The Mediator Chromatic Number of Grid Graphs

N. Roopesh
Research scholar
Department of Mathematics
Kongunadu Arts and Science College
Coimbatore - 641029

K.Thilagavathi
Assoc. Prof. of Mathematics
Department of Mathematics
Kongunadu Arts and Science College
Coimbatore - 641029

Abstract

In this paper, we determine the mediator chromatic number of cartesian product of a path with K_{2} and thus prove that the mediator chromatic number of Ladder graphs and Grid graphs are polynomially solvable.

General Terms

Graph colouring, chromatic number, operations on graphs.

Keywords

Mediator colourclass, mediator colouring, mediator chromatic number.

1. INTRODUCTION

In graph theory, graph colouring is an assignment of colours to certain objects in a graph. Such objects can be vertices, edges, faces or a mixture of those. Among these, vertex colouring is the important kind. It is a usual custom to use the numbers $1,2,3, \ldots, k$ to colour a graph instead of the actual colours. A k-vertex colouring of a graph G is an assignment of k colours to the vertices of G and it is proper if no two distinct adjacent vertices have the same colour. In this entire paper by colouring, we mean the proper vertex colouring. The mediator chromatic number [7] was introduced by N.Roopesh and K. Thilagavathi. They [8] shown that it can be used as a tool for checking the minimum of a harmonious colouring.

2. DEFINITIONS $[7,8]$

2.1 Mediator Colouring Partition

Let $G(V, E)$ be a simple graph and $\Pi=\left\{C_{1}, C_{2}, C_{3}, \ldots, C_{k}\right\}$ be a proper colouring partition of $V(G)$. This partition is said to be a mediator colouring partition if the following condition is satisfied.
(i) $C_{i} \cup C_{j}, i \neq j$ is not independent
or
(ii) There exist at least two edges from $C_{i} \cup C_{j}$ to some other colour class $C_{l}, l \neq i, j$
Note that the second choice ensures at least two edges incident to the vertex which is coloured as c_{l} and the other ends with colours c_{i} and c_{j}.

2.2 Mediator colouring

Mediator colouring is a proper vertex colouring in which the colouring partition is a mediator colouring partition.

2.3 Mediator chromatic number

The maximum cardinality of a mediator colouring partition of a graph G is called the mediator chromatic number of the graph. And it is denoted by $\chi_{M}(G)$.
Note : It can be noted that if the first condition of mediator colouring alone is satisfied for every i and j, then it is called the complete colouring or achromatic colouring and in this case χ_{M} will become ψ.

Note: We denote the colour classes of the vertices with colour c_{i} as C_{i}. Then two colour classes C_{i} and C_{j} are adjacent if there exist an edge with end points coloured as c_{i} and c_{j}.

2.4 Mediator set

In a mediator colouring, any set C_{l}, such that there exists at least two edges from $C_{i} \cup C_{j}$ to C_{l} (where $l \neq i, j$) is called a mediator colour class of C_{i}, C_{j} and c_{l} is called a mediator of c_{i}, c_{j}. The collection of all mediator colour classes is called the mediator set of the mediator colouring.

3. MEDIATOR COLOURING OF CARTESIAN PRODUCT OF $\boldsymbol{P}_{\boldsymbol{n}}$ WITH $\boldsymbol{K}_{\mathbf{2}}$

In graph theory, the Cartesian product [10] $G \times H$ of graphs G and H is a graph defined as follows : vertex set of $G \times H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, u^{\prime}) and (v, v^{\prime}) are adjacent in $G \times H$ if and only if either $u=v$ and u^{\prime} is adjacent with v^{\prime} or $u^{\prime}=v^{\prime}$ and u is adjacent with v.

3.1 Theorem

For a path P_{n} of odd length $n>1, \chi_{M}\left(P_{n} \times K_{2}\right)=n+m+2$ where $n=2 m+1$.

Proof

Consider a path P_{n} of odd length n and a complete graph K_{2}. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right\}$ and $V\left(K_{2}\right)=\left\{u_{1}, u_{2}\right\}$.Then $V\left(P_{n} \times K_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n+1}, x_{1}, x_{2}, x_{3}, \ldots, x_{n+1}\right\}$, where $w_{i}=\left(v_{i}, u_{1}\right)$ and $x_{i}=\left(v_{i}, u_{2}\right)$. Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n+m+2}\right\}$, assign the colours to the vertices of $P_{n} \times K_{2}$ as follows
Colour the vertices w_{1} as $c_{1}, x_{1}, w_{2}, w_{2+4 k}$ and $x_{4 r}$ as c_{2}, where $k, r=1,2,3, \ldots,\left[\frac{n}{4}\right]$. Let $W^{\prime}=\left\{w_{i}\right\}-\left\{w_{1}, w_{2}, w_{2+4 k}\right\}$. Form a sequence $\left\{t_{i}\right\}, t_{i} \in W^{\prime}$ such that $\{i\}$ is a strictly increasing sequence. Consider $X^{\prime}=\left\{x_{i}\right\}-\left\{x_{1}, x_{4 r}\right\}$. Form a sequence $\left\{y_{h}\right\}, y_{h} \in X^{\prime}$ and $\{h\}$ is a strictly increasing sequence. Now for $i=1,2,3, \ldots, n-\left[\frac{n}{4}\right]-1$ and $h=$ $1,2,3, \ldots, n-\left[\frac{n}{4}\right]$ assign the colour $c_{2 i+2}$ to t_{i} and $c_{2 h+1}$ to y_{h}. Then this colouring is a mediator, for the set of vertices coloured as c_{2} will act as the colour class C_{l} such that for each $i, j, i, j \neq l$ there exists at least two edges from $C_{i} \cup C_{j}$ to C_{l}. More over, it is the maximum colouring. For, suppose not, that is a mediator colouring is possible with a colour class C^{\prime} with $\left|C^{\prime}\right|=|C|+1$. Let c be the new colour added to C. Now to get such a colouring, only possibility is to recolour any of the vertex coloured as c_{2}. That is we have to consider the recolouring of the vertces of the following forms.
(i) $w_{2+4 k}, k=1,2,3, \ldots,\left[\frac{n}{4}\right]$
(ii) $x_{4 r}, r=1,2,3, \ldots,\left[\frac{n}{4}\right]$
(iii) x_{1}, w_{2}

Case 1
Suppose we are recolouring the vertex of the form $w_{2+4 s}$, $1 \leq s \leq\left[\frac{n}{4}\right]$, then $w_{2+4 s}$ is adjacent with at least two vetices of the graph. Consider any one such vertex say w. Now let $z \in N(w)$, and $a \in N(Z), a \neq w$.

Figure 1: showing the selection of a
Consider the colouring map $\square: V \rightarrow C^{\prime}$ then $\left\{\square\left(w_{2+4 s}\right)\right.$ \} $\mathrm{U}\{\square(a)\}$ is independent. Then to make this colouring mediator, we need a different colour class C_{l} such that there exists at least two edges from $\left\{\square\left(w_{2+4 s}\right)\right\} \cup\{\square(a)\}$ to C_{l}. Since we are going for a maximum colouring, the only way is to recolour the neighbour of a, which is coloured as c_{2} to c. Then again using the previous arguement, we can find a vertex b such that $\left\{\square\left(w_{2+4 s}\right)\right\} \cup\{\square(b)\}$ is independent. Thus, the recolouring process of c_{2} to c will continue upto the last vertex with colour c_{2}. Now the colour class will become $C^{\prime}-\left\{c_{2}\right\}$. Thus $\left|C^{\prime}\right|=|C|+1-1=|C|$, which is a contradiction. Therefore C is the maximum colour class.

Case 2

If we are recolouring the vertex of the form $x_{4 s}, 1 \leq s \leq$ $\left[\frac{n}{4}\right]$, by using a similar arguement used in case 1 , we can prove that C is the maximum colour class possible.

Case 3

If we are recolouring x_{1} and w_{2}, we can easily see that the vertices $w_{3}, w_{4}, \ldots, w_{n+1}, x_{4}, x_{5}, \ldots, x_{n+1}$ are not adjacent with x_{1} or w_{2}. Thus, again we can choose a vertex a such that $\{c\} \cup\{\square(a)\}$ is independent, then we can proceed as in case 1 to prove the colour class C is the maximum one.
It can be noted that any recolouring of the combination of the vertices amoung (i), (ii) and (iii) will also enable us to select a vertex a such that $\{c\} \cup\{\square(a)\}$ is independent.
Thus in all the cases, we get the colourclass C is the maximum one possible.
Hence for odd $n, \chi_{M}\left(P_{n} \times K_{2}\right)=n+m+2$ where $n=$ $2 m+1$.

Example

Figure 2: $\chi_{M}\left(P_{9} \times K_{2}\right)=9+4+2=15$

3.2 Note

For $n=1, \chi_{M}\left(P_{1} \times K_{2}\right)=4$

Figure 3: $\chi_{M}\left(P_{1} \times K_{2}\right)=4$

3.3 Theorem

For a path P_{n} of even length, $\chi_{M}\left(P_{n} \times K_{2}\right)=n+\frac{n}{2}+2$.

Proof

Consider a path P_{n} of even length n and a complete graph K_{2}. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{n+1}\right\}$ and $V\left(K_{2}\right)=\left\{u_{1}, u_{2}\right\}$. Then
$V\left(P_{n} \times K_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n+1}, x_{1}, x_{2}, x_{3}, \ldots, x_{n+1}\right\}$,
where $w_{i}=\left(v_{i}, u_{1}\right)$ and $x_{i}=\left(v_{i}, u_{2}\right)$. Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n+\frac{n}{2}+2}\right\}$, and assign the colours to the vertices of $P_{n} \times K_{2}$ as follows.
Case 1: n is a multiple of 4 .
Colour the vertices w_{1} as c_{1} and each vertex of the form $w_{3+4 k}$ or $x_{1+4 r}$ as c_{2}, where $k=0,1,2, \ldots, \frac{n}{4}-1$ and $r=$ $0,1,2, \ldots, \frac{n}{4} . \quad$ Let $\quad W^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{n+1}\right\} \quad-\left(\left\{w_{1}\right\} \cup\right.$ $\left.\left\{w_{3+4 k}: k=0,1,2, \ldots, \frac{n}{4}-1\right\}\right)$. Let $\left(t_{i}\right)_{i=1}^{\frac{3 n}{4}}$ be the sequence of elements from W^{\prime} in order of increasing index.
Let $X^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}-\left(\left\{x_{1+4 r}: r=0,1,2, \ldots, \frac{n}{4}\right\}\right)$. Let $\left(y_{h}\right)_{h=1}^{\frac{3 n}{4}}$ be the sequence of elements from X^{\prime} in order of increasing index. Now for $i, h=1,2,3, \ldots, \frac{3 n}{4}$ assign the colour $c_{2 i+2}$ to t_{i} and $c_{2 h+1}$ to y_{h}.
Case 2: n is not a multiple of 4 .
Colour w_{1} as c_{1} and each vertex of the form $w_{3+4 k}$ or $x_{1+4 r}$ as c_{2}, where $k, r=0,1,2, \ldots,\left[\frac{n}{4}\right]$. Similar to X^{\prime} consider the set W^{\prime},
$W^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{n+1}\right\}-\left(\left\{w_{1}\right\} \cup\left\{w_{3+4 k}: k=0,1,2\right.\right.$,
$\left.\left.\ldots,\left[\frac{n}{4}\right]\right\}\right)$. Let $\left(t_{i}\right)_{i=1}^{\frac{3 n}{4}}$ be the sequence of elements from W^{\prime} in order of increasing index. Let $X^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}$ $-\left(\left\{x_{1+4 r}: r=0,1,2, \ldots,\left[\frac{n}{4}\right]\right\}\right) . \quad$ Let $\quad\left(y_{h}\right)_{h=1}^{\left[\frac{3 n}{4}\right]+1} \quad$ be the sequence of elements from X^{\prime} in order of increasing index. Now for $i=1,2,3, \ldots,\left[\frac{3 n}{4}\right]$ and $h=1,2,3, \ldots,\left[\frac{3 n}{4}\right]+1$ assign the colour $c_{2 i+2}$ to t_{i} and $c_{2 h+1}$ to y_{h}.
Then this colouring is a mediator, for the set of vertices coloured as c_{2} will act as the colour class C_{l} such that for each i, j such that $i, j \neq l$ there exists at least two edges from $C_{i} \cup C_{j}$ to C_{l}. That is, $\left\{C_{2}\right\}$ will act as the mediator set. Moreover, it is the maximum colouring. For suppose not, that is, a mediator colouring is possible with a colour class C^{\prime} with $\left|C^{\prime}\right|=|C|+1$. Let $C^{\prime}=C \cup\{c\}$. To get such a colouring, the only possibility is to recolour the c_{2} coloured vertices as c. That is, we have to consider the recolouring of some vertices of the following forms.
(i) $\mathrm{w}_{3+4 \mathrm{k}}$, where $k=\left\{\begin{array}{c}0,1,2, \ldots, \frac{n}{4}-1, \text { if } \mathrm{n} \equiv 0(\bmod 4) \\ 0,1,2, \ldots,\left\lfloor\frac{n}{4}\right\rceil, \text { otherwise }\end{array}\right.$
(ii) $\mathrm{x}_{1+4 \mathrm{r}}$, where $r=\left\{\begin{array}{c}0,1,2, \ldots, \frac{n}{4} \text {, if } \mathrm{n} \equiv 0(\bmod 4) \\ 0,1,2, \ldots,\left[\frac{n}{4}\right], \text { otherwise }\end{array}\right.$

