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ABSTRACT 
Generation system reliability assessment is an important task 

which can be performed using deterministic or probabilistic 

techniques. The probabilistic approaches have significant 

advantages over the deterministic methods. However, more 

complicated modeling is required by the probabilistic approaches. 

Power generation model is a basic requirement for this 

assessment. One form of the generation models is the well known 

capacity outage probability table (COPT). Different analytical 

techniques have been used to construct the COPT. These 

approaches require considerable mathematical modeling of the 

generating units. The units‟ models are combined to build the 

COPT which will add more burdens on the process of creating the 

COPT. This paper proposes the utilization of the Genetic 

Algorithm (GA) to sample the states of the COPT without 

engaging in analytical units modeling. The simple binary 

representation, “0” and “1” is used to model the states of 

generating units. The effect of the GA parameters is examined. 

The proposed technique is proven to be an effective approach to 

build the generation model. The proposed technique is applied to 

the RBTS.  
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1. INTRODUCTION 
Generating capacity adequacy assessment is an important aspect 

of power system planning. In order to maintain a desired level of 

reliability, the system must have a capacity reserve in excess of 

the actual load demand. Many techniques have been developed to 

determine the required level of capacity reserve in a system.  

These techniques can be divided into two types, probabilistic and 

deterministic [1-4]. A number of Canadian surveys have been 

conducted and it was concluded from these surveys that Canadian 

utility practice has moved over time from deterministic 

approaches to probabilistic techniques [5]. 

Two models are required to conduct probabilistic adequacy 

assessment of the system, the load model and the generation 

model. The most commonly used load models are the daily peak 

load variation curve (DPLVC), and the load duration curve 

(LDC). These two models are fairly straight forward to build. The 

generation model is usually presented in the form of a capacity 

outage probability table (COPT) which includes the available or 

unavailable capacity levels and their corresponding probabilities. 

The COPT has been created using different techniques [6-7]. 

These approaches can be categorized into two main categories 

analytical methods and Monte Carlo simulation (MCS) techniques 

.Analytical approaches require mathematical modeling for the 

generating units. The unit‟s models are then combined to generate 

the system states which will add more burdens on the process of 

creating the COPT. MCS does not require extensive mathematical 

modeling, however, a large number of simulation need to be 

considered to reach an acceptable confident level. Moreover, 

MCS is a random process in which system states can be repeated 

many times unnecessarily. The proposed technique utilizes the 

GA which does not require analytical representation to recover the 

system states which in turn formalize the COPT. GA is random 

yet controlled process. The appearance of previously generated 

system states can be controlled and reduced. GA has emerged as a 

powerful search tool used for search and optimization [8-14]. Ref. 

[10] utilized the GA to calculate the reliability indices of the 

system. Creating COPT was embedded in the reliability 

assessment process. This paper illustrates the utilization of GA to 

specifically create the COPT.  

A typical GA starts with a random population of chromosomes 

encoded as strings of symbols. Then, it goes through a number of 

iterations in which the population at the beginning of each 

iteration is replaced by another population. The population 

produced at each step is called a generation. The chromosomes of 

each new generation are produced by the reproduction process. 

Reproduction of the new generation involves three operations 

applied to the current generation. These operations are selection, 

crossover and mutation. 

Conventionally, a GA maximizes an objective function. This 

function measures the fitness of each chromosome. Many 

optimization techniques are based on identifying whether a 

solution is feasible or not. The infeasible solutions are rejected 

even though some of the rejected solutions may be good partial 

solutions. The GA can utilize the infeasible solutions by 

penalizing the solutions that breaks a constraint by reducing their 

fitness values. 

This paper presents the application of the GA as a search 

technique to accumulate the most effective capacity states to build 

the COPT. Two major factors affect the accuracy of the COPT, 

the number of states and the probability of these states. These two 

factors are monitored in the analysis. The effect of the GA 
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parameters is illustrated in this paper. The concepts presented are 

demonstrated by application to the RBTS.  

2. GA SEARCH TECHNIQUE  
The GA is used as a search tool to construct the generation model 

(COPT). The GA generates system states represented as 

chromosomes and the fit individuals are sampled to build the 

COPT. For a system with N generating units which can be either 

“in service” or “out of service”, the total number of system states 

is 2N. The probabilities of these states should add up to 1.0. 

However, for large systems, it is not practical to include all of the 

system states in the COPT. Some of these states have low 

probability of occurrence which means that they are rare to occur. 

These states do not affect significantly the system reliability 

assessment. In fact, it is the usual practice to truncate these states 

out of the COPT [6]. The proposed application of the GA to build 

the COPT is designed to truncate the insignificant states and its 

process is summarized in the following steps: 

1) An initial population is generated randomly. This population 

contains individual chromosomes. Each chromosome represents a 

system state which is encoded as a binary string with a length 

equal to the number of generating units. Each unit is represented 

by one bit with a value of „1‟ or „0‟ corresponding to „in service‟ 

or „out of service‟ states. The probability of the units to be found 

in these two states is given by Equation 1. 
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where,  

stateij is the state of unit j in system state i, 

probj is the state probability of unit j, 

FORj is the Forced Outage Rate of unit j 

 

2) The fitness of each system state (individual) is evaluated by 

calculating its probability. State probability is calculated using 

Equation 2. In a given population, there are some generated 

system states which are repeated. The fitness of these states is set 

to a very small value so that they are ignored and truncated from 

the COPT. The unrepeated states are added to a system states 

array. The system states array will be used later to construct the 

COPT. 
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where,  

N is number of generating units 

 

3) The “capacity in service” and the “capacity out of service” 

are calculated for each system state recovered in the system states 

array for the current population using Equations 3 and 4 

respectively.   
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where,   

Capj is the capacity of unit j 

TIC is the Total Installed Capacity 

 

4) Selection of fit strings (system states), to be used to generate 

the new generation is done using the tournament selection 

technique. The states that have higher probability have more 

chances to be selected. The population members are randomly 

divided into subgroups and members with the best fitness among 

the subgroups get selected for reproduction. This process 

decreases the chances of generating system states with low 

probability of occurrence. Therefore, the selection process acts as 

the truncation technique.   

5) Crossover operation follows the selection process. The 

newly selected strings are paired together at random. Then, an 

integer position along every pair of strings is selected uniformly 

at random. Finally, based on a probability of crossover, the paired 

strings undergo crossing over at the integer position along the 

string. This results in new pairs of strings (system states).  

6) Mutation operation follows the previous two GA operation 

to finalize the reproduction process. An occasional random 

alteration of a string based on probability of mutation is 

performed. This involves changing a 1 to a 0 and vice versa.  

7) At this stage, the new generation is generated. To keep track 

of the progress in collecting the fit system states, the total 

probability of the collected states in the system states array is 

calculated. This probability is designated as “cumulative 

probability” and calculated using Equation 5. Then steps 2 to 7 

are repeated.  
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where,  

M is the total number of states collected in the kth generation. 

Obviously, the Cum prob0-1 in the initial population is zero. The 

cumulative probability approaches 1.0 as reproduction iterations 

precede. 

 

8) Different stopping criteria can be used. A maximum number 

of generations (iterations) can be used as a stopping criterion. 

Another stopping criterion can be used which is stopping the 

reproduction operation when there is no improvement (increase) 

in the cumulative probability of the collected states. Also, the 

regeneration can be terminated after finding the desired 

maximum cumulative probability. In this paper, the maximum 

number of generation is used as the stopping criterion.   

The final COPT is constructed by arranging the recovered states 

in the system states array in a descending order using the capacity 

out of service. The states with equal capacities are replaced by a 

single state with the probability equals to the sum of the 

probabilities of these states. 

3. CASE STUDIES 
The technique described above is illustrated on a small system 

composed of three generating units with a total installed capacity 

(TIC) of 60 MW. The system data is shown in Table 1. 
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Table 1. Test system data. 

 Capj (MW) FORj 

Unit 1 10 0.02 

Unit 2 30 0.04 

Unit 3 20 0.10 

 

The total number of the possible system states for this system is 

23 (8 states). Since this system is very small then all of the states 

will be recovered by the GA search. A population size of 10 is 

considered in this case. The initial population of the first 

generation which was generated randomly is shown in Table 2.  

As explained previously, each row in this population represents a 

system state which is encoded as a binary string with a length 

equal to the number of generating units (3 units). It can be seen 

from Table 2 that States 6 and 10 and States 3, 7 and 8 are 

identical states. The repeated states will be penalized in the next 

step. The state probability of each unit is calculated using 

Equation 1 utilizing the data given in Table 1 and the information 

in Table 2. Then system state probabilities of the initial population 

are calculated using Equation 2 and shown in Table 3.  

Table 3 shows that the fitness values for the repeated states (States 

3, 6 and 7) are assigned a very small value appears as zeros. The 

unrepeated states are added to system states array and their 

corresponding “in service” and “out of service” capacities are 

calculated using Equations 3 and 4 respectively. The cumulative 

probability of the recovered states is also calculated using 

Equation 5. The resulting system states array is shown in Table 4. 

