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ABSTRACT 
The artificial neural networks (ANNs) have been applied to 

various hydrologic problems recently. This research demonstrates 

a temporal approach by applying Jordan and general recurrent 

neural network to rainfall-runoff modeling for the upper area of 

Wardha River in India. The model is developed by processing 

online data over time using general recurrent connections. 

Methodologies and techniques of the two models are presented in 

this paper and a comparison of the short term runoff prediction 

results between them is also conducted. The prediction results of 

the general recurrent neural network indicate a satisfactory 

performance in the three hours ahead of time prediction. The 

conclusions also indicate that the general recurrent network is 

more versatile than Jordan model and can be considered as an 

alternate and practical tool for predicting short term flood flow.  
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1. Introduction 

The main focus of this research is the development of Artificial 
Neural Network (ANN) models for short term flood forecasting, 
determining the characteristics of different neural network models. 
Comparisons are made between the performances of different 
artificial neural network models.  

The field engineers face the danger of very heavy flow of 

water through the gates to control the reservoir level by proper 

operation of gates to achieve the amount of water flowing over the 

spillway. This can be limited to maximum allowable flood and 

control flood downstream restricting river channel capacity so as to 

have safe florid levels in the river within the city limits on the 

downstream. 

By keeping the water level in the dam at the optimum 

level in the monsoon the post monsoon replenishment can be 

conveniently stored between the full reservoir level and the 

permissible maximum water level. Flood estimation is very 

essential and plays a vital role in planning for flood regulation and 

protection measures. 
The total runoff from catchment area depends upon 

various unknown parameters like Rainfall intensity, Duration of 
rainfall, Frequency of intense rainfall, Evaporation, Interception, 
Infiltration, Surface storage, Surface detention, Channel detention, 
Geological characteristics of drainage basin, Meteorological 
characteristics of basin, Geographical features of basin etc. Thus it 

is very difficult to predict runoff at the dam due to the nonlinear 
and unknown parameters.  

 In this context, the power of ANNs arises from the 
capability for constructing complicated indicators (non-linear 
models). Among several artificial intelligence methods artificial 
neural networks (ANN) holds a vital role and even ASCE Task 
Committee Reports have accepted ANNs as an efficient 
forecasting and modeling tool of complex hydrologic systems[22]. 

Neural networks are widely regarded as a potentially ef-
fective approach for handling large amounts of dynamic, non-
linear and noisy data, especially in situations where the underlying 
physical relationships are not fully understood. Neural networks 
are also particularly well suited to modeling systems on a real-time 
basis, and this could greatly benefit operational flood forecasting 
systems which aim to predict the flood hydrograph for purposes of 
flood warning and control[16]. 

 A subset of historical rainfall data from the Wardha 
River catchment in India was used to build neural network models 
for real time prediction. Telematic automatic rain gauging stations 
are deployed at eight identified strategic locations which transmit 
the real time rainfall data on hourly basis. At the dam site the ANN 
model is developed  to predict the runoff  three hours ahead of 
time. 

In this paper, we demonstrate the use of  Jordan and 
general recurrent network model for real time prediction of runoff 
at the dam and compare the effectiveness of these two methods. 
Jordan and general recurrent network extend the multilayer 
perceptron with context units, which are PEs that remember past 
activity. 

At a time when global climatic change would seem to be 
increasing the risk of historically unprecedented changes in river 
regimes, it would appear to be appropriate that alternative 
representations for flood forecasting should be considered. 

2. METHODOLOGY 
In this study two methods employed for rainfall-runoff 

modeling namely Jordan and General recurrent network models 
using artificial neural network[13]. 

Jordan model proposes to use past output to create 
memory trace.  

                                 
 

 Figure 1. The Jordan model 
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The context unit remembers the past of its inputs using 

what has been called a recency gradient, i.e., the unit forgets the 
past with an exponential decay. This means that events that just 
happened are stronger than the ones that have occurred further in 
the past.  

