
International Journal of Computer Applications (0975 – 8887)

Volume 5– No.3, August 2010

8

 A Peer-to-Peer Architecture to collaboratively Propagate
and Traceback DDoS Attack information using DST

D. Thamizh Selvam
Department of Computer Science

School of Engineering & Technology

Pondicherry University, India.

P.S. Vinayagam

P. Syam Kumar
Department of Computer Science

School of Engineering & Technology

Pondicherry University, India.

Dr. R. Subramanian
Department of Computer Science

School of Engineering & Technologyz

Pondicherry University, India

ABSTRACT

Distributed Denial of Service attacks has become prevalent in the

context of ever growing Internet. Numerous attacks have taken

place in the past and numerous solutions have been suggested.

Intrusion detection and filtering are necessary mechanisms to

combat against these attacks and secure networks. However, the

existing detection techniques for DDoS attacks have their entities

work in isolation. In this paper, we propose an efficient and

distributed collaborative architecture that allows the placement

and the cooperation of the defense entities to better address the

main security challenges. The use of Distributed Spanning Trees

(DST) algorithm controls the damage caused by Distributed

Denial of Service attacks by using propagation and traceback

mechanism. Simulations show that DST-based tracing behave

better than randomly generated graphs and trees as it generates

less messages to query all computers while avoiding the tree

bottlenecks.

General Terms

Peer-to-Peer Network, Security.

Keywords

DDoS, DST, P2P Overlay, Propagation, Traceback, IDS.

1. INTRODUCTION
Denial of Service (DoS) occurs when legitimate users are

prevented from getting access to shared resources or services. If

DoS is originated from a large number of distributed attackers, the

event is termed a Distributed Denial-of-Service (DDoS) attack.

Distributed Denial of Service (DDoS) attack has been identified

as one of the most serious problems on the Internet. It has been

identified as the most urgent Internet security concern by Arbor

Network’s 2008 survey [1]. The roots of the DDoS problem lie in

the design of the Internet architecture [2] itself: (i) In order to gain

the most of the Internet, its network link resources are shared, but

there is no enforcement of fair sharing; (ii) The network core

processes high volumes of traffic so core components can do very

little processing per packet, thus all computations (e.g. those

ensuring security) must be performed at the edge; (iii) The

Internet’s constituent networks are managed by different

authorities, and this heterogeneity makes widespread deployment

of DDoS defense mechanisms difficult.

The Peer-to-Peer (P2P) model offers a promise to exploit all the

resources of a vast numbers of hosts. The distribution of data

storage among several nodes allows this model, in comparison

with a centralized scheme, to reduce the possibility of storage

overload at some points and to have a single point of failure. The

use of a P2P model can also be justified by its robustness, high

scalability, and fast resource lookup. Many solutions have been

proposed which can be classified into structured and non-

structured solutions regarding resource localization methods.

Protocols developed on structured P2P networks have recently

gained popularity for the implementation of large-scale distributed

systems. The proposed architecture uses a self-organized

structure, called “Distributed Spanning Tree (DST)” [3].

In this paper, we propose scalable defense architecture based on

overlay routing against DDoS attacks in consideration of the

capacity of each node, providing speedy notification of attack

detection on converged network and detouring of the normal

packets before the fundamental exclusion of attack agents. Our

simulation results show that our architecture provides the speedy

notification and decreases the damage of normal traffic even in

the form of converged DDoS attacks [4].

This mechanism pursues the following design goals and we can

confirm the performance by simulation.

 Speedy notification of attack detection to nodes of other

networks in the converged attack case, as well as a

highest defense system.

 Detouring the normal traffic before the fundamental

process of attack agents, thus decreasing the damage.

 Scalable and dynamic defense structure of overlay in

consideration of the capacity of each node.

The rest of this paper is structured as follows. Section II gives a

general overview of DDoS attacks and its related works. We

describe the architecture and the functionality of the proposed

approach in Section III. The Section IV elaborates our

propagation and traceback algorithm. We evaluate the

performance of DST in Section V. Finally, we conclude and

introduce our future work in Section VI.

2. RELATED WORKS
Some recent studies developed by Moore et al. [5] estimated the

DoS activity by a backscatter method on packet traces and showed

that more than 2000 DDoS attacks are launched every week. The

problem is that it becomes very easy for any Internet user to create

disruptions using limited resources. Moreover the attack damages

are increased by the distributed computing techniques. Many

existing systems are successful in one aspect of defense, but none

of them offers a comprehensive complete solution. In such

context, there is a tremendous need for distributed and cooperative

defense architecture in order to avoid the threat of DDoS attacks.

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.3, August 2010

9

When a DDoS defense system is deployed at the victim network it

is difficult, due to the aggregation, to identify attack packets at the

ingress [6] of the targeted network although this deployment can

facilitate the observation of the victim. This is why it’s important

to push the detection upstream to the ingress points of the service

provider. This implicitly implies the distribution of the detection

scheme among several locations, which raises the problem of how

to coordinate the different detection systems. Some systems like

DIDS [7] or NSTAT [8] have been proposed to work in a

distributed environment. In these propositions the audit of data

collected is done in several points of the network and the analysis

is executed by a central location. With CSM [9] and AAFID [10],

the usage of distributed analysis agents is very relative.

Current IDS do not offer a global solution that satisfies users’

need in coping with the evolution of the attack types. The

deployment of DDoS defense system at the attack source network

cannot permit the collection of necessary information about the

attack traffic and so, detection at this level will not be efficient.

On the other hand, attack flows can be stopped before they enter

the Internet core. And this is why response can be more effective

at the attack source level. The mechanism for identifying the

sources of attacks and for limiting the rate of malicious flows is

commonly known as traceback mechanism. Current DDoS

solutions are many, ranging from host-based solutions to network

and infrastructure solutions. Our architecture is basically proposed

for DoS detection and IP traceback solutions. For DDoS detection

we have 2 main groups:

 The signature-based detection schemes that search for a

known identity or signature for each attack event [11].

This category is not efficient against new types of

attacks.

 Anomaly based detection schemes [12] that detect

anomalies caused by DDoS attacks. In this case a model

must be established according to standard protocol

normal system activities.

In general the intrusion detection entities are deployed on hosts or

routers and the agent is deployed at a single point or network-

based where the agents cooperate either in a centralized [8] or a

decentralized [9] manner. A decentralized approach is more

scalable but needs more complex communication schemes to

effectively share the information between the detection entities.

For IP traceback schemes we have 2 main classes:

 Backtracking techniques [13] that work in a hop by hop

manner to construct a summary of routed flow. In this

class we have the proactive measures category where

the flow is generated independently from the presence

of the attacks and the reactive measures where the

summary is generated on demand.

 Flow extension techniques bring additional information

to flows during their travel. We have the in-band

messaging (packet marking), that can be probabilistic

[14] or deterministic [15], and the out-of-band

messaging that sends the traceback data in separated

packets.

Some proposed DoS solutions have a global scope. They

start from the victim side where detection is most suitable and

propagate attack alerts through intermediate networks in order to

deploy filtering rules as near as possible to attack source

networks. Mahajan et al. [16] proposes pushback (also

implemented in [17]) as a complete method to deal with DDoS.

In this proposition, DDoS are treated as a congestion-control

problem. A new functionality is added to each router to detect and

preferentially drop packets that probably belong to an attack.

Upstream routers are also notified to drop such packets (hence the

term pushback) in order to have router’s resources used to route

legitimate traffic. This presents an interesting approach, however,

router vendors did not show any interest in implementing this

scheme. A draft was proposed at IETF which expired in 2002.

Canonico et al. [18] use the same concept of pushback in defense

“propagation”. They propose ASSYST, a distributed system, in

which network routers cooperate in order to react to DDoS attacks

in a flexible and dynamic fashion. DefCOM [19] is a distributed

collaborative framework to defend against flooding DDoS attack.

As a global architecture, it combines the advantages of source-

end, victim-end and core defenses and allows the existing

heterogeneous defense systems to cooperate through an overlay.

Nodes collaborate by exchanging messages, marking packets for

high or low priority handling, and prioritizing marked traffic.

However, it was not clearly described how to authenticate and

establish economic cooperative relationship across different

management domains. Radwane et al. [20] proposed a

collaborative peer-to-peer architecture which uses DHT

(Distributed Hash Tables). DHT which is a dynamic overlay

structure are theoretically scalable and resistant to failures. But,

the index implementation of a DHT lays on a global view of the

system and determines the data placement. Dahan et al. [3]

proposed DST (Distributed Spanning Tree) structure, a self-

organizing structure, where every peer is independent and

provides its own data or resources from its computer to the

network.

3. PROPOSED ARCHITECTURE
The objective is to propose a global architecture that permits an

efficient Intrusion Detection System where participants can

exchange information following a P2P model, and thus providing

services to a traceback application that strengthens the network

security against DDoS attacks; or at least permits a fast and

effective reaction to this kind of threats.

The solution proposed is designed to elaborate the defense against

these large scale attacks by the correlation of the suspicious

evidence provided and stored by the architecture entities from

different geographical locations. Each participant gains a global

view of the intrusion activity through this collaboration. To

perform this objective we take into consideration some

requirements in terms of performance and deployment. In fact, the

processing and the bandwidth used, as well as the storage must be

minimized and conceptual security mechanism must be added to

permit the access control for each entity in the architecture.

A. Problem Statement

A DDoS attack is usually characterized by a high traffic rate, an

IP spoofing and several paths are taken to reach the victim. These

elements are particular in a distributed attack. Our system

proposes that the detection relies on the most frequently routed

destination IP addresses during a short time period (Δ) on

different network points. Each IDS deployed on the network and

especially in the ingress of a network, will analyze the traffic that

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.3, August 2010

10

passes by the router which this IDS is added too. In fact, the same

equipment can also do both jobs.

B. The Distributed Spanning Tree Structure

The development and widespread usage of peer-to-peer networks

is mainly due to their efficient overlay routing and the location

function, especially in global storage utilities and applications. We

propose to apply an algorithm that defines a deterministic way to

efficiently store and share the collected data between the nodes.

These nodes are able to form a distributed and decentralized

network with a dynamic adaptation without affecting the whole

functioning of the network. In order to realize the flexible and

balanced collection of information among the nodes, we required

an efficient approach that can scale to a large number of peers

exchanging many control messages. The choice of a DST

algorithm satisfies these requirements. These solutions present a

relevant robustness since the global functioning of the network is

totally independent of each application node.

A DST can be described at three different levels as shown in

Fig.1. The logical level is an abstract vision of the DST. At this

level, tree nodes—that are groups of computers—are linked

together by abstract links. Then comes the interconnection level

that implements internodes links with TCP/IP links. Finally, there

is the topological level which describes how the TCP/IP links map

on a real network [3].

Fig.1 DST Structure

Fig.1 DST Structure

C. Description of the architecture

Our principal contribution is the proposition of the architecture

that serves as a model to implement a security system against

DDoS attacks. This model targets detection systems with the

possibility to place some applications at the very top level that can

use the collected data of the detection system. The innovation in

this case is the addition of a new level between the application one

and the detection system which is the use of the DST. This new

level permits to index the information and to distribute it among

the participants instead of implementing a central collection

entity.

The Fig. 2 describes each level of the architecture. We present it

with an abstraction degree that permits us to put both independent

and specific functions on each level. In fact, a node can contain

one or more levels. We will detail this later by giving examples.

The first level is the closest to the physical network. We

called it the Network Level. In this level, equipment belongs to the

underlay network. To be more specific, an entity in this level can

for example be an IP router with the basic routing and addressing

functionalities.

Fig.2 Architecture Levels

The second level is the Security Level. In this level we can

classify our detection system entities. The implementation of all

solutions in terms of detection system can be done here. This

level’s functions are the ones of detection. When the analyzed

traffic in this level is detected as an attack, an alert is triggered

and a primitive is sent to the upper level. This level will react to

the alert accordingly. We can note that a detection system can be

integrated to the equipment and the concerned entity will be

represented by the 2 first levels of the architecture.

The third level of the model is the P2P Level which includes the

DST proposed in our architecture to index and to distribute the

information among the nodes. This level receives the information

collected concerning the analyzed traffic from the Security Level.

When an alert is sent by the lower level, which means that an

attack is detected, the P2P level treats the received data and

indexes the information on the specific DST node (identified by a

nodeId) depending on the objected calculated. We also see the

possibility in this case, to integrate this level module to the

equipment that already has the Network and the Security Levels.

The last level is the Application Level. This last level is general in

the description for our architecture. It can implement all possible

management systems that use the indexed information on attacks

by the DST level to react. We propose in our case to add a

traceback application solution to integrate more complete defense

architecture than only a detection system. This traceback module

is a part of the future works since the three first levels of the

architecture were implemented as we will see in the next sections.

By removing any central analysis entity in the architecture we

propose a fully distributed solution. But in choosing this method

we must be sure that the collected data are correlated to ensure a

better detection of DDoS attacks and also a reaction to them.

Application Level

(Traceback, Propagation …)

P2P Level

DST (Distributed Spanning Tree)

Security Level

(Intrusion Detection System)

Network Level

(Router, Terminals …)

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.3, August 2010

11

Fig.3 Architecture Entities

Indeed we propose that some applications retrieve the traffic

information to analyze it deciding what to do. Fig.3 gives the

details architecture with the different entities.

4. PROPAGATION AND TRACEBACK

ALGORITHM

A. Propagation Algorithm

The aim of the propagation algorithm is to efficiently send

messages of to every computer that is part of a DST about the

DDoS attack. This algorithm is the simplest one and is very

similar to the classical tree parallel traversal. The root node

initiates the traversal by sending a message to all its children.

Then, recursively, when a non-leaf node receives a message, it

forwards it to its children.

Algorithm 1. Propagation algorithm

procedure Propagate (msg)

Propagate_Sub(h, msg)

end procedure

procedure Propagate_Sub (s, msg)

if s = 0 then // The message is sent to a leaf

process msg locally . // End of the Propagation

else // The message is sent to a non-leaf node

for all child routing_ table[s] do

child → Propagate_Sub(s - 1, msg)

end for

end if

end procedure

The DST propagation algorithm is presented as Algorithm.1. This

algorithm uses two procedures. Propagate_Sub is a recursive

procedure which propagates the message of an attack and

Propagate is the procedure which initializes the propagation.

The procedure Propagate_aux takes two parameters: msg, the

propagated message, and s, the level of the called node in the tree

(DST). Because non-leaf nodes are distributed over their

descendants, every computer acts as a leaf, as a node of stage 1,

…. and as the root node. The parameter s tells the computer which

node receives the message. If s = h, the computer must act as the

root node. If s = h - 1, it must act as the child of the root node. If

s = 0, the computer must act as a leaf and it does not forward the

message further.

If s ≠ 0, the computer acts as a stage s forwarding node. So, this

node forwards the message to its children. To do it, the computer

takes the list of computers that represent the children of its stage s

node. For each of them, it asks him to forward the message as a

stage s - 1 node, child of the stage s node.

The propagation of attack is initialized by the Propagate

procedure. This procedure must be called by a computer that is

part of the DST. By calling Propagate_sub(h, msg), it asks to

himself to act as the root node to forward the message msg.

Because a computer always uses itself as the representative of the

nodes that contain it, every computer receives only one distant

message. We can conclude that the number of distant messages of

a broadcast on an n-node DST is n - 1 because the computer that

initializes a broadcast does not receive any distant messages. So,

the complexity order of the broadcast is O(n) messages. Traces of

Algorithm.1 show that the algorithm runs h + 1 recursions. So,

the algorithm runs in h + 1 ≤ loga(|C|) + 2 steps. We can conclude

that the algorithm time complexity is O(log(n)) time units.

B. Traceback Algorithm

The Traceback algorithm aims at querying a number of computers

which grows exponentially like a TTL-based graph flooding

algorithm. This algorithm uses a propagate- like algorithm to

query a subtree of stage 1, then a subtree of stage 2, and so on,

until the DST is completely flooded or until the query is positively

answered about an DDoS Attack.

Algorithm 2. Traceback algorithm

procedure Traceback (tfs)

AL ← Traceback_sub (0, tfs)

TA ← 1

while TA ≤ h ^ AL ≡ ø do

temp ← ø

for all child routing_table[TA] do

if TA ≠ self then

temp[child] ← child → Traceback_sub (TA, tfs)

end if

end for

for all tempAL temp do // Joins found resources

AL ← AL tempAL

end for

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.3, August 2010

12

TA ← TA + 1

end while

return AL

end procedure

procedure Traceback_sub (TA, tfs)

if TA = 0 then

AL ← List of Attackers.

else

temp ←ø

 for all child routing_table[TA] do

temp[child] ← child ← Traceback_sub (TA- 1, tfs)

end for

AL ←ø // List of found resources

for all tempAL temp do // Join found resources

AL ← AL tempAL

end for

end if

return AL

end procedure

The Traceback algorithm uses two procedures. Traceback_Sub is

a recursive procedure which propagates requests in subtrees and

Traceback is the procedure which controls the search. To look for

a resource matching a query, you need to call the Traceback

procedure and pass your query as a parameter.

The Traceback_Sub procedure takes two parameters to broadcast

the request: TA the height of the subtree and tfs, traffic flow

signature description. If TA equals 0, we query a leaf. In this case,

the computer gathers the list of resources that match the query and

returns the list to the caller.

If TA is not equal to 0, the computer propagates the query to its

subtree of height TA. - 1 To do it, for each child of its node of

level TA, the computer sends a message to its representative. This

message asks the computer to gather the list of resources that

match the query in its subtree of height TA - 1. Then, the computer

waits for the answers of the queried subtrees and merges the lists

of matching resources. Finally, it returns the merged list to its

caller.

The Traceback procedure takes one parameter (tfs) which

describes the Traffic Flow Signature. The procedure starts by

searching locally a resource that matches the tfs and stores the list

of found resources in the list AL. Then, starting with a height of 1,

the procedure queries subtrees of increasing height until querying

the whole tree or until finding a resource.

To query a subtree of height TA, the Search procedure sends a

message to a computer of each child of its node of level TA but

one. We remind that a computer always chooses itself to represent

nodes that contains the computer.

So, with the test TA ≠ Self, we avoid to query the subtree that

contains the computer because this subtree is the subtree that has

been queried during the previous iteration. Once the queried

subtrees return their lists of found resources, the computer merges

the lists and prepares a new iteration in the case where no

resources is found. At the end, it returns to the client the list of

found resources that match the query.

By following traces of the Traceback algorithm, it is easy to

notice that each computer is only queried once and that only

2(n - 1) messages are used to query the n computers of the DST.

So, the complexity order of the search algorithm is O(n)

messages. Because propagations are parallel, only 2s time units

are needed to query a subtree of height s. Thus, to query an h

stages DST, we need 2.(1 + 2 + …. + h) = h (h + 1) time units.

We can conclude that the search algorithm has a time complexity

order of O((log(n))2) time units.

5. PERFORMANCE STUDY

The architecture was implemented and its performance was

proved to be good. The aim of these simulations is to compare the

behaviors and the performances of tracing algorithms on top of

three overlay network topologies: tree, pseudorandom graph, and

DST. Our comparison is limited to these two topologies because;

they are the most commonly used for self-organized networks

whereas static or index-oriented topologies cannot be used in this

context.

To simulate the execution of tracing algorithms, we use the

algorithm for the tree and the graph topologies: the initiator peer

contacts its neighbors and waits for a reply; if no resource is

found, then the initiator asks its neighbors to contact their

neighbors and waits for their replies, and so on, until the end of

the tree or the graph is reached. Hundred different types of

resources are available, and every computer has a probability of

10 percent to own a resource of each type. Each search request

stops either when it finds a node with the requested resources or

when the whole structure is traversed.

About the overlay topologies characteristics, trees are

bidirectional and their arity is 5. Graphs are also bidirectional,

connected, and the degree of each node is 5. Finally, the DST is

made in a way that each node has five children. These degrees

were chosen because they show the best performances in our

simulations. More precisely, we run some tests at various scales to

find out these optimal degrees. Then, we use them for all the

simulations by considering that these degrees are always optimal

in our experiments. However, these values depend on the links

throughput and the probability to find a service. Changing one of

these parameters implies that the chosen degrees would no longer

be optimal.

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.3, August 2010

13

Fig.4 Performances for networks of 10 peers

The simulations results for the 10 peer overlay networks are

displayed in Fig.4. The simulations show that the average time

needed to process a request depends on the request arrival rate.

This is an ordinary observation. When the number of initiated

requests increases, the system becomes more and more loaded and

messages spend more time in a waiting queue before being sent.

When the number of requests that enter the system becomes

higher that the number of requests that leave it, the system

becomes saturated. This saturation is easily identifiable for the

DST in Fig. 4: the average time needed to process a request

increases slowly for frequencies from 1 req.s_1 to a frequency of

150 req.s_1; but it increases very quickly for frequencies greater

than 200 req.s_1. On the other hand, the graph and the tree become

very quickly saturated.

The DST has the best behavior for these simulations. Because a

DST is a tree, a search request needs only 2.n messages to query n

peers, which is less than the graph. But, because it distributes the

load of father nodes between its children, it does not suffer from

the tree bottlenecks.

Fig.5 Performances for networks of 100 peers

Fig.5 presents the simulation results for 100 peers. Like before,

the three topologies saturate when the query arrival rate becomes

too high. From the simulations, it is clear that the tree has the

worst performances in term of supported load. A frequency of 100

req.s_1 is enough to overload trees, while graphs and DST start to

be overloaded for a frequency of 700 req.s_1. It is revealed that the

probability for a peer to be contacted at least twice is less than 1/3.

If every peer of a graph is contacted only once, then only 2.n

messages are needed to query n peers and the average number of

messages is optimal, like for the tree. So, the main result of this

experience is that the tree topologies are not efficient for the

leaves, compared to graphs or DST, as their first request will only

query one node: their parent.

Fig.6 Performances for networks of 1000 peers

Fig.6 gives the simulated performances for overlay networks of

1,000 peers. A load of 300 req.s_1 is enough to saturate the tree.

Graphs and DST start to be overloaded around 8,000 req.s_1.

Before being overloaded, the average search time of DST and

graphs increases slowly when the load is increasing.

DST’s performances are better than the graph’s ones for two

reasons:

1. A DST sends fewer messages as it uses the spanning tree for its

traversal algorithm. The number of sent messages depends on the

number of nodes, while it depends on the number of links for the

graph.

2. A DST distributes fairly its load between computers as the

spanning trees used by the nodes are distributed across the

network nodes. Thus, no bottleneck is generated compared to the

tree topology.

6. CONCLUSION AND FUTURE WORK

We proposed in this paper a modular Peer-to-Peer architecture to

collaboratively manage propagation and traceback of DDoS

attacks relying on the performance and scalability of DST

structure. This structure provides characteristics similar to trees

while avoiding the bottlenecks generated by the tree root. It

behaves better than randomly generated graphs as it needs only

two times the number of nodes messages to query all nodes, and

thus, significantly improves traversal algorithm efficiency.

Simulations validate that the DST improves the performances of

traceback algorithms, whatever the size of the network, from 10 to

several thousand nodes. The DST also provides good results when

propagating a DDoS attack signal on the overall network. The

main drawback of this structure is its cost of construction but this

cost is spread out over the lifetime of the DST as the structure is

incrementally generated by nodes that join (or leave) the overlay

network.

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80

R
eq

u
es

t
F

re
q

u
en

cy
 i

n
 r

eq
/s

Average Propagation time in ms

Tree

Graph

DST

0

100

200

300

400

500

600

700

800

900

1000

25 50 75 100 125 150 175 200 225 250 275 300

R
eq

u
es

t
F

re
q

u
en

cy
 i

n
 r

eq
/s

Average Propagation time in ms

Tree

Graph

DST

0

2000

4000

6000

8000

10000

12000

14000

25 50 75 100125150175200225250275300325350375400425450

R
eq

u
es

t
F

re
q

u
en

cy
 i

n
 r

eq
/s

Average Propagation time in ms

Tree

Graph

DST

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.3, August 2010

14

This model was designed with the aim of proposing the

integration of an intrusion detection system that can bring an

attacks’ information collect service to some applications like

traceback. The load-balancing is ensured by the consistent

updation of DST and every node keeps information on specific

victims. However, the scope of this paper is the description of the

architecture and the way that the lower levels offer services to the

application level. The management and the traceback application

that can retrieve and analyze the data sent by the lower levels to

react to the possible attacks must be more specifically specified,

and this is a principal issue for future work.

7. REFERENCES

[1] “Arbor networks worldwide infrastructure security

report”,2008. http://www.arbornetworks.com

[2] O. Demir, “A survey of network denial of service attacks and

countermeasures,” City University of New York,

ComputerScience Department, Tech. Rep., 2009.

[3] Sylvain Dahan, Laurent Philippe, and Jean-Marc Nicod,

“The Distributed Spanning Tree Structure”, IEEE Trans.

Parallel and Distributed Systems, vol.20, no.12, pp.1738-

1751, December 2009.

[4] Mihui Kim, Inshil Doh and Kijoon Chae, “Defense

Mechanism using Overlay against DDoS Attacks on

Converged Networks”, ICACT2007, pp. 1539-1543,

February 2007.

[5] D. Moore, G. Voelker, and S. Savage, “Inferring Internet

Denial of Service Activity”. In Proceedings of the 2001

USENIX Security Symposium, Washington D.C., August

2001.

[6] P. Ferguson, D. Senie, “Network ingress filtering: defeating

denial of service attacks which employ IP source address

spoofing”. In IETF, RFC 2267, January 1998.

[7] SR. Snapp et al. “DIDS (Distributed Intrusion Detection

System)- motivation architecture and an early prototype”. In

Proceedings of the 14th national computer security

conference, Washington DC, October 1999.

[8] RA. Kemmerer. “NSTAT: a model-based real-time network

intrusion detection system”. In Technical Report TRCS97-18,

Reliable Software Group, Department of Computer Science,

University of California at Santa Barbara, 1997.

[9] G. B. White, E. A. Fisch, U. W. Pooch, “Cooperating

security managers: A peer-based intrusion detection system”.

IEEE Network, 10(1):20-23, January / February 1996.

[10] E. H. Spafford, and D. Zamboni, “Intrusion detection using

autonomous agents”, In Computer Networks, vol. 34, No. 4,

pp. 547-570, 2000.

[11] “Snort: The Open Source Network Intrusion Detection

System”, www.snort.org.

[12] T.M. Gil, M. Poleto, “MULTOPS: a data-structure for

bandwidth attack detection” In Proceedings of 10th Usenix

Security Symposium,Washington, DC, pp. 23–38, August

2001.

[13] H. Hazeyama, Y. Kadobayashi, D. Miyamoto, and M. Oe.

“An autonomous architecture for inter-domain Traceback

across the borders of network operation”. In Proceedings of

11th IEEE Symposium on Computers and Communications

(ISCC ’06), pages 378–385, June 2006.

[14] J. Liu, Z. Lee, and Y. Chung, “Efficient dynamic

probabilistic packet marking for IP traceback”. In

Proceedingd of the 11th International Conf. Networks (ICON

2003), Sydney, Australia, , pp.475-480, September 2003.

[15] A. Belenky, N. Ansarin, “Tracing multiple attackers with

deterministic packet marking (DPM)”. In Proceedings of

IEEE PacRim vol. 1, pp. 49-52, August 2003,

[16] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis,

V. Paxson, and S. Shenker, “Controlling high bandwidth

aggregates”. In The network. SIGCOMM Comput. Commun.

Rev., 32(3) :62_73, 2002.

[17] J. Ioannidis and S. M. Bellovin, “Implementing pushback :

Routerbased defense against ddos attacks”. In NDSS. The

Internet Society, 2002.

[18] L. Peluso, D. Cotroneo, S. P. Romano, G. Ventre, “ASSYST:

an Active Security System against DoS attacks”. Technical

Report. Dept.of Computer Sciences, University of Napoli,

Italy, April 2001.

[19] J.Mirkovic, M.Robinson, P.Reiher, and G.Oikonomou,

“Distributed Defense Against DDOS Attacks”. University of

Delaware CIS Department Technical Report CIS-TR-2005-

02, 2005.

[20] Radwane Saad, Farid Nait-Abdesselam and Ahmed

Serhrouchni, “A Collaborative Peer-to-peer Architecture to

Defend Against DDoS Attacks”, Prod. 33rd IEEE

Conference LCN2008, pp.427-434, 2008.

