
International Journal of Computer Applications (0975 – 8887)

Volume 5– No.7, August 2010

16

A Parallel implementation of Gram-Schmidt Algorithm for

Dense Linear System of Equations

S. Roholah Ghodsi
PhD Candidate, Mechanical and

Aerospace Eng. Dep., Science and

Research Branch, Islamic Azad

University (IAU), Iran

Bahman Mehri
Professor, Mech. & Aero.Eng. Dep.,

Science and Research Branch, IAU,

Iran

Mohammad Taeibi-Rahni
Professor, Mech. & Aero.Eng. Dep.,

Science and Research Branch, IAU,

Iran

ABSTRACT

The linear system of equations with dense coefficient matrix is

very common in science and engineering. In this paper, a parallel

algorithm based on Gram-Schmidt QR factorization method for

the exact solution of dense system of linear equations is presented.

Although several parallel approaches have been proposed to solve

the system of linear equations until now, the aim of this paper is

to show the ability and limitation of this parallel algorithm in

comparison with the sequential one. The suggested parallel

algorithm is executed on MIMD architecture and distributed

memory. In order to specify the efficiency of this algorithm, the

amounts of speedup and FLOPs in executions with different size

of matrix (from 2000 to 12000 equations) on up to 5 processors

are compared together. The results show that the achieved

speedup is significant, and also the performance of this practical

parallel algorithm increases as the number of equations grows.

Keywords

Gram-Schmidt Method, QR Factorization, Parallel Processing,

Dense Matrix, Linear system of equations.

2000 MR Subject Classification: 65F05, 65F25, 68W10

1. INTRODUCTION
Numerical linear algebra is an active field of research which

provided many algorithms for the treatment of standard problems

like the solution of system of linear equations. The problem of

solving dense systems of linear equations has been dealt with the

history of mathematics. Furthermore, this subject is one of the

main problems in numerical computation, computer science, and

different field of Engineering.

The numerical solution methods for linear systems of equations

are broadly classified into two categories: direct methods, such as

QR factorization; and iterative methods.

Direct methods obtain the exact solution in finitely many

operations and are often preferred to iterative methods in real

applications because of their robustness and predictable behavior.

On the other hand, the term “iterative methods” refers to a range

of techniques that use approximations to obtain more accurate

solutions to a linear system at each step. Beginning with a given

approximate solution, these methods modify the components of

the approximation, until convergence is achieved.

The most suitable algorithm for a linear algebra problem depends

on the properties of the system of equations like: non-zero

elements, symmetry, real or complex coefficients, etc.

Furthermore the scientist has to decide whether to use a direct

solver, leading to a transformation of the original matrix and thus

(for large problems) generating a need for enormous main memory

and powerful processor, or to use an iterative solver which works

with the original matrix.

Some methods for the solution of this problem involve

triangularization of a matrix followed by back substitution. The

triangularization procedure is computationally more complex than

the back substitution. Therefore the scope of this paper is just on

a parallel algorithm of orthogonalization and triangularization

procedure, in order to verify its efficiency. The other procedures

are done sequentially.

In the field of linear algebra, there are some high performance

libraries, which are used widely in the scientific codes. The most

famous libraries are Basic Linear Algebra Subprograms (BLAS)

[1], Linear Algebra Package (LAPACK) [2], and Scalable Linear

Algebra Package (SCALAPACK) [3]. The BLAS and LAPACK

consist of sequential algorithms, which are used on single

processor. On the other side, SCALAPACK is the package of

parallel algorithms. From a practical point of view, the important

decision is whether the user implements the linear algebra

algorithm himself or relies on available libraries. Otherwise the

user has to choose a parallelization scheme which best fits his

specific application problem and he has to implement the

necessary algorithms himself [4].

Up to now, excellent numerical methods for solving the system of

linear equations on single and parallel systems have been

developed, and many reliable and high-quality codes are available

for different cases of linear systems [5, 6 and 7]. The first real

library of subroutines for linear algebra on dense matrices was

developed in Algol by Wilkinson and Reinsch [8]. In 2002, Dunn

and Meyer described three parallel QR factorization algorithms:

distributed memory, Synchronous Message Passing, and

Asynchronous Message Passing [9].

