
International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

22

An Approach in using Differentiated Services to Maximize

Profit in an Autonomic Computing System
Harish S. Venkatarama

Reader, Dept. of Computer Science & Engg.,
Manipal Institute of Technology,

Manipal, India

Chandrasekaran Kandasamy
Professor, Dept. of Computer Engg.,

National Institute of Technology Karnataka,
Surathkal, India

ABSTRACT

Ecommerce is an area where an Autonomic computing system

could be very effectively deployed. The growth of ecommerce has

created demand for services with financial incentives for service

providers. Revenues accrue if the admitted requests are processed

within the specified deadline and costs are incurred otherwise. In

case of heavy load, it will not be possible to process all requests

within the deadlines. It is beneficial to concentrate on those

requests with which larger profits are associated. This paper

describes an approach wherein a fuzzy controller is used which

automatically allocates resources for priority requests in

proportion to the number of priority requests. This is an

illustration of the self-optimizing characteristic of an autonomic

computing system.

General Terms

Autonomic computing

Keywords

Autonomic computing, E-commerce, Differentiated, Fuzzy

control

1. INTRODUCTION
The advent and evolution of networks and Internet, which has

delivered ubiquitous service with extensive scalability and

flexibility, continues to make computing environments more

complex [1]. Along with this, systems are becoming much more

software-intensive, adding to the complexity. There is the

complexity of business domains to be analyzed, and the

complexity of designing, implementing, maintaining and

managing the target system. I/T organizations face severe

challenges in managing complexity due to cost, time and relying

on human experts.

All these issues have necessitated the investigation of a new

paradigm, Autonomic computing [1], to design, develop, deploy

and manage systems by taking inspiration from strategies used by

biological systems. Ecommerce is one area where an Autonomic

computing system could be very effectively deployed. The

growth of ecommerce has created demand for services with

financial incentives for service providers. Revenues accrue if the

admitted requests are processed within the specified deadline and

costs are incurred otherwise. In case of heavy load, it will not be

possible to process all requests within the deadlines. It is

beneficial to concentrate on those requests with which larger

profits are associated. This paper describes an approach wherein a

fuzzy controller is used which automatically allocates resources

for priority requests in proportion to the number of priority

requests. When the number of priority requests increase, resources

allocated for processing these requests is proportionately

increased and vice versa. This ensures that ordinary requests do

not needlessly suffer. This is an illustration of the self-optimizing

characteristic of an autonomic computing system.

From [2], we see that the autonomic computing architecture

provides a blue print for developing feedback control loops for

self-managing systems. This observation suggests that control

theory will be of help in the construction of autonomic managers.

2. RELATED WORK
Control theory has been applied to many computing systems, such

as networks, operating systems, database management systems,

etc. The authors in [3] propose to control web server load via

content adaptation. The authors in [5] extend the scheme in [3] to

provide performance isolation, service differentiation, excess

capability sharing and QoS guarantees. In [4][8] the authors

propose a relative differentiated caching services model that

achieves differentiation of cache hit rates between different

classes. The same objective is achieved in [6], which

demonstrates an adaptive control methodology for constructing a

QoS-aware proxy cache. The authors in [7] present the design and

implementation of an adaptive architecture to provide relative

delay guarantees for different service classes on web servers.

Real-time scheduling theory makes response-time guarantees

possible, if server utilization is maintained below a pre-computed

bound. Feedback control is used in [9] to maintain the utilization

around the bound. The authors in [10] [11] demonstrate the power

of a control theoretic analysis on a controller for doing admission

control of a Lotus Notes workgroup server.

MIMO techniques are used in [12] [13] to control the CPU and

memory utilization in web servers. Queuing theory is used in [14]

for computing the service rate necessary to achieve a specified

average delay given the currently observed average request arrival

rate. Same approach is used to solve the problem of meeting

relative delay guarantees in [15].

The authors in [16] present a framework that monitors client

perceived service quality in real-time with considerations of both

network transfer time and server-side queuing delays and

processing time. The authors in [17], present a fuzzy controller to

guarantee absolute delays.

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

23

Integrator

Workload

Generator

Server Fuzzy

Controller

observed response time (priority)

error (priority)

reference

(priority)

change-in-

max-requests

(priority)

Figure 1. Fuzzy control system

-1 +1 0

µ
negsmall zero possmall

neglarge poslarge

change-in-max-requests

(priority)

-1 +1 0

µ

negsmall zero possmall

neglarge poslarge

error (priority)

Figure 2. Membership functions

The authors in [18] present a Linear-Parameter-Varying approach

to the modeling & design of admission control for Internet web

servers. The authors in [19] [20] study the performance/power

management of a server system.

The authors in [21] propose an approach to automate enforcement

of service level agreements (SLAs) by constructing information

technology (IT) level feedback loops that achieve business

objectives, especially maximizing SLA profits. Similarly, the

authors in [22] propose a profit-oriented feedback control system

that automates the admission control decisions in a way that

balances the loss of revenue due to rejected work against the

penalties incurred if admitted work has excessive response times.

The authors in [23] describe an approach to automate parameter

tuning using a fuzzy controller that employs rules incorporating

qualitative knowledge of the effect of tuning parameters.

This paper presents an approach similar to the relative

differentiated service, but with a difference. The proportion of

resources allocated to process the priority requests versus the

ordinary requests depends on the proportion of priority requests

versus ordinary requests. The controller ensures that priority

requests are processed within the deadline, while no guarantees

are offered for the ordinary requests. However, the resource

allocation is monitored at regular intervals by the controller to

ensure that ordinary requests do not needlessly suffer.

3. SYSTEM BACKGROUND
The system studied here is the Apache web server. In Apache

version 2.2 (configured to use Multi-Processing Module prefork),

there are a number of worker processes monitored and controlled

by a master process [24]. The worker processes are responsible

for handling the communications with the web clients. A worker

process handles at most one connection at a time, and it continues

to handle only that connection until the connection is terminated.

Thus the worker is idle between consecutive requests from its

connected client. A parameter termed MaxClients limits the size

of this worker pool, thereby providing a kind of admission control

in which pending requests are kept in the queue.

The client server architecture is simulated here as a M/M/1 queue.

The parameter total-max-requests used here is assumed to be

analogous to MaxClients. Parameter total-max-requests consists

of priority-max-requests and ordinary-max-requests. The

controller adjusts priority-max-requests at regular intervals.

4. DESIGN OF FUZZY CONTROL

SYSTEM
The block diagram of the fuzzy control system is shown in figure

1. The simulation environment consists of a workload generator

program to generate requests, a server program to service the

requests, a fuzzy controller program and an integrator routine.

The workload generator generates requests such that the time

between generations of consecutive requests is exponentially

distributed. For each request received by the server, the parent

process creates a child process which sleeps for a time which is

exponentially distributed. Thus, the client server architecture is

simulated here as an M/M/1 queue. The workload generator

generates two types of requests, priority requests and ordinary

requests. Priority requests are those requests for which the waiting

time in the queue is zero or at most equal to a specified reference

value. In the ideal case, priority requests should have zero waiting

time. However, it may not be possible to achieve this goal always,

since the proportion of priority requests to ordinary requests can

change rapidly. Thus, a separate queue is maintained in the server

for priority requests. The number of priority requests accepted by

the server, is limited by the parameter priority-max-requests,

which is updated by the integrator at the beginning of every

measurement interval. Simulation readings are recorded after

every interval, called measurement interval.

Any fuzzy control system involves three main steps, that is,

fuzzification, inference mechanism and defuzzification. Figure 2

shows the triangular membership functions used for the

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

24

Table 1. Fuzzy Rules

Rule

IF THEN

error

(priority)

change-in-max-

requests

(priority)

1

2

3

4

5

neglarge

negsmall

zero

possmall

poslarge

poslarge

possmall

zero

negsmall

neglarge

fuzzification of the input and defuzzification of the output. In

each case, the parameter is divided into 5 intervals called

neglarge, negsmall, zero, possmall and poslarge. Neglarge is an

abbreviation for “negative large in size”. Similarly negsmall,

possmall and poslarge are abbreviations. Zero is the name of the

interval denoting small changes. The measured numeric values

will be multiplied by factors known as the normalized gains. That

is why the x-axis shows -1 and 1 for all the membership functions.

The output value, change-in-max-requests (priority), obtained will

be denormalized by dividing by the normalized gain to obtain the

actual output value. The fuzzy rules describing the working of the

controller is shown in Table 1.

5. IMPLEMENTATION
The workload generator is a program which continuously

generates requests such that the time between generation of

consecutive requests is exponentially distributed with mean = 0.2

seconds. That is, it generates 5 requests per second on the

average.

The server is a program which services the requests such that the

time taken for servicing each request is exponentially distributed

with mean = 60 seconds. This means, 1 process running on the

server, can service 1 request per minute on an average. With 5

requests being generated per second, a reasonable value for total-

max-requests would be 300. For this simulation, it is fixed at 280.

The simulation is run for 4000 seconds.

The fuzzy controller program takes as input error (priority), which

is observed-response-time (priority) subtracted from the reference

(priority) value. The controller calculates the adjustment required

for priority-max-requests, i.e., priority-max-requests-change for

the next measurement interval. This value is sent to the integrator,

which calculates the value of priority-max-requests for the next

interval. Value of ordinary-max-requests is obtained by

subtracting priority-max-requests from total-max-requests.

The measurement interval should be large enough to reduce the

effect of transients and also small enough so that the controller is

able to quickly respond to changes. A measurement interval of 3

minutes was used. After waiting 2 minutes for the transients to

reduce, waiting times of requests that entered service in the last 1

minute are noted. The average of these values is taken as the

observed-response-time (priority).

6. RESULTS AND VALIDATION
Table 2 shows the results for a reference value of 1 second. After

an initial adjustment to priority-max-requests, no further

adjustment is required as the observed-response-time is well

within the reference value. Though the deadline for processing the

priority request is 1 second, it is seen that almost all requests are

processed instantaneously on arrival. It may be possible to design

a more sensitive controller which would, perhaps, reduce the

resources allocated to priority requests to some extent.

Table 3 shows the results for a reference value of 2 seconds. As

the reference value is more, the controller, at many occasions

deallocates the extra resources allocated to the priority requests.

Here it is observed that on two occasions, the observed value of

response time exceeds the reference value. The reason for this is

that there is high variance in input, since both the interarrival

times and the service times are exponentially distributed.

Figure 3 shows the plots of response times of priority requests

(top) and ordinary requests (bottom) for a reference value of 2

seconds. The figures on the left top and bottom are the plots with

the controller enabled, while those on the right top and bottom are

without the controller. A dramatic difference in the response times

of priority requests can be observed, while no such thing is seen

in case of ordinary requests. This is, as expected, since the

controller is only concerned with priority requests. Thus, the

proposed fuzzy model is validated.

7. CONCLUSIONS
This paper describes an approach to minimize response time for

priority requests in an ecommerce system using fuzzy control.

This is an illustration of the self-optimizing characteristic of an

autonomic computing system. Specifically, the system studied

here is the allocation of MaxClients parameter of the Apache web

server for requests of different classes. The workload and server

are simulated as an M/M/1 queue. The controller attempts to

optimize priority-max-requests, which decides the number of

processes for servicing priority requests. It is easily seen from the

results, that a single fixed value of priority-max-requests will not

be optimum for all cases. Since the proportion of priority requests

of a server can change rapidly, it is of immense benefit to have a

controller which updates the value of priority-max-requests at

regular intervals.

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

25

Table 2. With reference (priority) = 1 second

max-requests observed time
error

(priority)

max-req

-change

(priority) (priority) (ordinary) (priority) (ordinary)

10

15

15

15

15

15

15

15

15

15

15

270

265

265

265

265

265

265

265

265

265

265

11.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.8

14.0

24.2

21.3

19.9

24.2

23.2

20.6

20.3

19.4

21.4

-10.2

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

5

0

0

0

0

0

0

0

0

0

0

Table 3. With reference (priority) = 2 seconds

max-requests observed time
error

(priority)

max-req

-change

(priority) (priority) (ordinary) (priority) (ordinary)

10

15

14

13

12

11

12

12

12

12

11

270

265

266

267

268

269

268

268

268

268

269

11.2

0.0

0.0

0.0

0.0

2.6

2.3

1.0

1.6

0.0

0.0

0.8

14.0

24.2

21.3

20.3

24.4

23.3

20.5

20.2

18.9

21.4

-9.2

2.0

2.0

2.0

2.0

-0.6

-0.3

1.0

0.4

2.0

2.0

5

-1

-1

-1

-1

1

0

0

0

-1

-1

Figure 3. Graph showing plots of response times with the controller (left top

and bottom) and without the controller (right top and bottom)

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

26

8. REFERENCES
[1] Salehie, M. and Tahvildari, L., “Autonomic Computing:

Emerging trends and open problems,” in Proceedings of the

Workshop on the Design and Evolution of Autonomic

Application Software, 2005.

[2] Diao, Y., Hellerstein, J. L., Parekh, S., Griffith, R., Kaiser,

G. E. and Phung, D., “A control theory foundation for self-

managing computing systems,” IEEE Journal on Selected

Areas in Communications, Vol. 23, No. 12, December 2005.

[3] Abdelzaher, T. F. and Bhatti, N., “Web server Quality of

Service management by adaptive content delivery,”

International Workshop on Quality of Service, June 1999.

[4] Lu, Y., Saxena, A. and Abdelzaher, T. F., “Differentiated

caching services - A control-theoretical approach,”

Proceedings of the International Conference on Distributed

Computing Systems, April 2001.

[5] Abdelzaher, T. F., Shin, K. G. and Bhatti, N., “Performance

guarantees for web server end-systems : A control-theoretical

approach,” IEEE Transactions on Parallel and Distributed

Systems, Vol. 13, No. 1, January 2002.

[6] Lu, Y., Abdelzaher, T. F., Lu, C. and Tao, G., “An adaptive

control framework for QoS guarantees and its application to

differentiated caching services,” Proceedings of the

International Conference on Quality of Service, May 2002.

[7] Lu, C., Abdelzaher, T. F., Stankovic, J. A. and Son, S. H.,

“A feedback control approach for guaranteeing relative

delays in web servers,” Proceedings of the IEEE Real-Time

Technology and Applications Symposium, June 2001.

[8] Lu, Y., Abdelzaher, T. F. and Saxena, A., “Design,

implementation and evaluation of differentiated caching

services,” IEEE Transactions on Parallel and Distributed

Systems, Vol. 15, No. 5, May 2004.

[9] Abdelzaher, T. F. and Lu, C., “Modeling and performance

control of internet servers,” IEEE Conference on Decision

and Control, December 2000.

[10] Parekh, S., Gandhi, N., Hellerstein, J., Tilbury, D., Jayram,

T. and Bigus, J., “Using control theory to achieve service

level objectives in performance management,” IFIP/IEEE

International Symposium on Integrated Network

Management, May 2001.

[11] Gandhi, N., Tilbury, D. M., Parekh, S. and Hellerstein, J.,

“Feedback control of a lotus notes server : Modeling and

control design,” Proceedings of the American Control

Conference, June 2001.

[12] