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ABSTRACT 

The objective of this  paper  is to obtain  the  properties  of αψ-

compact spaces  by using nets, filterbase,  αψ-complete 

accumulation points  and  so on.  We also  investigate  some 

properties  of αψ-continuous  multifunctions and αψ-compact 

spaces in the context of multifunction. 
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1. INTRODUCTION 
It is well-known that the  effects of the  investigation  of 

properties  of closed bounded intervals of real numbers, spaces 

of continuous functions and solutions to differential equations 

are the possible motivations  for the formation of the notion of 

compactness.  Compactness  is now one of the most important, 

useful, and fundamental notions of not only general topology, 

but also of other advanced branches of mathematics.   Recently  

R.Devi et al.  [3] introduced  and investigated the concepts of 

αψ-US spaces, αψ-convergence,  sequential αψO-compactness,  

sequential αψ-continuity  and sequential  αψ-sub-continuity.  A 

space X is αψ-compact  if every αψ-open cover of X has a 

finite subcover. Since every open sets is an αψ-open set, it 

follows that every αψ-compact  space is compact. 

It is the objective of this paper to give some characterizations 

of αψ-compact  spaces  in  terms  of nets  and  filterbases.  We  

also introduce  the  notion  of αψ- complete  accumulation  

points  by which we give some characterizations of αψ- 

compact spaces. By introducing the notion of 1-lower (resp. 1-

upper) αψ-continuous functions and considering the known 

notion of 1-lower (resp.  1-upper) compatible partial  orders,  

we investigate some more properties  of αψ-compactness.   We 

also investigate  αψ-compact  spaces in the context  of 

multifunctions by introducing  1- lower (resp.  1-upper)  αψ-

continuous  multifunctions.   Lastly we also obtain  some 

characterizations of αψ-compact  spaces by using lower (resp.  

upper)  precontinuous multifunctions  due to Popa  [8].  In this 

paper we are working in ZFC. 

 

2. PRELIMINARIES    

Throughout the present paper,  (X, τ ) and (Y, σ) (or simply X 

and Y ) denote topological spaces. Let A be a subset (X, τ ). We 

denote the interior and the closure of a set A by int(A) and 

cl(A), respectively.  A subset A of a space X is said to be α-

open [7] if A ⊆ int(cl(int(A))).  A subset A of a space X is said 

to be semi-open [6] if A ⊆ cl(int(A)). A subset A of a space X 

is said to be semi generalized-closed [2] if scl(A) ⊆ U whenever 

A ⊆ U and U is semi-open. A subset A of a space X is said to 

be ψ-closed [9] if scl(A) ⊆ U whenever A ⊆ U and U is sg-

open. A subset A of a space X is said to be αψ-closed [4] if 

ψcl(A) ⊆ U whenever A ⊆ U and U is α-open.  The union of 

two αψ-closed set is an αψ-closed set.  The complement of a 

αψ-closed set is said to be αψ-open.  The intersection  of all 

αψ-closed sets of X containing A is called αψ-closure of A 

and is denoted  by αψcl(A).  The union of all αψ-open sets of 

X contained in A is called αψ-interior of A and is denoted by 

αψint(A).  If A ⊆ αψcl(A)  ⊆ cl(A).   The  collection of all 

αψ-closed  (resp. αψ-open)  subsets  of X  will be denoted  by 

αψC (X ) (resp.   αψO(X )).   We set αψC (X, x) = {V  ∈ αψC 

(X ) : x ∈ V } for x ∈ X . We define similarly αψO(X, x). Let 

p be a point of X  and N be a subset  of X is called an αψ-

neighbourhood  of p in X [3] if there exists an αψ-open set O 

of X such that p ∈ O ⊆ N . 

Recall that a function f : X → Y  is said to be αψ-

continuous  [4] if the inverse image of each open set in Y  is 

αψ-open in X . 

