcl}_{\alpha\psi}(A_\beta) : \beta \in \Delta\}$$

Proof.

- (1) Since $\cap_{\beta \in \Delta} A_\beta \subseteq A_\beta$ for each $\beta \in \Delta$, by Theorem 3.4 we have $\text{pcl}_{\alpha\psi}(\cap_{\beta \in \Delta} A_\beta) \subset \text{pcl}_{\alpha\psi}(A_\beta)$ for each $\beta \in \Delta$ and hence $\text{pcl}_{\alpha\psi}(\cap_{\beta \in \Delta} A_\beta) \subset \cap_{\beta \in \Delta} (\text{pcl}_{\alpha\psi}(A_\beta))$.
- (2) Since $A_\beta \subset \cup_{\beta \in \Delta} A_\beta$ for each $\beta \in \Delta$, by Theorem 3.4 we have $\text{pcl}_{\alpha\psi}(A_\beta) \subset \text{pcl}_{\alpha\psi}(\cup_{\beta \in \Delta} A_\beta)$ for each $\beta \in \Delta$ and hence $\cup_{\beta \in \Delta} \text{pcl}_{\alpha\psi}(A_\beta) \subset \text{pcl}_{\alpha\psi}(\cup_{\beta \in \Delta} A_\beta)$.

3.6 Theorem

Every $\alpha\psi$ -p-open set is preopen.

Proof

It follows from the Definitions.

The converse of the above Theorem need not be true by the following Example.

3.7 Example

Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a, b\}\}$. Here $\{a, c\}$ is not $\alpha\psi$ -p-open however it is preopen, since the $\alpha\psi$ -p-open sets are $X, \emptyset, \{a\}, \{b\}, \{a, b\}$ and preopen sets are $X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}$.

3.8 Theorem

- (1) Every preopen set is δ -preopen [3].
- (2) Every $\alpha\psi$ -p-open is δ -preopen.

Proof.

(2) It follows from (1) and Theorem 3.6.

3.9 Definition

A subset A of a topological space (X, τ) is called a $D_{(\alpha\psi, p)}$ -set (resp. D_p -set [2,5], $D_{(\delta, p)}$ -set [3]) if there are two $U, V \in \alpha\psi\text{PO}(X, \tau)$ (resp. $\text{PO}(X, \tau)$, $\delta\text{PO}(X, \tau)$) such that $U \neq X$ and $A = U - V$.

It is true that every $\alpha\psi$ -p-open (resp. preopen) set U different from X is a $(\alpha\psi, p)$ -set (resp. D_p -set) if $A = U$ and $V = \emptyset$.

3.10 Definition

A topological space (X, τ) is said to be

- (1) $(\alpha\psi, p)$ -D₀ (resp. pre-D₀ [2,5], (δ, p) -D₀ [3]) if for any distinct pair of points x and y of X there exist a

$D_{(\alpha\psi,p)}$ -set (resp. D_p -set, $D_{(\delta,p)}$ -set) of X containing x but not y or a $D_{(\alpha\psi,p)}$ -set (resp. D_p -set, $D_{(\delta,p)}$ -set) of X containing y but not x .

- (2) $(\alpha\psi, p)$ -D1 (resp. pre-D1 [2,5], (δ, p) -D1 [3]) if for any distinct pair of points x and y of X there exist a $D_{(\alpha\psi,p)}$ -set (resp. D_p -set, $D_{(\delta,p)}$ -set) of X containing x but not y and a $D_{(\alpha\psi,p)}$ -set (resp. D_p -set, $D_{(\delta,p)}$ -set) of X containing y but not x .
- (3) $(\alpha\psi, p)$ -D2 (resp. pre-D2 [2,5], (δ, p) -D2 [3]) if for any distinct pair of points x and y of X there exists disjoint $D_{(\alpha\psi,p)}$ -set (resp. D_p -set, $D_{(\delta,p)}$ -set) G and E of X containing x and y , respectively.

