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ABSTRACT 

The linear system of equations with dense coefficient matrix is 

very common in science and engineering. In this paper, a parallel 

algorithm based on Gram-Schmidt QR factorization method for 

the exact solution of dense system of linear equations is presented. 

Although several parallel approaches have been proposed to solve 

the system of linear equations until now, the aim of this paper is 

to show the ability and limitation of this parallel algorithm in 

comparison with the sequential one. The suggested parallel 

algorithm is executed on MIMD architecture and distributed 

memory. In order to specify  the efficiency of this algorithm, the 

amounts of speedup and FLOPs in executions with different size 

of matrix (from 2000 to 12000 equations) on up to 5 processors 

are compared together. The results show that the achieved 

speedup is significant, and also the performance of this practical 

parallel algorithm increases as the number of equations grows.   
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1. INTRODUCTION 
Numerical linear algebra is an active field of research which 

provided many algorithms for the treatment of standard problems 

like the solution of system of linear equations. The problem of 

solving dense systems of linear equations has been dealt with the 

history of mathematics. Furthermore, this subject is one of the 

main problems in numerical computation, computer science, and 

different field of Engineering.  

The numerical solution methods for linear systems of equations 

are broadly classified into two categories: direct methods, such as 

QR factorization; and iterative methods. 

Direct methods obtain the exact solution in finitely many 

operations and are often preferred to iterative methods in real 

applications because of their robustness and predictable behavior. 

On the other hand, the term “iterative methods” refers to a range 

of techniques that use approximations to obtain more accurate 

solutions to a linear system at each step. Beginning with a given 

approximate solution, these methods modify the components of 

the approximation, until convergence is achieved.  

The most suitable algorithm for a linear algebra problem depends 

on the properties of the system of equations like: non-zero 

elements, symmetry, real or complex coefficients, etc. 

Furthermore the scientist has to decide whether to use a direct 

solver, leading to a transformation of the original matrix and thus 

(for large problems) generating a need for enormous main memory 

and powerful processor, or to use an iterative solver which works 

with the original matrix. 

Some methods for the solution of this problem involve 

triangularization of a matrix followed by back substitution. The 

triangularization procedure is computationally more complex than 

the back substitution. Therefore the scope of this paper is just on 

a parallel algorithm of orthogonalization and triangularization 

procedure, in order to verify its efficiency. The other procedures 

are done sequentially. 

In the field of linear algebra, there are some high performance 

libraries, which are used widely in the scientific codes. The most 

famous libraries are Basic Linear Algebra Subprograms (BLAS) 

[1], Linear Algebra Package (LAPACK) [2], and Scalable Linear 

Algebra Package (SCALAPACK) [3]. The BLAS and LAPACK 

consist of sequential algorithms, which are used on single 

processor. On the other side, SCALAPACK is the package of 

parallel algorithms. From a practical point of view, the important 

decision is whether the user implements the linear algebra 

algorithm himself or relies on available libraries. Otherwise the 

user has to choose a parallelization scheme which best fits his 

specific application problem and he has to implement the 

necessary algorithms himself [4]. 

Up to now, excellent numerical methods for solving the system of 

linear equations on single and parallel systems have been 

developed, and many reliable and high-quality codes are available 

for different cases of linear systems [5, 6 and 7]. The first real 

library of subroutines for linear algebra on dense matrices was 

developed in Algol by Wilkinson and Reinsch [8]. In 2002, Dunn 

and Meyer described three parallel QR factorization algorithms: 

distributed memory, Synchronous Message Passing, and 

Asynchronous Message Passing [9]. 
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2.  FORMULATION 
The algorithm is based on Gram-Schmidt Orthogonalization and 

QR factorization. The formulation is briefly explained in this 

section. 

Let {a1, a2, ..., an} be a basis for a subspace S of an inner product 

space V. An orthonormal basis {u1, u2, ..., un} for S can be 

constructed using the following Gram–Schmidt Orthogonalization 

process: 

 

(1) 

where k =2, … ,n, and ∥ ∥ is a norm on the vector space. 

A QR factorization of A ∈ ℝn×n (m ≥ n) is a factorization A=QR, 

where Q ∈ ℝn×n is an orthogonal matrix and R ∈ ℝn×n is an upper 

triangular. There are two algorithms to do Gram-Schmidt 

Orthogonalization process, the first one is based on Classical 

Gram–Schmidt Orthogonalization, and the second one is based on 

Modified Gram–Schmidt Orthogonalization [10]. The classical 

Gram–Schmidt is unstable numerically and so is never 

implemented in practice [11]. In this project, the second algorithm 

is used in order to produce orthogonalized matrix.  