Let Λ be a directed set.  Now we introduce the following 

notions which will be used in this paper.  A net ξ = {xα : 

α ∈ Λ} αψ-accumulates  at a point x ∈ X  if the net is 

frequently in every U ∈ αψO(X, x), i.e. for each U ∈ 

αψO(X, x) and for each α0  ∈ Λ, there is some α ≥ α0  such 

that  xα  ∈ U . The net ξ αψ-converges to a point x of X if it 

is eventually  in every U ∈ αψO(X, x).  We say that  a 

filterbase Θ = {Fα : α ∈ Γ} αψ-accumulates  at a point x ∈ 

X if x ∈ ∩α∈Γ  αψC l(Fα ). Given a set S with S ⊂ X , a 

αψ-cover of S is a family of αψ-open subsets Uα  of X for 

each α ∈ I such that S ⊂ ∪α∈I Uα . A filterbase  Θ = 

{Fα : α ∈ Γ} αψ-converges to a point x in X  if for each 

U ∈ αψO(X, x),  there exists an Fα  in Θ such that Fα 

⊂ U . 

 

Recall that a multifunction (also called multivalued  function 

[1]) F on a set X into a set Y  , denoted  by F : X → Y , is a 

relation  on X into Y , i.e. F ⊂ X × Y . 

Let F : X → Y  be a multifunction. The upper and lower 

inverse of a set V  of Y are denoted by F 
+ 

(V ) and F 
−

(V ): 

 

F 
+ 

(V ) = {x  X : F (x) ⊂ V } and  
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F 
−

(V ) = {x X : F (x) ∩ V  = υ}. 

 

3.  CHARACTERIZATIONS OF αψ-

COMPACT SPACES 

3.1 Definition  

A point x in a space X is said to be a αψ-complete 

accumulation point  of a  subset  S of X  if C ard (S  ∩ U ) = C 

ard (S)  for each U  αψO(X, x), where Card (S)  denotes 

the cardinality  of S. 

 

3.2. Example      

Let  X  = {a, b, c} with  the  topology  τ  = {X, υ, {a, 

b}}.   Observe that both a and c are αψ-complete  

accumulation  points of {a}.  Notice that b is not an αψ-

complete accumulation  point of {a}. 

 
3.3. Definition  

In a topological space X , a point x is said to be an αψ-

adherent point of a filterbase Θ on X if it lies in the 

αψ-closure of all sets of Θ. 

 

3.4. Theorem  

A space  X  is αψ-compact  if and  only if each  infinite  

subset of X has a αψ-complete  accumulation  point. 

Proof.   

Let the space X  be αψ-compact  and S an infinite subset  of 

X .  Let K be the  set of  points  x in X  which are not αψ-

complete  accumulation  points  of S.   Now it  is obvious that 

for  each point  x in K , we are able to  find U (x)  αψO(X, 

x) such that C ard(S  ∩ U (x))  = C ard(S).   If K  is the whole 

space X , then  Θ  = {U (x)  : x   X } is a αψ-cover  of X .   

By the  hypothesis  X  is αψ-compact,  so there exists a finite 

subcover Ψ = {U (xi )}, where i = 1, 2, ...., n such that S ⊂  

{U (xi ) ∩ S : i = 1, 2, ...., n}. Then C ard(S)  = max{C ard(U (xi 

) ∩ S): i = 1, 2, ...., n} which does not agree with what  we 

assumed.  This implies that  S has an αψ-complete  

accumulation  point.  Now assume that X is not αψ-compact 

and that every  infinite  subset  S  ⊂ X  has an αψ-complete  

accumulation  point in X .   It  follows that  there  exists an 

αψ-cover  Ξ with  no finite subcover.   Set δ = min {Card(Φ)  

: Φ ⊂ Ξ, where Φ is  an  αψ-cover  of X }.   Fix  Ψ ⊂ Ξ 

for which Card(Ψ)  = δ and {U  : U  Ψ} = X .  Let N  

denote the set of natural numbers.   Then  by hypothesis  δ ≥ 

Card(N ).   By well-ordering of Ψ by some minimal  well-

ordering “~”suppose that U is any member  of Ψ.   By 

minimal well-ordering “~” we have Card({V   : V    Ψ, V Since 

Ψ can not  have any subcover with  cardinality  less than  δ, 

then  for each U  Ψ we have X  ≠ {V   : V    Ψ, V ~ U }.   