3.11 Definition

A topological space (X, τ) is said to be

- (1) $(\alpha\psi, p)$ -T0 (resp. pre-T0 [8,13], (δ, p) -T0 [3]) if for any distinct pair of points x and y of X there exist an $\alpha\psi$ -p-open (resp. preopen, δ -preopen) set U in X containing x but not y or an $\alpha\psi$ -p-open (resp. preopen, δ -open) set V in X containing y but not x .
- (2) $(\alpha\psi, p)$ -T1 (resp. pre-T1 [8,13], (δ, p) -T1 [3]) if for any distinct pair of points x and y of X there exist an $\alpha\psi$ -p-open (resp. preopen, δ -preopen) set U in X containing x but not y and an $\alpha\psi$ -p-open (resp. preopen, δ -preopen) set V in X containing y but not x .
- (3) $(\alpha\psi, p)$ -T2 (resp. pre-T2 [8,13], (δ, p) -T2 [3]) if for any distinct pair of points x and y of X there exist $\alpha\psi$ -p-open (resp. preopen, δ -preopen) sets U and V in X containing x and y , respectively, such that $U \cap V = \emptyset$.

3.12 Remark

- (i) If (X, τ) is $(\alpha\psi, p)$ -T1, then it is $(\alpha\psi, p)$ -T $i-1$, $i = 1, 2$.
- (ii) If (X, τ) is $(\alpha\psi, p)$ -T i , then it is $(\alpha\psi, p)$ -D i , $i = 0, 1, 2$.
- (iii) If (X, τ) is $(\alpha\psi, p)$ -D i , then it is $(\alpha\psi, p)$ -D $i-1$, $i = 1, 2$.
- (iv) If (X, τ) is $(\alpha\psi, p)$ -D i , then it is pre-T i , $i = 0, 1, 2$.

By Remark 3.12 and [2, Remark 3.1], we have the following diagram.

$$\begin{array}{ccccccc}
 (\alpha\psi, p)\text{-T}_2 & \rightarrow & (\alpha\psi, p)\text{-D}_2 & \rightarrow & \text{pre-T}_2 & \rightarrow & (\delta, p)\text{-T}_2 & \rightarrow & (\delta, p)\text{-D}_2 \\
 \downarrow & \downarrow & \downarrow & \downarrow & & & \downarrow & & \downarrow \\
 (\alpha\psi, p)\text{-T}_1 & \rightarrow & (\alpha\psi, p)\text{-D}_1 & \rightarrow & \text{pre-T}_1 & \rightarrow & (\delta, p)\text{-T}_2 & \rightarrow & (\delta, p)\text{-D}_2 \\
 \downarrow & \downarrow & \downarrow & \downarrow & & & \downarrow & & \downarrow \\
 (\alpha\psi, p)\text{-T}_0 & \rightarrow & (\alpha\psi, p)\text{-D}_0 & \rightarrow & \text{pre-T}_0 & \rightarrow & (\delta, p)\text{-T}_2 & \rightarrow & (\delta, p)\text{-D}_2
 \end{array}$$

3.13 Theorem

A topological space (X, τ) is $(\alpha\psi, p)$ -D1 if and

only if it is $(\alpha\psi, p)$ -D2.

Proof

Sufficiency. This follows from Remark 3.12.

Necessity. Suppose X is a $(\alpha\psi, p)$ -D1. Then for each distinct pair $x, y \in X$, we have $D_{(\alpha\psi,p)}$ -sets G_1 and G_2 such that $x \in G_1, y \notin G_1$; $y \in G_2, x \notin G_2$. Let $G_1 = U_1/U_2$, $G_2 = U_3/U_4$, where $U_1, U_2, U_3, U_4 \in \alpha\psi P O(X, \tau)$. From $x \in G_2$ we have either $x \in U_3$ or $x \in U_3$ and $x \in U_4$.

We discuss the two cases separately.

(1) $x \in U_3$. From $y \notin G_1$ we have two sub cases:

(a) $y \in U_1$. From $x \in U_1/U_2$ we have $x \in U_1/(U_2 \cup U_3)$ and from $y \in U_3/U_4$ we have $y \in U_3/(U_1 \cup U_4)$. It is easy to see that $(U_1/(U_2 \cup U_3)) \cap (U_3/(U_1 \cup U_4)) = \emptyset$.

(b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1/U_2$, $y \in U_2$ and $(U_1/U_2) \cap U_2 = \emptyset$. (2) $x \in U_3$ and $x \in U_4$. We have $y \in U_3/U_4$, $x \in U_4$ and $(U_3/U_4) \cap U_4 = \emptyset$.

From the discussion above we know that the space X is $(\alpha\psi, p)$ -D2.

3.14 Definition

A point $x \in X$ which has only X as the $(\alpha\psi, p)$ -neighbourhood is called a $(\alpha\psi, p)$ -neat point.

3.15 Theorem

If a topological spaces (X, τ) is $(\alpha\psi, p)$ -D1, then it has no $(\alpha\psi, p)$ -neat point.

