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ABSTRACT 

Frequent Patterns are very important in knowledge discovery and 

data mining process such as mining of association rules, 

correlations etc. Prefix-tree based approach is one of the 

contemporary approaches for mining frequent patterns. FP-tree is 

a compact representation of transaction database that contains 

frequency information of all relevant Frequent Patterns (FP) in a 

dataset. Since the introduction of FP-growth algorithm for FP-tree 

construction, three major algorithms have been proposed, namely 

AFPIM, CATS tree, and CanTree, that have adopted FP-tree for 

incremental mining of frequent patterns. All of the three methods 

perform incremental mining by processing one transaction of the 

incremental database at a time and updating it to the FP-tree of the 

initial (original) database. Here in this paper we propose a novel 

method to take advantage of FP-tree representation of incremental 

transaction database for incremental mining. We propose “Batch 

Incremental Tree (BIT)” algorithm to merge two small 

consecutive duration FP-trees to obtain a FP-tree that is 

equivalent of FP-tree obtained when the entire database is 

processed at once from the beginning of the first duration to the 

end of the second duration. For large databases, our experimental 

results show significant reduction in runtime of the BIT algorithm 

compared to the runtime of sequential incremental algorithms.   

General Terms 

Data mining, FP-tree, Prefix-tree Frequent Patterns, Incremental 

mining.  

Keywords 

Batch Incremental  Mining, Batch Incremental tree, Sequential 

Incremental Mining, minSup. 

1. INTRODUCTION 
Large databases, some times distributed over several remote 

locations, are becoming more common in the contemporary 

Global Economy scenario. The local databases which were 

initially small, have grown, growing continually and getting 

distributed to several remote sites as a result of globalization. 

Many of the conventional data mining algorithms are ineffective 

and inefficient for handling large and growing data sets [1] [2]. 

Hence, the scalable and incremental data mining has become an 

active area of research with many challenging problems. The large 

set of evolving and distributed data can be handled efficiently by 

Incremental Data mining. Incremental data mining algorithms 

perform knowledge updating incrementally to amend and 

strengthen what was previously discovered [5] [7] [12]. 

Incremental data mining algorithms incorporate database updates 

without having to mine the entire dataset again.  

Frequent pattern is a pattern of items or events that appear 

frequently in a data set. Frequent patterns are very important in 

knowledge discovery and data mining process, such as mining of 

association rules, correlations etc. Since the introduction of the 

concept of frequent patterns in 1993, by R. Agrawal et al. [3], 

there have been many considerable studies[2] [4] [6] proposing 

different approaches for discovering various kinds of frequent 

patterns and their applications. Prefix-tree-based approach is one 

of the contemporary approaches for mining frequent patterns. A 

pattern P is said to be frequent in a given data set D if its support 

count sup(P, D) is greater than or equal to a predefined threshold 

called minSup. Given a data set D and a support threshold m, the 

collection of all frequent item sets in D, is F(m, D) and is called 

“space of frequent patterns”. 
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Figure 1. a) Initial Dataset b) Projected Dataset with min-

threshold= 50%     c) FP-tree 

The prefix-tree compactly represents the transactions of a data set. 

Prefix-tree enables fast computation of support counts of all the 

frequent patterns of a dataset. Frequent patterns can be generated 

by traversing the prefix-tree, avoiding multiple scanning of the 

dataset. The “Frequent-Pattern” tree (FP-tree) is a prefix-tree, 

first proposed in 2000 by Han et al., in ACM-SIGMOD 

international conference[13] and later published in 2004[8]. FP-

Tree is a compact representation of transaction database that 

contains frequency information of all relevant patterns in a 

dataset. To construct a FP-Tree for a given dataset, first, the data 

set is transformed into “projected dataset”. The projected data set 

contains only the frequent items (with support count>min-

threshold) and each transaction is sorted in the descending order 

of their support count. The transactions in projected dataset are 

added to prefix-tree one by one. The Figure1 shows the dataset, 

projected data set and the corresponding FP-tree constructed for 

the given dataset. 
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F igure  2 .  S tep  wise  const ruct ion  of CATS t re e  whi le  p rocess ing each  t ransact ion  