For  each U  Ψ, choose a point x(U )  X — {V   {x(V 

)} : V   Ψ, V ~ U }.  We are always able to do this if not one 

can choose  a cover of smaller cardinality  from Ψ.  If H  = 

{x(U ) : U  Ψ}, then  to finish the proof we will  show that  

H  has no αψ-complete  accumulation point in X . Suppose 

that z is a point of the space X . Since Ψ is a αψ-cover of X 

then z is a point of some set W in Ψ. By the fact that U~V we 

have that x(U)  W . It follows that T = {U  : U  Ψ and 

x(U )  W } c {V  : V    Ψ, V ~  W }.   But  C ard(T ) < δ. 

Therefore C ard(H  ∩ W ) < δ. But  C ard(H ) = δ ≥ Card(N) 

since, for two distinct  points U and W in Ψ, we have x(U ) ≠ 

x(W ). This means that H has no αψ-complete  accumulation  

point in X which contradicts our assumptions. Therefore X is 

αψ-compact. 

 

3.5. Theorem  

For a space X the following statements are equivalent:  

(i)  X is αψ-compact; 

(ii) Every net in X with a well-ordered directed set as its 

domain αψ-accumulates to some point of X . 

Proof.  

    (i)  ⇒ (ii):   Suppose that X  is αψ-compact  and  ξ = 

{xα  : α   Λ} a net  with  a  well-ordered  directed  set Λ as 

domain.   Assume that ξ has no αψ- adherent point in X . 

Then for each point x in X , there  exist V (x) αψO(X, x) 

and  an  α(x)   Λ such that  V (x) ∩ {xα   :  α  ≥ α(x)} = 

υ.   This  implies that {xα : α ≥ α(x)} is a subset of X — V 

(x).  Then the collection C = {V (x) : x  X } is a αψ-cover 

of X .  By hypothesis  of the theorem,  X  is αψ-compact  and 

so C has a finite  subfamily  {V (xi )}, where i = 1, 2, ...., n 

such that  X  = {V (xi )}. Suppose that the  corresponding 

elements  of Λ be {α(xi )}, where i = 1, 2, ...., n. Since Λ is 

well-ordered  and  {α(xi )}, where i  = 1, 2, ...., n  is finite,  the  

largest element of {α(xi )} exists.  Suppose it is{α(xi )}. Then  

for γ ≥ {α(xi )}, we have {xδ  : δ ≥ γ} c Ai=1(X — V (xi )) = 

X — ni=1 V (xi ) = υ, which is impossible. This shows that  ξ 

has at least one αψ-adherent point in X . 

(ii)  ⇒ (i):   Now it is enough to prove that each infinite 

subset  has an αψ- complete  accumulation  point  by utilizing 

Theorem  3.4.  Suppose that S c X  is an infinite  subset  of 

X.   According to Zorns Lemma,  the  infinite  set S  can be 

well-ordered.  This means that we can assume S to be a net 

with a domain which is a well-ordered index set. It follows 

that S has a αψ-adherent point z. Therefore z is an αψ-

complete  accumulation  point of S. This shows that X  is αψ-

compact. 

 

3.6.  Theorem  

A space X is αψ-compact  if and only if each family of αψ-

closed subsets of X with the finite intersection  property has a 

nonempty  intersection. 
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Proof 

Straightforward. 

 
3.7. Theorem      

A space X  is αψ-compact  if and  only if each filterbase  in 

X has atleast one αψ-adherent point. 

Proof.  

Suppose that X is αψ-compact  and Θ = {Fα : α e Γ} is a 

filterbase in it. Since all finite intersections of Fα ’s are non-

empty,  it follows that all finite inter- sections of αψC l(Fα )’s 

are also non-empty.  Now it follows from Theorem 3.6 that 

∩α∈Γ  αψC l(Fα ) is non-empty.   This  means that  Θ has at 

least  one αψ-adherent point.  Now suppose Θ is any family of 

αψ-closed sets. Let each finite intersection be non-empty.  The 

sets Fα  with their finite intersection establish  a filterbase Θ. 

Therefore,  Θ αψ-accumulates  to some point z in X .  It 

follows that z e ∩α∈Γ Fα . Now we have, by Theorem  3.5, 

that X is αψ-compact. 

 

3.8. Theorem    
A space X  is αψ-compact  if and  only if each filterbase  on 

X , with atmost one αψ-adherent point, is αψ-convergent. 

Proof.  

Suppose that X  is αψ-compact,  x is a point of X , and  Θ is 

a filterbase on X .  The αψ-adherence  of Θ is a subset  of 

{x}.  Then  the αψ-adherence  of Θ is equal to {x} by 

Theorem 3.7. Assume that there exists a V   αψO(X, x) 

such that for all F   Θ,F ∩ (X — V ) is non-empty.  Then  Ψ 

= {F — V  : F   Θ} is a filterbase on X .  It follows that the 

αψ-adherence  of Ψ is non-empty.   However, 

∩F ∈Θ  αψC l(F — V ) c (∩F ∈Θ  αψC l(F )) ∩ (X — V ) = {x} 

∩ (X — V ) = υ.  But this is a  contradiction.  Hence, for each 

V    αψO(X, x), there  exists an F   Θ with F c V . This 

shows that  Θ αψ-converges to x.  

To prove the converse, it suffices to show that each filterbase 

in X has at least one  αψ-accumulation point.   Assume that  

Θ is a filterbase  on X  with  no αψ- adherent point.  By 

hypothesis,  Θ αψ-converges to some point z in X .  Suppose 

Fα  is an arbitrary element of Θ.  Then  for each V   

αψO(X, z), there  exists an Fβ     Θ such that  Fβ    c V   

Since Θ is a  filterbase,  there  exists a γ  such that Fγ    c 

Fα ∩ Fβ    c Fα ∩ V , where Fγ    is non-empty.   This  means  

that Fα  ∩ V   is non-empty  for every V   αψO(X, z) and 

correspondingly for each α, z is a point of αψC l(Fα ).  It  

follows that z  ∩α αψC l(Fα ).  Therefore,  z is a αψ-

adherent point of Θ which is a contradiction.  This shows that 

X is αψ-compact. 

 

4.  αψ-COMPACTNESS AND 1-

LOWER AND 1-UPPER αψ-

CONTINUOUS FUNCTIONS 
In this section we further  investigate  properties of αψ-

compactness  by 1-lower and 1-upper αψ-continuous  functions.   

We begin with the following notions and in what follows R 

denotes the set of real numbers. 

 

4.1. Definition    

A function  f : X  → R is said to be 1-lower (resp.   1-

upper) αψ-continuous at the  point y in X  if for each λ > 0, 

there  exists a αψ-open  set U (y)  αψ(X, y) such that  f (x)  

> f (y) — λ (resp.   f (x)  > f (y) + λ) for every point x in U 

(y).  The  function  fis 1-lower (resp.  1-upper)  αψ-continuous  

in X  if it has these properties  for every point x of X . 

 

4.2. Theorem      

A function  f : X  → R  is 1-lower αψ-continuous  if and  

only if for each η  R, the set of all x such that f (x) ≤ η is 

αψ-closed. 

Proof.   

It  is obvious that  the  family of sets τ  = {(η, ∞)  : η  R} 

 R estab- lishes a topology on R.  Then the function f is 1-

lower αψ-continuous  if and only if f : X  → (R, τ ) is  αψ-

continuous.    The  interval  (—∞, η] is closed in (R, τ ). It 

follows that f 
−1

((—∞, η]) is  αψ-closed.  Therefore,  the set  

of all x such that f (x) ≤ η is equal to f 
−1

((—∞, η]) and 

thus, is αψ-closed. 

 

4.3. Corollary     

A subset  S  of X  is αψ-compact  if and  only if the  

character- istic function XS  is 1-lower αψ-continuous. 

 

4.4. Theorem     

A function  f : X  → R  is 1-upper αψ-continuous  if and  

only if for each η  R, the set of all x such that f (x) ≥ η is 

αψ-closed. 

 

4.5. Corollary   

A subset  S  of X  is αψ-compact  if and  only if the  character- 

istic function XS  is 1-upper αψ-continuous. 

 

4.6. Theorem     

If the function F (x)  = supi∈I fi (x)  exists, where fi , are 1-

lower αψ-continuous functions from X into R, then  F (x) is 1-

lower αψ-continuous.  

Proof.  

Suppose that η  R. Let F (x) < η and therefore for every i  I 

, fi (x) < η. It is obvious that  {x  X  : F (x) ≤ η} = ∩i∈I 

{x  X  : fi (x)  ≤ η}.  Since each fi  is 1-lower αψ-

continuous,  then  each set  of the  form {x  X  : fi (x)  ≤ η} 

is αψ-closed in X by Theorem 4.2. Since an arbitrary 

intersection of αψ-closed sets is αψ-closed, then  F (x) is 1-

lower αψ-continuous. 

 

4.7. Theorem     

If the function G(x)  = infi∈I fi (x)  exists, where fi , are 1-

upper αψ-continuous  functions from X into R, then  G(x)  is 

1-upper αψ-continuous. 

 

4.8. Theorem     

Let  f : X  → R  be a 1-lower αψ-continuous  function,  
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where X is αψ-compact.  Then  f assumes the value m = 

infx∈X f (x). 

Proof.  

Suppose η > m.  Since f is 1-lower αψ-continuous,  then  the 

set K (η) ={x  X : f (x) ≤ η} is a non-empty  αψ-closed set 

in X by the infimum property. Hence, the  family {K (η) : η 

> m} is a collection of non-empty  αψ-closed sets with finite 

intersection property in X . By Theorem 3.6, this family has 

non-empty intersection.  Suppose z  ∩η>m K (η).  Therefore, 

f (z) = m as we wished to prove. 

 

4.9. Theorem     

Let  f : X  → R  be a 1-upper αψ-continuous  function,  

where X is a αψ-compact  space. Then  f attains the value m 

= supx∈X f (x). 

Proof.  

The proof is similar to the proof of Theorem  4.7. It 

should be noted that if a function f  at the same time 

satisfies conditions of Theorem  4.6 and Theorem 4.7, then 

f is bounded  and attains  its bound. 

 

5.  αψ-COMPACTNESS AND αψ-

CONTINUOUS MULTIFUNCTIONS 
In this section, we give some characterizations of αψ-compact  

spaces by using lower (resp.  upper) αψ-continuous  

multifunctions. 

 

5.1. Definition      

A multifunction F  : X  → Y   is said to  be lower (resp.   

up- per) αψ-continuous  if X — F
−

(S) (resp.  F 
−

(S))  is αψ-

closed in X for each open (resp.  closed) set S  in Y . 

 

For  the  following two  lemmas  we shall  assume  that if αψC 

l(A)  = A,  then A is is αψ-closed. 

 

5.2. Lemma     

For  a multifunction F  : X  → Y , the  following statements 

are equivalent: 

 

(1)  F  is lower αψ-continuous; 

 

(2)  If x  F 
−

(U ) for a point x in X and an open set U c Y  , 

then V  c F 
−

(U ) for some V  αψO(x); 

 

(3)  If x F 
+ 

(D) for a point x in X and a closed set D c Y  , 

then F 
+ 

(D) c K 

  for some αψ-closed set K with x K ; 
 

(4)  F 
−

(U )  αψO(X ) for each open set U c Y . 

 

Proof. 

 (1)⇒(4):  Let U be any open set in Y . By (1), X — F 
−

(U ) is 

αψ-closed in X  and hence F −(U )  αψO(X ). 

(4)⇒(2):   Let U be any open set of Y   and  x   F 
−

(U ).   

By (4),  F 
−

(U ) αψO(X ). Put  V  = F −(U ). Then  V   

αψO(X ) and V  c F −(U ). 