Proof.

Since (X, τ) is $(\alpha\psi, p)$ -D1, so each point x of X is contained in a $D_{(\alpha\psi,p)}$ -set $O = U/V$ and thus in U . By definition $U \neq X$. This implies that x is not a $(\alpha\psi, p)$ -neat point.

3.16 Definition

A topological space (X, τ) is $(\alpha\psi, p)$ -symmetric if x and y in X , $x \in \text{pcl}_{\alpha\psi}(\{y\})$ implies $y \in \text{pcl}_{\alpha\psi}(\{x\})$.

3.17 Theorem

For a topological space (X, τ) , the following properties hold.

- (1) If $\{x\}$ is $\alpha\psi$ -p-closed for each $x \in X$, then (X, τ) is $(\alpha\psi, p)$ -T1.
- (2) Every $(\alpha\psi, p)$ -T1 space is $(\alpha\psi, p)$ -symmetric.

Proof Suppose $\{p\}$ is $\alpha\psi$ -p-closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X/\{x\}$. Hence $X/\{x\}$ is an $\alpha\psi$ -p-open set contained in y but not containing x . Similarly $X/\{y\}$ is an $\alpha\psi$ -p-open set contained in x but not containing y . Accordingly X is a $(\alpha\psi, p)$ -T1 space.

(2) Suppose that $y \in \text{pcl}_{\alpha\psi}(\{x\})$. Then, since $x \neq y$, there exists an $\alpha\psi$ -p-open set U containing x such that $y \in U$ and hence $x \in \text{pcl}_{\alpha\psi}(\{y\})$. This shows that $x \in \text{pcl}_{\alpha\psi}(\{y\})$ implies $y \in \text{pcl}_{\alpha\psi}(\{x\})$. Therefore (X, τ) is $(\alpha\psi, p)$ -symmetric.

3.18 Definition

A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be $\alpha\psi$ -pre continuous if for each $x \in X$ and each $\alpha\psi$ -p-open set V containing $f(x)$, there is an $\alpha\psi$ -p-open set U in X containing x such that $f(U) \subseteq V$.

3.19 Theorem

If $f : (X, \tau) \rightarrow (Y, \sigma)$ is an $\alpha\psi$ -pre continuous surjective function and E is a $D(\alpha\psi, p)$ -set in Y , then the inverse image $f^{-1}(E)$ is a $D(\alpha\psi, p)$ -set in X .

Proof.

Let E be a $D(\alpha\psi, p)$ -set in Y . Then there are $\alpha\psi$ -p-open sets U_1 and U_2 in Y such that $E = U_1 \cup U_2$ and $U_1 \neq Y$. By the $\alpha\psi$ -precontinuity of f , $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are $\alpha\psi$ -p-open in X . Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$. Hence $f^{-1}(E) = f^{-1}(U_1) \cup f^{-1}(U_2)$ is a $D(\alpha\psi, p)$ -set.

3.20 Theorem

If (Y, σ) is $(\alpha\psi, p)$ -D₁ and $f : (X, \tau) \rightarrow (Y, \sigma)$ is an $\alpha\psi$ -pre continuous bijection, then (X, τ) is $(\alpha\psi, p)$ -D₁.

Proof

Suppose that Y is a $(\alpha\psi, p)$ -D₁ space. Let x and y be any pair of distinct points in X . Since f is injective and Y is $(\alpha\psi, p)$ -D₁, there exist $D(\alpha\psi, p)$ -sets G_x and G_y of Y containing $f(x)$ and $f(y)$, respectively, such that $f(y) \in G_x$ and $f(x) \in G_y$. By Theorem 3.19, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are $D(\alpha\psi, p)$ -sets in X containing x and y , respectively, such that $y \in f^{-1}(G_x)$ and $x \in f^{-1}(G_y)$. This implies that X is a $(\alpha\psi, p)$ -D₁ space.

3.21 Theorem

A topological space (X, τ) is $(\alpha\psi, p)$ -D₁ if and only if for each pair of distinct points $x, y \in X$, there exists an $\alpha\psi$ -pre continuous surjective function $f : (X, \tau) \rightarrow (Y, \sigma)$ such that $f(x)$ and $f(y)$ are distinct, where (Y, σ) is a $(\alpha\psi, p)$ -D₁ space.

Proof.

Necessity. For every pair of distinct points of X , it suffices to take the identity function on X .