Now, consider a system of linear equations, AX=B, which A is a 

dense and non-singular matrix with non-zero elements. If A=QR is 

a QR Factorization of matrix A∈ℝn×n, then this linear system can 

be solved as follow: 

1. Compute Q and R, from A= {a1, a2, a3,…, an}, 

 

(2) 

so, Q = {q1, q2, q3, … , qn}.  

On the other hand, the upper triangular matrix R is computed from 

equation (2) simultaneously. The matrix R is shown as, 

 

(3) 

2. Multiply the transpose of Q to the both side of system of 

linear equations, 

 (4) 

Consider QTQ=Q', which is a diagonal matrix and then Q' R = R'. 

In the other side, QTB=B'. So,  

 (5) 

In this equation, R is an upper triangular matrix. Therefore the 

unknown matrix X  is computed easily by back substitution. 

3. HARDWARE SETUP 
This numerical experiment has been done on a parallel system 

with MIMD (Multiple Data, Multiple Instruction) Structure, and 

distributed memory [12]. The library of parallel processing used in 

this paper is standard MPI [13]. Furthermore, the programming 

language is FORTRAN. The information of all computers and 

network, which are used in this experiment, is shown in table 1. 

Table 1. The computers and network information 

CPU Pentium Dual-Core 3.00 GHz 

Cache 2 MB 

RAM 2 GB 

FSB 1066 

Network Hub switch 16 port 100 Mbps 

 

4. PARALLEL ALGORITHM 
In order to solve a system of linear equations with numerical 

modified Gram-Schmidt QR factorization method, initially the 

orthogonal and upper-triangular matrices must be computed. 

Therefore, according to the Equation (2), the columns of the 

orthogonal matrix are computed one-by-one. In the computation 

of each column, the previous computed columns of orthogonal 

matrix are used. When a column of matrix Q is computed, 

automatically a column of the upper-triangular matrix is known as, 

 

(6) 

It seems that, the solution is completely arranged in sequence. It 

should be considered that the denominator of each coefficient, in 

the computation of a column of orthogonal matrix in equation (2), 

consists of a term, which has been repeated in the computation of 

previous column, i.e. |qk . qk |. On the other hand, when a column 

of orthogonal matrix qi is obtained, those terms in the next 

unknown columns (i.e. from qi+1 to qn), which are related to 

current column can be computed simultaneously. Obviously, this 

is a parallel characteristic. 

In order to parallelize this algorithm, first of all, the orthogonal 

matrix is set equal to the matrix A in all processors, because the 

first term in equation (2) is ai. Then, each processor has 

responsibility for computing some columns of orthogonal matrix; 

an example is shown in Table 2. 

Table 2: Distribution of columns of orthogonal matrix to 

different processors 

Processor The Columns of Orthogonal Matrix 

#1 q2 qk+2  
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#2 q3 qk+3  

#3 q4 qk+4  

    

#k qk+1 qk+2  

    

When a processor completely computes a column, then it 

broadcasts the column for all other processors and sends its 

computed coefficients r(1:i-1, i ) to the main processor. Therefore, 

all required data for computing the next terms of remaining 

columns is available for all processors. 

This processing continue until, all columns of orthogonal matrix 

are computed. Afterward, the main processor computes the 

unknown matrix X sequentially, with back substitution procedure 

from excising orthogonal and triangular matrix.  The flowcharts of 

single and parallel algorithm are shown in the Fig.1 and Fig.2, 

respectively. 

 

Figure 1: Solution of system of linear equations with Single 

QR Factorization algorithm 

 

Because the scope of this paper is on the performance of 

parallelizing the process of generating orthogonal matrix, the back 

substituting is computed in the main processor lonely , as shown 

in Fig. 2. 

5. EFFICIENCY AND SPEEDUP 
The important thing in parallelizing an algorithm is efficiency of 

the original algorithm. The algorithms discussed here perform 

mathematical tasks that transform an initial data into a desired 

result using an ordered list of arithmetic operations, comparisons, 

and decisions.  

  

Figure 2: Solution of system of linear equations with 

Parallel QR Factorization algorithm 

So, in general, in a given computational environment, the more 

efficient algorithm finishes its task sooner with the nearest result 

to the exact one. On computers, computation time was heavily 

dominated by evaluating floating point operations. If n measures 

the input matrix A∈ℝn×n, then an O(np) algorithm is one that, for 

some positive constant c, performs cnp plus a sum of lower 

powers of n floating point operations [14]. In choosing a 

numerical method, efficiency must be balanced with considerations 

like robustness against rounding error and likelihood of failure. 