 

Table 2. Initial population for the test system. 

 Unit 1 Unit 2 Unit 3 

System State State ij 

1 0 0 0 

2 0 0 1 

3 1 0 0 

4 1 1 0 

5 1 0 1 

6 0 1 1 

7 1 0 0 

8 1 0 0 

9 0 1 0 

10 0 1 1 

 

Table 3. State probability for the initial population. 

System State State probi 

1 0.00008 

2 0.00072 

3 0.00000 

4 0.09408 

5 0.03528 

6 0.00000 

7 0.00000 

8 0.00392 

9 0.00192 

10 0.01728 

 

It can be seen from Table 4 that the cumulative probability is very 

low which indicates that not all the significant states with high 

probabilities are recovered. A new population is produced by 

manipulating the current population using the GA operation 

(selection, crossover and mutation). The resulting new generation 

is shown in Table 5.  

The new population shown in Table 5 revealed a new state which 

was not recovered in the previous population. The probability for 

this state is calculated using Equation 2 which yields a value of 

0.84672. The rest of the states were recovered previously and 

therefore, the probabilities for these states are set to a very small 

value. The new system array is updated and shown in Table 6.  

Table 4. System states array for the first generation. 

System 

State 

State Cap Ini 

(MW) 

State Cap 

Outi (MW) 

State Probi 

1 0 60 0.00008 

2 20 40 0.00072 

3 40 20 0.09408 

4 30 30 0.03528 

5 10 50 0.00392 

6 30 30 0.00192 

7 50 10 0.01728 

Cumulative probability1 0.15328 

 

Table 5. The new population of the second generation. 

System State Unit 1 Unit 2 Unit 3 

1 1 1 0 

2 1 1 0 

3 1 1 0 

4 0 1 0 

5 1 1 0 

6 1 1 0 

7 1 0 1 

8 1 1 0 

9 1 1 1 

10 0 0 1 



International Journal of Computer Applications (0975 – 8887)  

Volume 5– No.5, August 2010 

4 

 

Table 6. System states array after the second generation. 

System 

State 

State Cap Ini 

(MW) 

State Cap 

Outi (MW) 

State Probi 

1 0 60 0.00008 

2 20 40 0.00072 

3 40 20 0.09408 

4 30 30 0.03528 

5 10 50 0.00392 

6 30 30 0.00192 

7 50 10 0.01728 

8 60 0 0.84672 

Cumulative probability2 1.0 

 

It can be seen from Table 6 that all of the system states (23) are 

recovered after the second generation. This is due to the size of 

the test system which is very small. The final step is to rearrange 

the states and merge the states with same capacity level (States 4 

and 6). Table 7 shows the final COPT. 

The final COPT shown in Table 7 obtained for the three-units 

test system was verified and compared with the results obtained 

for the same system using the conventional recursive algorithm 

presented in Reference [6]. This comparison yields identical 

results. 

Table 7. The final COPT for the test system. 

State Cap Outi 

(MW) 

State Cap Ini 

(MW) 

State Probi 

60 0 0.00008 

50 10 0.00392 

40 20 0.00072 

30 30 0.03720 

20 40 0.09408 

10 50 0.01728 

0 60 0.84672 

Cumulative probability 1.0 

 

The COPT was built without actually modeling the generating 

units. The “0” and “1” are used to model the states of the units. 

Moreover, the significant capacity states were recovered by the 

GA search.  

The developed technique is applied to the RBTS [15]. The RBTS 

is an educational test system that has 11 generating units, ranged 

from 5 MW to 40 MW. The total number of states for the RBTS is 

211 (2048) states. The GA search method is applied to the RBTS 

with 10 generations (iterations) and a population size of 300. The 

result of this simulation is shown in Figure. 1.  

It can be seen from Figure 1 that both the number of states and the 

cumulative probability increase in every generation. The GA 

search technique accumulated around 490 states in ten generations 

which represents 24 % of the total number of states (2048). The 

cumulative probability of these states represents 99.9788 % of the 

total probability for all states which is 100%. More accurate result 

can be achieved by increasing the population size and number of 

generation if desired. The effect of the GA parameters is 

examined in the next section. 
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Figure 1. GA search result for the RBTS 

 

4. SENSITIVITY ANALYSIS 
The effect of the GA parameters on the generation model is 

examined using the RBTS. These parameters include the 

generation size, population size and crossover probability. Two 

characteristics of the COPT are tracked, the number of states 

included in the COPT and the total cumulative probability of these 

states.  

The effect of number of generations is considered. A population 

size of 100 is used in this case. Number of generations of 10, 20, 

30, 40, 50 and 100 are examined. Figure 2 shows the number of 

states recovered for the different number of generations. The 

cumulative probability of the recovered states is also shown for 

the corresponding number of generation. 

 

Figure 2. Number of states and the corresponding cumulative 

probability for different number of generations and a 

population size of 100. 
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It can be seen from Figure 2 that the number of states recovered in 

the COPT increases consistently with the increase in the number 

of generation. However, the cumulative probability of the 

recovered states fluctuates with the increase in the number of 

generation. Two factors can cause this phenomenon, either the 

number of generations or the population size of 100 is not large 

enough for the GA operations to recover all the effective states. A 

higher population size of 300 is considered and the result is shown 

in Figure 3. 

It can be seen from Figure 3 that the number of the recovered 

states and their corresponding cumulative probabilities increase 

consistently with the increase in the number of generation. This 

reflects that no significant states were not recovered with the 

population size of 300.  

Figure 3 shows that a noticeable increase in the cumulative 

probability was associated with the increase in the number of 

generation from 20 to 30. Nevertheless, the increase in the 

cumulative probability achieved with the increase in the number 

of generation from 50 to 100 was not significant. Therefore, a 

high enough number of generations need to be considered in order 

to have confident in the resulting COPT.  

 

Figure 3. Number of states and the corresponding cumulative 

probability for different number of generations and a 

population size of 300. 

 

The effect of the population size is considered next. A number of 

generations of 50 is used in this analysis. Different population 

sizes ranges from 50 to 1000 are considered. Figure 4 shows the 

number of states recovered with the different population sizes. 

The cumulative probability of the recovered states is also shown 

for the corresponding population size. 

It can be seen from Figure 4 that the number of states consistently 

increases with the increase in the population size. However, the 

cumulative probabilities fluctuate with this increase in the 

population size. This fluctuation is due to the fact that some of the 

effective states with relatively high probability were not recovered 

with the relatively small number of generation considered. The 

cumulative probability started to settle at the population size of 

500.  

 

Figure 4. Number of states and the corresponding cumulative 

probabilities for different population sizes and a number of 

generations of 50. 

 

A larger number of generations of 100 is considered and the result 

is shown in Figure 5. It can be seen from this figure that the 

number of states recovered and the corresponding cumulative 

probabilities are consistently increasing with the increase in the 

population size. 

 

Figure 5. Number of states and the corresponding cumulative 

probabilities for different population sizes and a number of 

generations of 100. 

It can be seen from Figure 5 that there is a significant increase in 

the number of states when the population size increased from 500 

to 750. Nevertheless, very limited increase in the cumulative 

probability occurred in this case. Therefore, it is not needed to go 

beyond the population size of 500 in order to achieve an 

acceptable level of confident. 

In fact, it can be seen from Figure 4 and Figure 5 with a 

population size of 500, that similar number of states and similar 

cumulative probability were recovered in both cases. Therefore, 

there is no need to go for a larger number of generations with a 

large population size to reach a similar confident level.  
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The effect of the crossover probability is considered. A number of 

generations of 100 and a population size of 400 are used in this 

analysis. Different crossover probabilities ranges from 0.005 to 

0.5 are considered. Figure 6 shows the number of states recovered 

for the different crossover probabilities. The cumulative 

probability of the recovered states is also shown for the 

corresponding crossover probabilities. 

Figure 6 shows that the number of the recovered states and the 

corresponding cumulative probabilities fluctuate with the increase 

in the crossover probability. However, the range of these 

fluctuating is relatively small compared to that with the other GA 

parameters as illustrated in the previous group of figures. 

Therefore, the crossover probability does not affect the COPT 

construction significantly under these conditions.  

 

Figure 6. Number of states and the corresponding cumulative 

probabilities for different crossover probabilities and a 

number of generations of 100 and a population size of 400. 

5. CONCLUSIONS 
This paper presented an effective method based on the GA search 

to create the power generation model. This model is one of the 

basic requirements for the generation power system reliability 

evaluation. The proposed method uses GA as a tool to search for 

the effective states that have high probability of occurrence. The 

proposed approach has two main features; first of all, no 

complicated modeling is required to represent the generating 

units. The binary representation, “0” and “1”, is used to represent 

the states of the generating units Second of all, it has the 

capability to truncate the ineffective capacity states and yet results 

with an accurate COPT. This feature is very useful when dealing 

with large systems. 

The proposed technique was tested on the RBTS. It was found 

that the accuracy of the created generation model depends on the 

GA characteristics. Therefore, caution has to be taken when 

setting the values of the GA operators.  
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