 

2. RELATED WORK 
Han et al. proposed FP-growth algorithm [8] [13] to discover 

frequent patterns from FP-tree. FP-growth traverses the FP-tree in 

a depth-first manner. It requires only two scans of the dataset to 

construct FP-tree, unlike Aprori algorithm [3] that makes multiple 

scans over the dataset. Since the introduction of FP-growth 

algorithm three major algorithms have been proposed, namely 

AFPIM, CATS tree, and CanTree that have adopted FP-tree for 

incremental mining of frequent patterns. 

 

AFPIM: Koh and Shieh proposed “Adjusting FP-Tree for 

Incremental Mining” (AFPIM) algorithm [9].This algorithm 

updates previously constructed FP-tree that contains frequent 

items based on user specified minimum support threshold minSup, 

by scanning only the incremental part of the dataset. As items are 

arranged in descending order of support count based on original 

dataset, AFPIM re-sorts the items according to new values of 

support count based on incremental dataset through bubble-sort. 

There are two major drawbacks of AFPIM: First, computational 

expensiveness of sorting process. Second, when new frequent 

patterns emerge, as a result of scanning of incremental dataset, 

AFPIM has to construct a new FP-Tree. 

CATS Tree: CATS tree (Compressed and Arranged Transaction 

Sequence Tree) [10] addresses the limitations of AFPIM 

algorithm. Unlike AFPIM, the CATS tree considers all the items 

in the transactions for representation into tree, regardless of 

whether items are frequent or not. This allows CATS tree to 

represent even new emerging frequent patterns from incremental 

dataset. CATS arranges the nodes based on their local support 

count, which helps to achieve high compactness of the tree. For 

incremental mining  CATS tree updates the existing tree by 

considering the transactions of the incremental dataset one by one 

and merging them with existing tree branches. Figure 2 shows 

how CATS tree is constructed considering the dataset of Figure 1. 

However, CATS tree too has two limitations. First, for each new 

transaction it is required to find the right path for the new 

transaction to merge in. Second, it is required to swap and merge 

the nodes during the updates, as the nodes in CATS tree are 

locally sorted. 

CanTree: CanTree (Canonical-order Tree) is proposed by Leung 

et al. [11]. Construction of CanTree is very much similar to CATS 

tree except that, in CanTree items are arranged according to some 

canonical order. The canonical order can be determined by the 

user prior to mining process. Canonical ordering can be 

lexicographic or based on certain property values of items. Since 

the canonical order is fixed and not based on the support count, 

CanTree allows easy insertion of nodes. Unlike the CATS Tree, 

transaction insertions in CanTree require no extensive searching 

of mergeable paths.  CanTree too has some limitations. It 

generates compact tree if and only if majority of the transactions 

contain common pattern-base in canonical order. It generates 

skewed tree with too many branches and hence with too many 

nodes, otherwise. Further, though the CanTree takes less time for 

tree construction it requires more memory and more time for 

extracting frequent patterns from the generated CanTree. 

 

All of the three incremental prefix-tree based algorithms discussed 

above perform sequential incremental mining. That is, for 

incremental mining they consider one transaction of the 

incremental dataset at a time. However, in real scenario it is 

required to perform periodical mining of transaction databases for 

frequent pattern generation. The above discussed algorithms fail 

to take advantage of this periodical mining of frequent patterns. 

Supposing two data analysis are available for the first and second 

quarter of a year, in the form of FP-trees. And supposing it is 

required to obtain FP-tree for the first eight months of a year. All 

of the above discussed methods consider the FP-tree for the first 

quarter and perform incremental mining by processing one 

transaction of the second quarter database at a time. These 

methods do not take the advantage of the FP-tree of the second 

quarter that is readily available. 

Here in this paper we propose a novel method to take advantage 

of such previously obtained periodical FP-tree, i.e., FP-tree 

representation of incremental transaction database, for 

incremental mining. We propose an “Batch Incremental Tree 

(BIT)” algorithm to merge the small consecutive duration FP-tree 

to obtain a FP-tree that is equivalent of FP-tree obtained when the 

entire database is processed at once from the beginning of the first 

duration to the end of the second duration. 
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In this section we discuss about working of the BIT algorithm for 

incremental mining of frequent patterns. BIT algorithm takes FP-

tree of the two periodic datasets. It then reads the itemsets of one 

of the FP-tree (T1) one by one along with their frequency counts 

and searches for the mergeable prefix path of the other FP-tree 

(T2). It then merges the itemset of T1 with the mergeable prefix 

by updating frequency count of the items and inserting remaining 

non-prefix items(if any) by extending the tree branch after the last 

matching prefix item of the mergeable pattern. The algorithm 

given below precisely tells the steps involved in batch incremental 

processing. 

 

3. BATCH   INCREMENTAL   TREE (BIT) 

ALGORITHM  
 

ALGORITHM BatchIncrementalTree(FP-tree T1,FP-tree T2) 

1. Get itemsets from T2 by considering each of the leaves one by 

one. 

2. FP-tree T= T1      

3. For each itemset i obtained from T2 do the following steps, up 

to 18 

4. { Read the next itemset i of T2.   

5.  Get the next  item nk  to compare, from T  // Initially 1st  

                                                                    //  child of root of T 

6.  For each item  j  in the itemset  i  do the following steps , 

         up to 18 

7.     if item nk is equal to item j  then  

8.        if nk represents leaf node then 

9.        { Update node represented by nk. 

10.           Get the remaining items from the itemset i  and  

                  add each item as descendants of nk 

                  one below the other. 

11.           } 

12.            else   // if nk is not leaf node 

13.            {  Update node represented by nk. 

14.                nk = first child of nk. 

15.            } 

16.            else    // if item  nk is not equal to item j  

17.                if nk has any more child then nk = next child of nk. 

       18.                else   Get the remaining items from the itemset i  and 

                                      add each item as descendants of nk 

                                      one below the other. 

19. } 

20. Return T. 

21.  

4. TIME COMPLEXITY ANALYSIS  
For incremental data mining, CanTree reads the itemsets 

(transactions) of incremental database (D2) one at a time, and 

upends each itemset to the FP-tree (T1) of the original database 

(D1), whereas the BIT algorithm gets the itemsets from the FP-tree 

of the incremental database (D2) and upends each itemset to the 

FP-tree (T1) of the original database (D1).  Hence, the process of 

merging is essentially same for both the algorithms. The 

advantage of the BIT algorithm lies in the fact that it processes the 

multiple occurrences of the same itemset (represented with the 

occurrence frequency in the FP-tree T2) only once for merging, 

where as CanTree performs merging for every occurrence of the 

itemset.  In the following section we bring out this difference by 

way of time complexity analysis. 

Following notations are used for performance analysis: 

   m - Total number of items available. (This corresponds to 

         maximum number of children for the root of a tree) 

   n – Number of leaf nodes of tree T2. 

   qi – Number of nodes / items in branch i (item set i) of T2. 

   l –  Number of node items of T1 that match with the items of  

          itemset i (i.e size of the matching prefix of T1 for itemset 

          i of T2). 

   t – Total running time of the merging process. 

   ti – Time required for processing each itemset i of T2. 

   tcm – Time required to Compare and Move to the next node 

          in forward or downward direction  (if  comparison 

          fails). 

   tca –  Time to Create and Add node, corresponding to an item 

          of the itemset  i of T2, as descendant. 

 

Consider the (worst case) scenario wherein while comparing the 

items of itemset i of T2 at every level of the tree, the extreme right 

node item matches and the remaining items of itemset i are added 

as descendants of the extreme right leaf node of FP– tree T1. 

Figure  3 below shows the worst case scenario for FP-tree T1. 

 

 

 

 

 

 

 

 

 

 

Figure  3. FP-tree T1 showing worst case scenario 

 

Time,  ti =Time required for comparing items of ith  
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BIT algorithm gets transactions from the FP – tree T2 unlike of 

CanTree which reads from database.  In FP-Tree, multiple 

occurrences of each itemset are represented with a single branch, 

containing also the frequency of occurrence.  Hence, in BIT 

algorithm multiple occurrences of an itemset are read and 

processed for merging only once.  Therefore the value of „n‟ is 

always much less than that of CanTree and hence the value of „t‟.  

Further, as the database size increases the number of itemsets with 

high frequency also increases.  Hence, BIT algorithm always takes 

much less time than the CanTree. 

As the CanTree takes less time for FP-tree construction compared 

to AFPIM and CATS tree algorithms, we considered CanTree as 

the representative of sequential incremental FP-tree algorithms. 

We have implemented both CanTree and BIT algorithms and 

made comparative study of performance of the algorithms in terms 

of the execution time for tree construction. For CanTree, tree 

construction time is measured as the time required to read the 

transactions from incremental database and insert the items into 

the FP-tree constructed for original database. For BIT, tree 

construction time is measured as the time required for reading the 

itemset from the existing FP-tree of incremental database and 

inserting the itemsets into the FP-tree of original database.  

 

   

0

20

40

60

80

100

120

140

10 30 50 70 90

Database Size  ( in million transactions )

R
u
n
ti
m

e
  
( 

in
 s

e
c
o
n
d
s
 )

CanTree

BIT

 

(a) 

0

10

20

30

40

50

60

70

80

20 40 60 80

% of Incremental DataBase  size        

( in million transactions )

R
u
n
ti
m

e
 (

 i
n
 s

e
c
o
n
d
s
 )

CanTree

BIT

 

(b) 

Figure 4. Runtime: BIT  Vs.  CanTree 

 

We tested the algorithm for their performance on duel processor 

machines with 2.8 GHz speed. We made multiple runs of the 

algorithms on synthetic databases of various sizes, ranging from 

10 million transactions to 100 million transactions. Average 

itemset size of the transactions was 15 in the domain of 500 items. 

We tested the algorithms by measuring runtime against (i) varying 

size of databases keeping the original and incremental database 

size in fixed proportions (60: 40) and (ii) varying the proportion 

of original and incremental database keeping the total database 

size fixed. The results of the experiments are shown in the form of 

the graphs below in Figure 4 (a) & Figure 4 (b). 

As can be observed from the graphs below, BIT algorithm takes 

much less time (almost half of the time required for CanTree) for 

the construction of FP-tree. As the size of the database increases 

(Figure 4 (a)), the runtime of BIT algorithm decreases. Further, 

the time difference between CanTree and BIT algorithm also 

increases as the database size increases. This is because, as the 
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database size increases the frequency of occurrence of items also 

increases and hence CanTree requires more time to read 

transactions from incremental database. Whereas, in BIT 

algorithm as it reads itemsets from FP-tree and FP-tree contains 

only one representation for multiple occurrences of the itemsets, it 

reads only once. 

In Figure 4(a), the runtime decreases as the percentage of the 

incremental database decreases (keeping the size of the original 

database fixed) for both CanTree and BIT. Here again, it can be 

observed that the difference in runtime of CanTree and BIT is 

more when the size of incremental database is more (i.e., 

percentage of incremental database) and it reduces as size reduces. 

As can be seen from the graph above in Figure 4, runtime of BIT 

algorithm reduces to nearly half of the runtime of sequential 

algorithms for large size databases. 

5. CONCLUSION 

BIT algorithm takes much less time to construct FP-tree by using 

previously generated FP-tree of incremental database.  This is 

possible because BIT reads the incremental transactions from the 

FP-tree rather than database, where multiple occurrences of a 

transaction of the database are represented only once. As can be 

seen from the graph above in Figure 4, CanTree does more work 

to search for matching prefix as the database size increases. On 

the contrary BIT algorithm does less work as the database size 

increases. Because, as the database size increases the probability 

of recurrence of itemsets also increases and hence the difference 

in runtime between BIT algorithm and sequential incremental 

algorithms increases, i.e. BIT takes less time for tree construction.  
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