(2)⇒(3):  Let D be closed in Y   and x   F 
+ 

(D).   Then  Y  — D 

is open in Y and x  X — F + (D)  = F −(X  — D).  Therefore, 

There  exists V  αψO(x)  such that V   c F −(U ).   Now, put  

K  = X — V   , then x  K  is αψ-closed and K = X — V  ⊃ X 

— 

 F −(Y  — D) = F + (D). 

(3)⇒(1):  We show that F 
+ 

(H ) is αψ-closed for any closed 

set H of Y  .  Let  H be any closed set and  x  F 
+ 

(H ).   By 

(3) there  exists an αψ-closed set K such that  x  K and F + 

(H ) c K , hence F + (H ) c αψC l(F + (H )) c K .  Since x K 

, we have x αψC l(F + (H )).  This implies that αψC l(F + (H 

)) c F + (H ). In general, we have F + (H ) c αψC l(F + (H )) 

and hence F + (H ) = αψC l(F + (H )). Hence F 
+ 

(H ) is αψ-

closed for any closed set H of Y . 

 

5.3. Lemma    

 For  a multifunction F  : X  → Y , the  following 

statements are equivalent: 

 

(1)  F  is upper αψ-continuous; 

 

(2)  If x  F 
+ 

(V ) for a point x in X  and an open set V  c 

Y , then  F (U ) c V  for some U  αψO(x); 

 

(3)  If x F 
−

(D)  for a point x in X and a closed set D c 

Y , then  F 
−

(D) c K for some αψ-closed set K with x K 

; 

(4)  F 
+ 

(U ) αψO(X ) for each open set U c Y . 

Proof. 

 

(1)⇒(4):  Let U be any open set in Y . Then Y — U is 

closed. By (1), F 
−

(Y  —U ) = X — F + (U ) is αψ-closed in 

X and hence F + (U )  αψO(X ). 

(4)⇒(2):   Let V   be any open set  of Y   and  x  F 
+ 

(V ).   

By (4),  F 
+ 

(V ) αψO(X ). Put  U = F + (V ). Then  U  

αψO(X ) and F (U ) c V . 

(2)⇒(3):   Let D be closed in Y   and x F
−

(D).   Then  Y  — 

D is open and x  X — F −(D)  = F + (Y  — D).   By (2),  

there  exists  U  αψO(X ) such that F (U )  c Y  — D.  Now,  

put  K  = X — U ,  then x  K ,  K  is αψ-closed  and K = X 

— U ⊃ X — F + (Y  — D) = F −(D). 

(3)⇒(1):  We show that F 
−

(H ) is αψ-closed for any closed 

set H of Y  .  Let H be any closed set and  x  F 
−

(H ).  By 
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(3), there  exists an αψ-closed set K such that  x K and F 

−(H ) c K , hence F −(H ) c αψC l(F −(H )) c K .  Since x  K , 

we have x  αψC l(F −(H )).  This implies that αψC l(F −(H )) 

c F −(H ). In general, we have F −(H ) c αψC l(F −(H )) and 

hence F −(H ) = αψC l(F −(H )). Hence F 
−

(H ) is αψ-closed for 

any closed set H of Y . 

 

5.4.  Theorem  

The following two statements are equivalent for a space X :  

(1)  X is αψ-compact. 

(2)  Every lower αψ-continuous  multifunction from X  into 

the closed sets  of a space assumes a minimal value with 

respect to set inclusion relation. 

Proof. 

(1)⇒(2):  Suppose that F is a lower αψ-continuous  

multifunction from X into the  closed  subsets of a space Y.  

We denote the  poset of all closed subsets of Y with the set 

inclusion  relation  ” ⊆ ” by Λ.  Now we show that  F  : X  → 
Λ is a lower αψ-continuous  function.  We will show that  N = 

F 
−

({S  c Y  : S  Λ and S ⊆ C }) is αψ-closed in X for each 

closed set C of Y .  Let z  N , then F (z) = S for every closed 

set S of Y .  It  is obvious that z  F 
−

(Y  — C ), where Y  — 

C is open in Y . By Lemma 5.2 (2), we have W c F 
−

(Y  — C ) 

for some W  αψO(z). Hence F (w) ∩ (Y  — C ) = υ, for each w 

in W . So for each w in W , F (w) — C = υ. Consequently,  F (w) 

— S = υ for every closed subset S of Y  for which S ⊆ C . We 

consider that W ∩ N = υ. This means that N is αψ-closed.  