Sufficiency. Let x and y be any pair of distinct points in X . By hypothesis there exists an $\alpha\psi$ -pre continuous, surjective function f of a space X onto $(\alpha\psi, p)$ -D₁ space Y such that $f(x) \neq f(y)$. By Theorem 3.13, there exist disjoint $D(\alpha\psi, p)$ -sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is $\alpha\psi$ -pre continuous and surjective, by Theorem 3.20, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint $D(\alpha\psi, p)$ -sets in X containing x and y , respectively, hence by Theorem 3.13, X is a $(\alpha\psi, p)$ -D₁ space.

4. SOBER $(\alpha\psi, P)$ -R₀ SPACES

4.1. Definition

Let A be a subset of a topological space (X, τ) . The $\alpha\psi$ -prekernel of A , denoted by $\text{pker}_{\alpha\psi}(A)$ is defined to be the set $\text{pker}_{\alpha\psi}(A) = \cap \{U \in \alpha\psi\text{PO}(X, \tau) : A \subseteq U\}$.

4.2 Lemma

Let (X, τ) be a topological space and $x \in X$. Then $\text{pker}_{\alpha\psi}(A) = \{x \in X : \text{pcl}_{\alpha\psi}(\{x\}) \cap A \neq \emptyset\}$.

Proof

Let $x \in \text{pker}_{\alpha\psi}(A)$ and suppose $\text{pcl}_{\alpha\psi}(\{x\}) \setminus A = \emptyset$. Hence $x \notin X \setminus \text{pcl}_{\alpha\psi}(\{x\})$ which is an $\alpha\psi$ -p-open set containing A . This is absurd, since $x \in \text{pker}_{\alpha\psi}(A)$. Consequently, $\text{pcl}_{\alpha\psi}(\{x\}) \setminus A \neq \emptyset$. Next, let x be such that $\text{pcl}_{\alpha\psi}(\{x\}) \setminus A \neq \emptyset$ and suppose that $x \notin \text{pker}_{\alpha\psi}(A)$. Then, there exists an $\alpha\psi$ -p-open set D containing A and $x \notin D$. Let $y \in \text{pcl}_{\alpha\psi}(\{x\}) \setminus A$. Hence, D is an $(\alpha\psi, p)$ -neighbourhood of y which does not contain x . By this contradiction $x \in \text{pker}_{\alpha\psi}(A)$ and the claim is shown.

4.3 Definition

A topological space (X, τ) is said to be sober $(\alpha\psi, p)$ -R₀ (resp. sober (δ, p) -R₀ [3]) if $\cap_{x \in X} \text{pcl}_{\alpha\psi}(\{x\}) = \emptyset$ (resp. $\cap_{x \in X} \text{pcl}_{\delta}(\{x\}) = \emptyset$).

4.4. Theorem

Every sober $(\alpha\psi, p)$ -R₀ space is sober (δ, p) -R₀ space.

Proof.

Let (X, τ) be a sober $(\alpha\psi, p)$ -R₀ space, then $\cap_{x \in X} \text{pcl}_{\alpha\psi}(\{x\}) = \emptyset$. Therefore, $\cap_{x \in X} \text{pcl}_{\delta}(\{x\}) = \emptyset$.

4.5. Theorem

A topological space (X, τ) is sober $(\alpha\psi, p)$ -R₀ if and only if $\text{pker}_{\alpha\psi}(\{x\}) \neq X$ for every $x \in X$.

Proof.

Suppose that the space (X, τ) be sober $(\alpha\psi, p)$ -R₀. Assume that there is a point y in X such that $\text{pker}_{\alpha\psi}(\{y\}) = X$. Let x be any point of X . Then $x \in V$ for every $\alpha\psi$ -p-open set V containing y and hence $y \in \text{pcl}_{\alpha\psi}(\{x\})$ for any $x \in X$. This implies that $y \in \cap_{x \in X} \text{pcl}_{\alpha\psi}(\{x\})$.

But this is a contradiction. Now assume that $\text{pker}_{\alpha\psi}(\{x\}) = X$ for every $x \in X$. If there exists a point of X . This implies that the space X is the unique $\alpha\psi$ -preopen set containing y . Hence $\text{pker}_{\alpha\psi}(\{y\}) \neq X$ which is a contradiction. Therefore $(X, \not\in)$ is sober $(\alpha\psi, p)$ -R₀ space.

4.6. Definition

A function $f : (X, \not\in) \rightarrow (Y, \sigma)$ is called pre $\alpha\psi$ -p-closed if the image of every $\alpha\psi$ -p-closed subset of X is $\alpha\psi$ -p-closed in Y .