The context unit controls the forgetting factor through 
the time constant. Useful values are between 0 and 1. A value of 1 
is useless in the sense that only the past is factored in. On the other 
extreme, a value of zero means that only the present time is 
factored in (i.e., there is no self-recurrent connection). The closer 
the value is to 1, the longer the memory depth and the slower the 
"forgetting" factor. 

 
General recurrent networks (GRN’s) are to temporal data 

as multi-layer perceptrons (MLP’s) are to static data. They are 
categorized by a layer that feeds back upon itself using adaptable 
weights. 

 

 
     Figure 2. The General Recurrent Neural Network 

 
Performance Measures: 

 
 The learning and generalization ability of the estimated 

NN model is assessed on the basis of important performance 
measures such as MSE (Mean Square Error), NMSE (Normalised 
Mean Square Error) and r (Correlation coefficient)  
      

2.1 MSE (Mean Square Error): 

The formula for the mean square error is: 

2

0 0

P N

ij ij

j i

d y

MSE
NP    

                                …   (1)  
Where 
 P = number of output PEs,  
 N = number of exemplars in the data set,  

     ijy
= network output for exemplar i at PE  j,  

     ijd
= desired output for exemplar i at PE  j. 

      

2.2  NMSE  (Normalized Mean Square Error): 

 
   The normalized mean squared error is defined by the 

following formula: 
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Where  
P = number of output processing elements,  
      N = number of exemplars in the data set,  
 MSE = mean square error,  

     ijd
= desired output for exemplar i at processing      

              element j. 

 

2.3 r (correlation coefficient): 

The size of the mean square error (MSE) can be used to 
determine how well the network output fits the desired output, 
but it doesn't necessarily reflect whether the two sets of data 
move in the same direction. For instance, by simply scaling 
the network output, the MSE can be changed without 
changing the directionality of the data. The correlation 
coefficient (r) solves this problem. By definition, the 
correlation coefficient between a network output x and a 
desired output d is: 
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  The correlation coefficient is confined to the range [-1, 

1]. When r = 1 there is a perfect positive linear correlation 
between x and d, that is, they co-vary, which means that they 
vary by the same amount.  

3. STUDY AREA AND DATA SET 
The Upper Wardha catchment area lies directly in the path of 

depression movements which originates in the Bay of Bengal. 

When the low pressure area is formed in the Bay of Bengal and 

cyclone moves in North West directions, many times this 
catchment receives very heavy intense cyclonic precipitation for a 

day or two. Occurrence of such events have been observed in the 

months of August and September. Rainfall is so intense that 

immediately flash runoff, causing heavy flood has been very 

common feature in this catchment.  

 For such flashy type of catchment and wide variety in 

topography, runoff at dam is still complicated to predict. The 

conventional methods also display  chaotic result. Thus ANN 

based model is built to predict the total runoff from rainfall in 
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Upper Wardha catchment area for controlling water level of the 

dam.  

In the initial reaches, near its origin catchment area is hilly and 

covered with forest. The latter portion of the river lies almost in 

plain with wide valleys. 

The catchment area up to dam site is 4302 sq. km. At dam site the 

river has wide fan shaped catchment area which has large variation 

with respect to slope, soil and vegetation cover. 

 
 

 
 

 
Figure 3- Location of Upper Wardha dam  on Indian map 

 

 

 
Data: Rainfall runoff data for this study is taken from the Wardha 

river catchment area which contains a mix of urban and rural land. 

The catchments is evenly distributed in eight zones based on the 

amount of rainfall and geographical survey. The model is 

developed using historical rainfall runoff data , provided by Upper 

Wardha Dam Division Amravati, department of irrigation Govt. of 

Maharashtra. Network is trained by rainfall information gathered 

from eight telemetric rain-gauge stations distributed evenly 

throughout the catchment area and runoff at the dam site. 

The data is received at the central control room online through this 

system on hourly basis. The Upper Wardha dam reservoir 

operations are also fully automated. The amount of inflow, amount 

of discharge is also recorded on hourly basis. From the inflow and 

discharge data the cumulative inflow is calculated. The following 

features are identified for the modeling the neural network . 