Thus we observe that F  assumes a minimal value. 

(2)⇒(1):  Suppose that X  is not αψ-compact.   It follows that 

we have a net {xi : i  Λ}, where Λ is a well-ordered set with 

no αψ-accumulation point by ([8], Theorem 3.2). We give Λ 

the order topology.  Let Mj  = αψC l{xi  : i ≥ j} for every 

j in Λ. We establish  a multifunction  F  : X → Λ where F (x) 

= {i  Λ : i ≥ jx}, jx  is the  first element  of all those  js for 

which x  Mj .  Since Λ has the  order topology,  F (x)  is 

closed.  By the  fact that {jx  : x  X } has no greatest  

element in Λ, then  F  does not  assume any minimal  value 

with respect  to set inclusion. We now show  that  F 
−

(U )   
αψO(X ) for every open set  U in Λ.   If U  = Λ, then  

F 
−

(U ) = X  which is  αψ-open.   Suppose that U c Λ and z 

 F 
−

(U ).  It follows that  F (z) ∩ U  = υ.   Suppose j  F 

(z) ∩ U .   This  means  that  j  U and j  F (z) = {i  Λ : 

i ≥ jx}.   Therefore Mj   ≥ Mjx .  Since z = Mjx , then z = 

Mj . There  exists W  αψO(z)  such that W ∩ {xi  : i  Λ} 

= υ. This means that W ∩ Mj   = υ.  Let w  W .  Since 

W ∩ Mj   = υ, it follows that w  Mj and since jw   is the  

first  element  for which w  Mj , then jw   ≤ j.   Therefore j 

 {i  Λ : i ≥ jw } = F (w).  By the fact that j  U , then  

j  F (w) ∩ U .  It follows that  F (w) ∩ U = υ and  therefore 

w  F −(U ).  So we have W c F −(U )  and thus z  W  c 

F −(U ).   Therefore  F −(U ) is αψ-open.   This  shows that F is 

lower αψ-continuous  which contradicts the hypothesis  of the  

theorem.  So the space X is αψ-compact. 

 

5.5.  Theorem  

The following two statements are equivalent for a space X : 

 (1)  X is αψ-compact. 

(2)  Every upper αψ-continuous  multifunction  from X into 

the subsets  of a T1-space attains a maximal value with 

respect to set inclusion relation. 

 

Proof.  

Its proof is similar to that of Theorem  5.4. 

 

The following result  concerns  the  existence  of a fixed 

point for multifunctions on αψ-compact spaces. 

 

5.6. Theorem    

Suppose that  F : X → Y  is a multifunction  from an αψ-

compact  domain X into itself. Let F (S) be αψ-closed for S 

being a αψ-closed set in X . If F (x) = υ for every point x  
X , then  there  exists a nonempty,  αψ-closed set C of X such 

that F (C ) = C . 

Proof.  

Let Λ = {S c X : S = υ, S  αψC (X ) and F (S) c S}.  It is 

evident that x belongs to Λ.  Therefore Λ = υ and also it is 

partially  ordered by set inclusion. Suppose that  {Sγ } is a 

chain  in  Λ.  Then  F (Sγ ) c Sγ    for each γ.  By the  fact that 

the domain is αψ-compact  and by ([8],  Theorem  3.3), S = 

∩γ Sγ    = υ and also S   αψC (X ).  Moreover, F (S)  c F (Sγ 

) c Sγ    for each γ.  It follows that F (S)  c Sγ .  Hence S  

Λ and  S = inf {Sγ }.  It  follows from Zorns lemma that Λ has 

a minimal element C . Therefore C c αψC (X ) and F (C ) c C . 

Since C is  the minimal element of Λ, we have F (C ) = C . 
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