4.7. Theorem

If $f : (X, \not\in) \rightarrow (Y, \sigma)$ is an injective pre $\alpha\psi$ -p-closed function and X is sober $(\alpha\psi, p)$ -R₀, then Y is sober $(\alpha\psi, p)$ -R₀.

Proof.

Since X is sober $(\alpha\psi, p)$ -R₀, $\cap_{x \in X} \text{pcl}_{\alpha\psi}(\{x\}) = \emptyset$. Since f is a pre $\alpha\psi$ -p-closed injection, we have

$$\begin{aligned} \varphi &= f(\cap_{x \in X} \text{pcl}_{\alpha\psi}(\{x\})) \\ &= \cap_{x \in X} f(\text{pcl}_{\alpha\psi}(\{x\})) \\ &\supseteq \cap_{x \in X} \text{pcl}_{\alpha\psi} f(\{x\}) \\ &\supseteq \cap_{x \in X} \text{pcl}_{\alpha\psi}(\{y\}). \end{aligned}$$

Therefore, Y is sober $(\alpha\psi, p)$ -R₀.

4.8 Theorem

If a topological space X is sober $(\alpha\psi, p)$ -R₀ and Y is any topological space, then the product $X \times Y$ is sober $(\alpha\psi, p)$ -R₀.

Proof.

We show that $\cap_{(x,y) \in X \times Y} \text{pcl}_{\alpha\psi}(\{(x,y)\}) = \emptyset$. We have

$$\begin{aligned} \cap_{(x,y) \in X \times Y} \text{pcl}_{\alpha\psi}(\{(x,y)\}) &\subseteq \cap_{(x,y) \in X \times Y} (\text{pcl}_{\alpha\psi}(\{x\}) \times \text{pcl}_{\alpha\psi}(\{y\})) \\ &= \cap_{x \in X} \text{pcl}_{\alpha\psi}(\{x\}) \times \cap_{y \in Y} \text{pcl}_{\alpha\psi}(\{y\}) \\ &\subseteq \varphi \times Y \\ &= \emptyset. \end{aligned}$$

5. ($\alpha\psi, p$)-CONTINUOUS FUNCTIONS AND ($\alpha\psi, p$)-CLOSED GRAPHS

5.1. Definition

A function $f : X \rightarrow Y$ is said to be $(\alpha\psi, p)$ -continuous if for every open set V of Y , $f^{-1}(V)$ is $(\alpha\psi, p)$ -open in X .

5.2. Theorem

The following are equivalent for a function $f : X \rightarrow Y$:

- (i) f is $(\alpha\psi, p)$ -continuous,
- (ii) The inverse image of every closed set in Y is $(\alpha\psi, p)$ -closed in X ,

(iii) For each subset A of X , $f(\alpha\psi\text{cl}_p(A)) \subseteq \text{cl}(f(A))$,

(iv) For each subset B of Y , $\alpha\psi\text{cl}_p(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$.

Proof.

(i) \Leftrightarrow (ii): Obvious.

(iii) \Leftrightarrow (iv): Let B be any subset of Y . Then by (iii), we have $f(\alpha\psi\text{cl}_p(f^{-1}(B))) \subseteq \text{cl}(f(f^{-1}(B))) \subseteq \text{cl}(B)$. This implies $\alpha\psi\text{cl}_p(f^{-1}(B)) \subseteq f^{-1}(f(\alpha\psi\text{cl}_p(f^{-1}(B)))) \subseteq f^{-1}(\text{cl}(B))$.

Conversely, let $B = f(A)$ where A is a subset of X . Then, by (iv), we have, $\alpha\psi\text{cl}_p(A) \subseteq \alpha\psi\text{cl}_p(f^{-1}(f(A))) \subseteq f^{-1}(\text{cl}(f(A)))$. Thus, $f(\alpha\psi\text{cl}_p(A)) \subseteq \text{cl}(f(A))$. (ii) \Rightarrow (iv):

Let $B \subseteq Y$. Since $f^{-1}(\text{cl}(B))$ is $(\alpha\psi, p)$ -closed and $f^{-1}(B) \subseteq f^{-1}(\text{cl}(B))$, then $\alpha\psi\text{cl}_p(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$.

(iv) \Rightarrow (ii): Let $K \subseteq Y$ be a closed set. By (iv), $\alpha\psi\text{cl}_p(f^{-1}(K)) \subseteq f^{-1}(\text{cl}(K)) = f^{-1}(K)$. Thus, $f^{-1}(K)$ is $(\alpha\psi, p)$ -closed.

Recall that for a function $f : X \rightarrow Y$, the subset $\{(x, f(x)) : x \in X\}$ of the product space $X \times Y$ is called the graph of f and is denoted by $G(f)$.

5.3. Definition

For a function $f : X \rightarrow Y$, the graph $G(f) = \{(x, f(x)) : x \in X\}$ is said to be $(\alpha\psi, p)$ -closed if for each $(x, y) \in X \times Y - G(f)$, there exist $U \in \alpha\psi\text{PO}(X, x)$ and an open set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

5.4. Lemma

Let $f : X \rightarrow Y$ be a function. Then the graph $G(f)$ is $(\alpha\psi, p)$ -closed in $X \times Y$ if and only if for each point $(x, y) \in X \times Y - G(f)$, there exist a $(\alpha\psi, p)$ -open set U and an open set V containing x and y , respectively, such that $f(U) \cap V = \emptyset$.

Proof.

It follows readily from the above definition.

5.5. Theorem

If $f : X \rightarrow Y$ is an injective function with the $(\alpha\psi, p)$ -closed graph, then X is $(\alpha\psi, p)$ -T₁.

Proof.

Let x and y be two distinct points of X . Then $f(x) \neq f(y)$. Thus there exist an $(\alpha\psi, p)$ -open set U and an open set V containing x and $f(y)$, respectively, such that $f(U) \cap V = \emptyset$. Therefore $y \notin U$ and it follows that X is $(\alpha\psi, p)$ -T₁.

Recall that a space X is said to be T_1 if for each pair of distinct points x and y of X , there exist an open set U containing x but not y and an open set V containing y but not x .

5.6. Theorem

If $f : X \rightarrow Y$ is an surjective function with the $(\alpha\psi, p)$ -closed graph, then Y is T_1 .

Proof.

Let y_1 and y_2 be two distinct points of Y . Since f is surjective, there exist a point x in X such that $f(x) = y_2$. Therefore $(x, y_1) \notin G(f)$. By lemma 5.4., there exist an $(\alpha\psi, p)$ -open set U and an open set V containing x and y_1 , respectively, such that $f(U) \cap V = \emptyset$. It follows that $y_2 \notin V$. Hence Y is T_1 .

5.7. Definition

A function $f : X \rightarrow Y$ is said to be $(\alpha\psi, p)$ -W-continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists an $(\alpha\psi, p)$ -open set U in X containing x such that $f(U) \subset \text{cl}(V)$.

5.8. Theorem

If $f : X \rightarrow Y$ is $(\alpha\psi, p)$ -W-continuous and Y is Hausdorff, then $G(f)$ is $(\alpha\psi, p)$ -closed.

Proof.

Suppose that $(x, y) \notin G(f)$, then $f(x) \neq y$. By the fact that Y is Hausdorff, there exist open sets W and V such that $f(x) \in W$, $y \in V$ and $V \cap W = \emptyset$. It follows that $\text{cl}(W) \cap V = \emptyset$. Since f is $(\alpha\psi, p)$ -W-continuous, there exists $U \in \alpha\psi\text{PO}(X, x)$ such that $f(U) \subset \text{cl}(W)$. Hence, we have $f(U) \cap V = \emptyset$. This means that $G(f)$ is $(\alpha\psi, p)$ -closed.

5.9. Corollary

If $f : X \rightarrow Y$ is $(\alpha\psi, p)$ -W-continuous and Y is Hausdorff, then $G(f)$ is $(\alpha\psi, p)$ -closed in $X \times Y$.

5.10. Definition

A subset A of a space X is said to be $(\alpha\psi, p)$ -compact relative to X if every cover of A by $(\alpha\psi, p)$ -open sets of X has a finite subcover.

5.11. Theorem

Let $f : X \rightarrow Y$ have a $(\alpha\psi, p)$ -closed graph. If K is $(\alpha\psi, p)$ -compact relative to X , then $f(K)$ is closed in Y .

Proof.

Suppose that $y \notin f(K)$. For each $x \in K$, $f(x) = y$. By lemma 5.4., there exist $U_x \in \alpha\psi\text{PO}(X, x)$ and an open neighbourhood V_x of y such that $f(U_x) \cap V_x = \emptyset$. The family $\{U_x : x \in K\}$ is a cover of K by $(\alpha\psi, p)$ -open sets of X and there exists a finite subset K_0 of K such that $K \subset \cup\{U_x : x \in K_0\}$. Put $V = \cap\{V_x : x \in K_0\}$. Then V is an open neighbourhood of y and $f(K) \cap V = \emptyset$. This means

that $f(K)$ is closed in Y .