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.7, August 2010

17

2. FORMULATION
The algorithm is based on Gram-Schmidt Orthogonalization and

QR factorization. The formulation is briefly explained in this

section.

Let {a1, a2, ..., an} be a basis for a subspace S of an inner product

space V. An orthonormal basis {u1, u2, ..., un} for S can be

constructed using the following Gram–Schmidt Orthogonalization

process:

(1)

where k =2, … ,n, and ∥ ∥ is a norm on the vector space.

A QR factorization of A ∈ ℝn×n (m ≥ n) is a factorization A=QR,

where Q ∈ ℝn×n is an orthogonal matrix and R ∈ ℝn×n is an upper

triangular. There are two algorithms to do Gram-Schmidt

Orthogonalization process, the first one is based on Classical

Gram–Schmidt Orthogonalization, and the second one is based on

Modified Gram–Schmidt Orthogonalization [10]. The classical

Gram–Schmidt is unstable numerically and so is never

implemented in practice [11]. In this project, the second algorithm

is used in order to produce orthogonalized matrix.

Now, consider a system of linear equations, AX=B, which A is a

dense and non-singular matrix with non-zero elements. If A=QR is

a QR Factorization of matrix A∈ℝn×n, then this linear system can

be solved as follow:

1. Compute Q and R, from A= {a1, a2, a3,…, an},

(2)

so, Q = {q1, q2, q3, … , qn}.

On the other hand, the upper triangular matrix R is computed from

equation (2) simultaneously. The matrix R is shown as,

(3)

2. Multiply the transpose of Q to the both side of system of

linear equations,

 (4)

Consider QTQ=Q', which is a diagonal matrix and then Q' R = R'.

In the other side, QTB=B'. So,

 (5)

In this equation, R is an upper triangular matrix. Therefore the

unknown matrix X is computed easily by back substitution.

3. HARDWARE SETUP
This numerical experiment has been done on a parallel system

with MIMD (Multiple Data, Multiple Instruction) Structure, and

distributed memory [12]. The library of parallel processing used in

this paper is standard MPI [13]. Furthermore, the programming

language is FORTRAN. The information of all computers and

network, which are used in this experiment, is shown in table 1.

Table 1. The computers and network information

CPU Pentium Dual-Core 3.00 GHz

Cache 2 MB

RAM 2 GB

FSB 1066

Network Hub switch 16 port 100 Mbps

4. PARALLEL ALGORITHM
In order to solve a system of linear equations with numerical

modified Gram-Schmidt QR factorization method, initially the

orthogonal and upper-triangular matrices must be computed.

Therefore, according to the Equation (2), the columns of the

orthogonal matrix are computed one-by-one. In the computation

of each column, the previous computed columns of orthogonal

matrix are used. When a column of matrix Q is computed,

automatically a column of the upper-triangular matrix is known as,

(6)

It seems that, the solution is completely arranged in sequence. It

should be considered that the denominator of each coefficient, in

the computation of a column of orthogonal matrix in equation (2),

consists of a term, which has been repeated in the computation of

previous column, i.e. |qk . qk |. On the other hand, when a column

of orthogonal matrix qi is obtained, those terms in the next

unknown columns (i.e. from qi+1 to qn), which are related to

current column can be computed simultaneously. Obviously, this

is a parallel characteristic.

In order to parallelize this algorithm, first of all, the orthogonal

matrix is set equal to the matrix A in all processors, because the

first term in equation (2) is ai. Then, each processor has

responsibility for computing some columns of orthogonal matrix;

an example is shown in Table 2.

Table 2: Distribution of columns of orthogonal matrix to

different processors

Processor The Columns of Orthogonal Matrix

#1 q2 qk+2

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.7, August 2010

18

#2 q3 qk+3

#3 q4 qk+4

#k qk+1 qk+2

When a processor completely computes a column, then it

broadcasts the column for all other processors and sends its

computed coefficients r(1:i-1, i) to the main processor. Therefore,

all required data for computing the next terms of remaining

columns is available for all processors.

This processing continue until, all columns of orthogonal matrix

are computed. Afterward, the main processor computes the

unknown matrix X sequentially, with back substitution procedure

from excising orthogonal and triangular matrix. The flowcharts of

single and parallel algorithm are shown in the Fig.1 and Fig.2,

respectively.

Figure 1: Solution of system of linear equations with Single

QR Factorization algorithm

Because the scope of this paper is on the performance of

parallelizing the process of generating orthogonal matrix, the back

substituting is computed in the main processor lonely , as shown

in Fig. 2.

5. EFFICIENCY AND SPEEDUP
The important thing in parallelizing an algorithm is efficiency of

the original algorithm. The algorithms discussed here perform

mathematical tasks that transform an initial data into a desired

result using an ordered list of arithmetic operations, comparisons,

and decisions.

Figure 2: Solution of system of linear equations with

Parallel QR Factorization algorithm

So, in general, in a given computational environment, the more

efficient algorithm finishes its task sooner with the nearest result

to the exact one. On computers, computation time was heavily

dominated by evaluating floating point operations. If n measures

the input matrix A∈ℝn×n, then an O(np) algorithm is one that, for

some positive constant c, performs cnp plus a sum of lower

powers of n floating point operations [14]. In choosing a

numerical method, efficiency must be balanced with considerations

like robustness against rounding error and likelihood of failure.

In order to compare different algorithms to solve a system of

equations Ax=b with A ∈ ℝn×n and B ∈ ℝn, the O(np) of them are

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.7, August 2010

19

noted in table 3 [15]. In detail, the computational work involved in

an QR Factorization is of order 2n3+ O(n2). Furthermore, there are

three other choices for orthogonalization [16]:

1. Householder: (4/3)n3+ O(n2)

2. Given: (8/3)n3+ O(n2)

3. Fast Given: (4/3)n3+ O(n2)

Obviously, the efficiency of QR factorization is acceptable. In

addition, it returns exact result for unknowns of the system of

linear equations.

Table 3: Comparison efficiency of different algorithm to

solve a system of equations

The important thing is the efficiency of parallel algorithm and its

ability and limitation. The key issue in the parallel processing of a

single application is the speedup, especially its dependence on the

number of processors used. Speedup is defined as a factor by

which the execution time for the application changes,

(7)

where, p is the number of processor,

Ts = the executing time of the sequential algorithm,

TP = the executing time of the parallel algorithm with p processors.

The achieved speedup on parallel system is shown in Fig.3.

Figure 3: The speedup of different executions

Apparently, when the size of the matrix is not large, increasing the

number of processor cannot change the speedup greatly. The

reason is existing delay in communication. But when the number

of equations grows, adding more processor can improve the

speedup.

On the other hand, the efficiency of parallel processing is a

performance metric, which is defined as,

(8)

It is a value, typically between zero and one, estimating how well-

utilized the processors are in solving the problem, compared to

how much effort is wasted in communication and synchronization.

Fig. 4 reports the efficiency of the QR factorization on parallel

computers. This graph shows a decline in efficiency by increase in

the number of processors, which is happened because of

communication delay.

Figure 4: The Efficiency of the different executions with

different number of processor

According to the obtained results, this parallel algorithm depends

on hardware. If the computational power increases, the efficiency

of parallel algorithm decreases. However, the challenges of

numerical efforts are the lack of computational power and the size

of problems. The progress in computational power has a great

impact on many of numerical algorithms. From other point of

view, when the size of matrix grows, the efficiency of this parallel

algorithm becomes better.

Figure 5: The Mflops of the executions with different

number of processor

Fig. 5 presents the FLOPS (floating Point Operations per Second)

of different cases. We obtained a peak performance of 2.094

Triangular back substitution (If A is triangular) O(n2
)

Gaussian elimination with partial pivoting O(n
3
)

The QR-factorization O(n3
)

SVD O(n4
)

Gaussian elimination with complete pivoting O(n4
)

Cramer’s rule O((n+1)n!)

Cramer’s rule (determinants evaluated by Gaussian

elimination)
O((n+1)n!)

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Central_processing_unit

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.7, August 2010

20

GFLOPS on a 5-processor for 12000 equations. The single

processor rate for this size of matrix was measured at 597

MFLOPS.

Fig. 6 shows the executing time of computations with different

number of processors. It can be observed that time is reduced with

the increase in number of processors, whereas the Communication

time rises.

Figure 6: The executing times of different executions

As a result, the Fig. 4 presents that the method has limitation to

improve parallel processing. However, the Fig. 3 and 6 shows the

ability of this algorithm to increase the speedup and decrease

executing time in comparison with single processing.

On the other hand, the efficiency of Gram-Schmidt QR

factorization is O(n3), which is acceptable in comparison with

other method. Furthermore, it is shown that, the described parallel

algorithm is relatively successful in speedup. Hence, it seems that,

the proposed parallel method has remarkable ability to compare

with other efficient methods (it is not in scope of this paper).

6. CONCLUSION
In this paper, we demonstrated a parallel algorithm based on the

Gram-Schmidt QR factorization, which can be used for direct

solution of an arbitrary system of linear equations. We analyzed in

detail the implementation of our parallel algorithm using up to 5

processors.

An efficient parallel solver was presented to reduce the

computational time. Whatever, the number of equations increases,

the performance of the algorithm becomes better and more

processors can be used efficiently. Obviously, the number of

unknowns and equations in real problems are extra large, so the

concept of this algorithm can be helpful to solve them exactly.

The purpose of this paper was not to compare the efficiency of

this method with other solution of system of linear equations; it

showed just the limitation and ability of described parallel method.

In future, we will optimize this parallel algorithm to solve the

system of linear equations with tridiagonal coefficient matrix.

7. REFERENCES
[1] Demmel, J. 1995. LAPACK Users' Guide. Society for

Industrial and Applied Mathematic, 2nd Sub edition.

[2] Blackford, L.S., Choi, J., Cleary, A., DAzevedo, E., Demmel,

J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G.,

Petitet, A., Stanley, K., Walker, D., and Whaley, R.C. 1987.

ScaLAPACK user's guide. Society for Industrial

Mathematics.

[3] Körfgen, B., Gutheil, I. 2006. Parallel Linear Algebra

Methods. Comp. Nanoscience: Do It Yourself, NIC Series,

Vol.31, 507-522

[4] Heller, D. 1978. A Survey of Parallel Algorithms in

Numerical Linear Algebra. SIAM Review, Vol.20, No.4, 740-

777.

[5] Saad, Y. 2003. Iterative Methods for Sparse Linear Systems.

SIAM press, Philadelphia, 2nd edition.

[6] Fernando, G., Tinetti, D., Giusti, A. 2004. Parallel Linear

Algebra on Clusters. 3rd International workshop on Parallel

Matrix Algorithms and Applications (PMAA'04), CIRM,

Marseille, France.

[7] Wilkinson, J.H., and Reinsch, C. 1986. Handbook for

Automatic Computation. Vol. 2: Linear Algebra. Springer

press, Berlin.

[8] Dunn, I.N., and Meyer, G.L. 2002. QR factorization for

shared memory and message passing, Parallel Comp. Vol.28,

No.11, 1507–1530.

[9] Trefethen, L.N., and Bau, D. 1997. Numerical Linear Algebra.

SIAM press, Philadelphia.

[10] Meyer, C.D. 2000. Matrix Analysis and Applied Linear

Algebra. SIAM, Philadelphia.

[11] Wittwer, T. 2006. An Introduction to Parallel Programming.

VSSD uitgeverij, Netherlands.

[12] Snir, M., and Gropp, W. 1998. MPI: the Complete

Reference. The MIT Press, Cambridge, 2nd edition.

[13] Hogben, L. 2006. Handbook of Linear Algebra (Discrete

Mathematics and its Application), Chapman & Hall/CRC,

Boca Raton, 1st edition.

[14] Golub, G.H., and Van Loan, C.F. 1996. Matrix

Computations. The Johns Hopkins University Press,

Maryland, 3rd edition.

[15] Lioen, W.M., and Winter, D.T. 1992. Solving Large Dense

Systems of Linear Equations on Systems with Virtual

Memory and with Cache. Applied Numerical Mathematics,

Vol.10, No.1, 73-85.

http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=John%20H.%20Wilkinson
http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=C.%20Reinsch
http://www.sciencedirect.com/science/journal/01689274