Table 1- The parameters used for training the network 

 
Month RG1 RG2 RG3 RG4 RG5 RG6 RG7 RG8 CIF 

 
 
 
 
 
 

• Month                    – The month of  rainfall 
• Rain1 to Rain8        – Eight rain gauging stations. 
• Cum Inflow     – Cumulative inflow in dam  
 
 

Seven years of data on hourly basis from 2001 to 2007 is used. It 

has been found that major rain fall (90%) occurs in the month of 

June to October Mostly all other months are dry hence data from 

five months. June to October is used to train the network 

 

 

 
 

Figure 4- The Wardha river catchment 

4. Result 
The neural network structure is employed to learn the unknown 

characterization of the system from the dataset presented to it. The 

dataset is partitioned into three categories, namely training, cross 

validation and test. The idea behind this is that the estimated NN 

model should be tested against the dataset that was never presented 

to it before. This is necessary to ensure the generalization. An 

experiment is performed at least twenty five times with different 

random initializations of the connection weights in order to 

improve generalization. 

 The data set is divided in to training , testing and cross 

validation data and the network is trained for both Jordan and 

general recurrent network model for 5000 epochs. Fig 5 shows the 

plot of actual Vs predicted values for runoff for Jordan, where as 

Fig 6 shows the plot for general recurrent  network. . 

http://sq.km
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Figure 5- Actual Vs. Predicted runoff by Jordan 

 
 

Actual Vs Predicted Runoff by GRNN Modul
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Figure 6.– Actual Vs. Predicted runoff by GRN  

 
 
The error found in the actual and predicted runoff at the dam site is 
plotted for both Jordan and GRN network as shown in the Figure 7 

and Figure  8 respectively. 
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Fig 7 – Error graph of Jorden Model 

 

Error in prediction for GRNN Model
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Fig 8 – Error graph of GRNN Model 

 
After training the network the performance is studied and in the 

Table-2 and Table-3 the parameters and the performances of 

Jordan and general recurrent  neural network are listed. 

Table  2- Jordan network parameters 

 

Parameter Performance 

MSE 0.0187 

NMSE 0.0357 

Min Abs Error 0.0047 

Max Abs Error 0.7897 

r 0.8607 

 
Table  3- GRN network parameters 

 

Parameter Performance 

MSE 0.0106 

NMSE 0.0126 

Min Abs Error 0.0043 

Max Abs Error 0.6238 

r 0.9140 
 
The parameters and performance for Jordan and GRN model is 
compared on the performance scale and are listed in the Table 4 
shown below. The comparative analysis of the MSE, NMSE and r 
(the correlation coefficient) is done. 

 
Table 4 – Comparison of performance parameters 

 

 
S.No. 

 
N N Model 

 
Performance measure 

MSE NMSE r 

 
 

1 
Jordan 

 

0.0187 
 

 

0.0357 
 

 

0.8607 
 

2 GRN 0.0075 0.0126 0.9140 
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The Jordan network combines past values of the context units with 
the present inputs to obtain the present network output. One 
disadvantage of these nets is that the weighting over time is kind of 
inflexible since one can only control the time constant t (i.e., the 
exponential decay). Moreover, a small change in t is reflected in a 
large change in the weighting (due to the exponential relationship 
between time constant and amplitude). Since the optimal memory 
depth is usually unknown, the choice of t can be critical without a 
mechanism to adapt it. 
The main advantage of GRN’s is that they have a potentially 
unlimited memory depth and thus, can actually capture the 
dynamics of the system that produced a temporal signal 

 

5. Conclusion  
An ANN-based short-term  runoff forecasting system is developed 
in this work. A comparison between Jordan neural network model 
and general recurrent  neural network model is made to investigate 
the performance of the two distinct approaches. We find that the 
general recurrent  neural network is more versatile than the Jordan  
network. general recurrent  neural network is performing better as 
compare to Jordan neural network as far as the overall performance 
is concerned for forecasting runoff  for 3 hrs  lead time. Jordan  
neural network is also performing optimally. Which means that 
general recurrent  neural network model is powerful tool for short 
term runoff forecasting for Wardha  River basin 
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