5.12. Theorem

If $f : X \rightarrow Y$ has an $(\alpha\psi, p)$ -closed graph $G(f)$ and $g : Y \rightarrow Z$ is a perfectly continuous function, then the set $\{(x, y) : f(x) = g(y)\}$ is $(\alpha\psi, p)$ -closed in $X \times Y$.

Proof.

Let $A = \{(x, y) : f(x) = g(y)\}$ and $(x, y) \in (X \times Y) - G(f)$. Since f has an $(\alpha\psi, p)$ -closed graph $G(f)$, there exist an $(\alpha\psi, p)$ -open set U and an open set V containing x and $g(y)$, respectively, such that $f(U) \cap V = \emptyset$. This implies that there exists a pre-regular p -open set N containing x such that $N \subset U$ and $f(N) \cap V = \emptyset$. Since g is a perfectly continuous function, then there exist an open and closed set G containing y such that $g(G) \subset V$. We have $f(N) \cap G = \emptyset$. This implies that $(N \times G) \cap A = \emptyset$. Since $N \times G$ is pre-regular p -open, then $(x, y) \notin \alpha\psi\text{cl}_p(A)$. Thus, E is $(\alpha\psi, p)$ -closed in $X \times Y$.

5.13. Corollary

If $f : X \rightarrow Z$ is an $(\alpha\psi, p)$ -continuous function and $g : Y \rightarrow Z$ is a perfectly continuous function and Z is Hausdorff, then the set $\{(x, y) : f(x) = g(y)\}$ is $(\alpha\psi, p)$ -closed in $X \times Y$.

Proof.

It follows from Corollary 5.9 and Theorem 5.12.

5.14. Theorem

If $f : X \rightarrow Y$ is an $(\alpha\psi, p)$ -continuous function and Y is Hausdorff, then the set $\{(x, y) \in X \times Y : f(x) = f(y)\}$ is $(\alpha\psi, p)$ -closed in $X \times X$.

Proof.

Let $\{(x, y) : f(x) = f(y)\}$ and let $\{(x, y) \in (X \times Y) - A\}$. It follows that $f(x) \neq f(y)$. Since Y is Hausdorff, there exist open set U and V containing $f(x)$ and $f(y)$, respectively, such that $U \cap V = \emptyset$. Since f is $(\alpha\psi, p)$ -continuous, there exist pre-regular p -open set in $X \times X$ containing (x, y) . Hence, A is $(\alpha\psi, p)$ -closed in $X \times X$.

5.15. Definition

A function $f : X \rightarrow Y$ is called contra $(\alpha\psi, p)$ -open if the image of every $(\alpha\psi, p)$ -open set in X is closed in Y .

5.16. Theorem

If $f : X \rightarrow Y$ is a contra $(\alpha\psi, p)$ -open function such that the inverse image of each opoint of Y is $(\alpha\psi, p)$ -closed, then f has an $(\alpha\psi, p)$ -closed graph $G(f)$.

Proof.

Let $(x, y) \in X - G(f)$. We have $x \notin f^{-1}(y)$. Since $f^{-1}(y)$ is $(\alpha\psi, p)$ -closed, there exists a pre-regular p -open set A containing x such that $A \cap f^{-1}(y) = \emptyset$. Since, f is contra $(\alpha\psi, p)$ -open, then $f(A)$ is closed. This implies that there exist an open set B in Y containing y such

that $f(A) \cap B = \emptyset$. Hence, f has an $(\alpha\psi, p)$ -closed graph $G(f)$.

5.17. Theorem

If $f : X \rightarrow Y$ has an $(\alpha\psi, p)$ -closed graph $G(f)$, then for each $x \in X$, $\{f(x)\} = \bigcap_{x \in A \in \alpha\psi P O(X, \tau)} \text{cl}(f(A))$.

Proof.

Suppose that $y \neq f(x)$ and $y \in \bigcap_{x \in A \in \alpha\psi P O(X, \tau)} \text{cl}(f(A))$. Then $y \in \text{cl}(f(A))$ for each $x \in A \in \alpha\psi P O(X, \tau)$. This implies that for each open set B containing y , $B \cap f(A) \neq \emptyset$. Since $(x, y) \notin G(f)$ and $G(f)$ is an $(\alpha\psi, p)$ -closed graph, this is a contradiction.

5.18. Definition

A function $f : X \rightarrow Y$ is called an $(\alpha\psi, p)$ -open if the image of every $(\alpha\psi, p)$ -open set in X is open in Y .

5.19. Theorem

If $f : X \rightarrow Y$ is a surjective $(\alpha\psi, p)$ -open function with an $(\alpha\psi, p)$ -closed graph $G(f)$, then Y is T_2 .

Proof.

Let y_1 and y_2 be any two distinct points of Y . Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) - G(f)$. This implies that there exist an $(\alpha\psi, p)$ -open set A of X and an open set B of Y such that $(x, y_2) \in (A \times B)$ and $(A \times B) \cap G(f) = \emptyset$. We have $f(A) \cap B = \emptyset$. Since f is $(\alpha\psi, p)$ -open, then $f(A)$ is open such that $f(x) = y_1 \in f(A)$. Thus, Y is T_2 .

5.20 Theorem

If $f : X \rightarrow Y$ is an $(\alpha\psi, p)$ -continuous injective function and Y is T_2 , then X is $(\alpha\psi, p)$ - T_2 .

Proof.

Let x and y in X be any pair of distinct points, then there exist disjoint open sets A and B in Y such that $f(x) \in A$ and $f(y) \in B$. Since f is $(\alpha\psi, p)$ -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are $(\alpha\psi, p)$ -open in X containing x and y respectively, we have $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Thus, X is $(\alpha\psi, p)$ - T_2 .

5.21. Theorem

If $f, g : X \rightarrow Y$ are $(\alpha\psi, p)$ -continuous functions, X is sub-maximal and Y is Hausdorff, then the set $\{x \in X : f(x) = g(x)\}$ is $(\alpha\psi, p)$ -closed in X .

Proof.

Let $A = \{x \in X : f(x) = g(x)\}$. Take $x \in X - A$. We have $f(x) \neq g(x)$. Since Y is Hausdorff, then there exist open sets U and V in Y containing $f(x)$ and $g(x)$, respectively, such that $U \cap V = \emptyset$. Since f and g are $(\alpha\psi, p)$ -continuous, then $f^{-1}(U)$ and $g^{-1}(V)$ are $(\alpha\psi, p)$ -open in X with $x \in f^{-1}(U)$ and $x \in g^{-1}(V)$. Then there exist pre-regular p -open sets G and H such that $x \in G \subset f^{-1}(U)$ and $x \in H \subset$

$g^{-1}(V)$. Take $K = G \cap H$. By lemma 2.6, K is pre-regular p -open. Thus, $f(K) \cap g(K) = \emptyset$ and hence $x \notin \alpha\psi cl_p(A)$. This shows that A is $(\alpha\psi, p)$ -closed in X .

REFERENCES

- [1] P. Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987) 375-382.
- [2] M. Caldas, A separation axiom between pre- T_0 and pre- T_1 , East West J. Math., 3(2)(2001), 171-177.
- [3] M. Caldas, T. Fukutake, S. Jafari and T. Noiri, Some applications of δ -preopen sets in topological spaces, Bull. Inst. Math. Acad. Sinica, Vol.33 No. 3 (2005), 261-276.
- [4] R. Devi, A. Selvakumar and M. Parimala, $\alpha\psi$ -closed sets in topological spaces (submitted).
- [5] S. Jafari, On a weak separation axiom, Far East J. Math. Sci., 3(5)(2001), 779-787.
- [6] S. Jafari, Pre-rarely- p -continuous functions, Far East J. Math. Sci. (FJMS) Special Vol. (2000), Part I (Geometry and Topology), 87-96.
- [7] S. Jafari, On certain types of notions via preopen sets, Tamkang J. Math. 37(4)(2006), 391-398.
- [8] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta Math. Soc., 82(1990), 415-422.
- [9] N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [10] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc., Egypt, 53(1982), 47-53.
- [11] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [12] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15 (1984), 17-22.
- [13] T.M.J. Nour, Contributions to the theory of bitopological spaces, Ph.D. Thesis, Univ. of Delhi, 1989.
- [14] S. Raychaudhuri and M.N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357-366.
- [15] M.K.R.S. Veera kumar, Between semi-closed sets and semi-pre-closed sets, Rend. Istit. Mat. Univ. Trieste XXXII, (2000), 25-41.
- [16] N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.
- [17] S. Willard, General Topology, Addison - Wesley, Reading, Mass, USA (1970).