In order to compare different algorithms to solve a system of 

equations Ax=b with A ∈ ℝn×n and B ∈ ℝn, the O(np) of them are 
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noted in table 3 [15]. In detail, the computational work involved in 

an QR Factorization is of order 2n3+ O(n2). Furthermore, there are 

three other choices for orthogonalization [16]: 

1. Householder:  (4/3)n3+ O(n2) 

2. Given:  (8/3)n3+ O(n2) 

3. Fast Given:  (4/3)n3+ O(n2) 

Obviously, the efficiency of QR factorization is acceptable. In 

addition, it returns exact result for unknowns of the system of 

linear equations.  

Table 3: Comparison efficiency of different algorithm to 

solve a system of equations 

The important thing is the efficiency of parallel algorithm and its 

ability and limitation. The key issue in the parallel processing of a 

single application is the speedup, especially its dependence on the 

number of processors used. Speedup is defined as a factor by 

which the execution time for the application changes, 

 

(7) 

where, p is the number of processor, 

Ts   =   the executing time of the sequential algorithm, 

TP = the executing time of the parallel algorithm with p processors. 

The achieved speedup on parallel system is shown in Fig.3. 

 

 

Figure 3: The speedup of different executions 

Apparently, when the size of the matrix is not large, increasing the 

number of processor cannot change the speedup greatly. The 

reason is existing delay in communication. But when the number 

of equations grows, adding more processor can improve the 

speedup.  

On the other hand, the efficiency of parallel processing is a 

performance metric, which is defined as, 

 

(8) 

It is a value, typically between zero and one, estimating how well-

utilized the processors are in solving the problem, compared to 

how much effort is wasted in communication and synchronization. 

Fig. 4 reports the efficiency of the QR factorization on parallel 

computers. This graph shows a decline in efficiency by increase in 

the number of processors, which is happened because of 

communication delay. 

 

Figure 4: The Efficiency of the different executions with 

different number of processor 

According to the obtained results, this parallel algorithm depends 

on hardware. If the computational power increases, the efficiency 

of parallel algorithm decreases. However, the challenges of 

numerical efforts are the lack of computational power and the size 

of problems. The progress in computational power has a great 

impact on many of numerical algorithms. From other point of 

view, when the size of matrix grows, the efficiency of this parallel 

algorithm becomes better.  

 
Figure 5: The Mflops of the executions with different 

number of processor 

Fig. 5 presents the FLOPS (floating Point Operations per Second) 

of different cases. We obtained a peak performance of 2.094 

Triangular back substitution (If A is triangular) O(n2
) 

Gaussian elimination with partial pivoting  O(n
3
) 

The QR-factorization O(n3
) 

SVD  O(n4
) 

Gaussian elimination with complete pivoting  O(n4
) 

Cramer’s rule O((n+1)n!) 

Cramer’s rule (determinants evaluated by Gaussian 

elimination) 
O((n+1)n!) 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Central_processing_unit
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GFLOPS on a 5-processor for 12000 equations. The single 

processor rate for this size of matrix was measured at 597 

MFLOPS.  

Fig. 6 shows the executing time of computations with different 

number of processors. It can be observed that time is reduced with 

the increase in number of processors, whereas the Communication 

time rises. 

 

Figure 6: The executing times of different executions 

As a result, the Fig. 4 presents that the method has limitation to 

improve parallel processing. However, the Fig. 3 and 6 shows the 

ability of this algorithm to increase the speedup and decrease 

executing time in comparison with single processing. 

On the other hand, the efficiency of Gram-Schmidt QR 

factorization is O(n3), which is acceptable in comparison with 

other method. Furthermore, it is shown that, the described parallel 

algorithm is relatively successful in speedup. Hence, it seems that, 

the proposed parallel method has remarkable ability to compare 

with other efficient methods (it is not in scope of this paper). 

6. CONCLUSION 
In this paper, we demonstrated a parallel algorithm based on the 

Gram-Schmidt QR factorization, which can be used for direct 

solution of an arbitrary system of linear equations. We analyzed in 

detail the implementation of our parallel algorithm using up to 5 

processors. 

An efficient parallel solver was presented to reduce the 

computational time. Whatever, the number of equations increases, 

the performance of the algorithm becomes better and more 

processors can be used efficiently. Obviously, the number of 

unknowns and equations in real problems are extra large, so the 

concept of this algorithm can be helpful to solve them exactly. 

The purpose of this paper was not to compare the efficiency of 

this method with other solution of system of linear equations; it 

showed just the limitation and ability of described parallel method. 

In future, we will optimize this parallel algorithm to solve the 

system of linear equations with tridiagonal coefficient matrix. 
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