Case (i)
Suppose we are recolouring some vertex w of the form $w_{3+4 k}$, then it is adjacent to atleast two vertices of the graph. Let $z \in N(w)$, and $a \in N(z), a \neq w$. Consider the colouring map $\square: V \rightarrow C^{\prime}$ then $C_{\square(w)} \cup C_{\square(a)}$ is independent, where C_{d} is the colour class corresponding to colour d. Then to make this colouring a mediator, we need a colour class C_{l} such that there exists atleast two edges from $C_{\square(w)} \cup C_{\square(a)}$ to C_{l}. Since we are going for a maximum colouring, the only way is to recolour the neighbour of a, which is coloured as c_{2} to c. Now starting with either vertex w or w^{\prime} (the recoloured vertex), and again using the previous argument, we can find another vertex b such that $C_{\square(w)} \cup C_{\square(b)}$ is independent. Thus, the recolouring process from c_{2} to c will continue upto the last vertex with colour c_{2}, which results in expelling the colour c_{2} from the colour class C^{\prime}. Thus, $\left|C^{\prime}\right|=|C|+1-1=|C|$, which is a contradiction. Therefore, C is the maximum colour class.

Case (ii)

If we are recolouring some vertex of the form $x_{4 r+1}$, by a similar arguement as Case (i), we can prove that C is the maximum colour class possible.
It can be noted that any recolouring of the combination of vertices in case (i) and case (ii) will also enable us to select a vertex a such that $C_{c} \cup C_{\square(a)}$ is independent, or in expelling one already existing colour and thus reducing the cardinality of the new colour class by one.
Thus in all the cases C is the maximum colour class possible.
Hence for even $n, \chi_{M}\left(P_{n} \times K_{2}\right)=n+\frac{n}{2}+2$

4. CONCLUSION

The graph $P_{n} \times K_{2}$ is generally known as the ladder graph L_{n+1}. Also it is equivalent to the grid graph
$G_{2, n+1}$. By theorem 3.1, for odd n the mediator chromatic number of L_{n+1} and $G_{2, n+1}$ is $n+m+2$ where $n=2 m+1$. For even n, the mediator chromatic number of L_{n+1} and $G_{2, n+1}$ is given by theorem 3.2 as $n+\frac{n}{2}+2$.
Thus, we conclude that for any $n>1, \chi_{M}\left(P_{n} \times K_{2}\right)=n+$ $\left[\frac{n}{2}\right]+2$.

Hence, $\chi_{M}\left(L_{n+1}\right)=\chi_{M}\left(G_{2, n+1}\right)=n+\left[\frac{n}{2}\right]+2$.

Figure 4: $\chi_{M}\left(P_{10} \times K_{2}\right)=10+5+2=17$

5. REFERENCES

[1] J. A Bondy and U.S.R. Murty, Graph theory with Applications. London: MacMillan (1976).
[2] Frank Harary and Stephen Hedetniemi, The Achromatic number of a graph. Journal of Combinatorial Theory, 8 (1970) 154-161.
[3] Frank Harary, Graph Theory. Narosa Publishing Home (1969).
[4] Frank Harary, Stephen Hedetniemi and Geert Prins An interpolation theorem for graphical homomorphisms. Portugaliae Mathematica, 26-Fasc. 4 (1967).
[5] M. Farber, G. Hahn, P. Hell and D. J Miller Concerning the achromatic number of graphs. J. Combinatorial Theory, Ser. B, 40 (1986) 21-39.
[6] Gary Chartrand and Ping Zhang Chromatic graph theory. CRC Press (2009).
[7] N. Roopesh and K. Thilagavathi, Mediator colouring of graphs. Far East Journal of Applied Mathematics,(submitted).
[8] N. Roopesh and K. Thilagavathi, Relation between Harmonious colouring and Mediator colouring. Applied Mathematics E-Notes, (communicated)
[9] N. Roopesh and K. Thilagavathi, Mediator colouring of certain product of a path with K_{2}. Proceedings of the International Conference on Mathematics and Computer Science (ICMCS) (2010), 115-118.
[10] Yukio Shibata and Yosuke Kikuchi, Graph products based on the distance in graphs. IEICE Trans. Fundamentals, E83-A. No. 3 (March 2000) 459-464.

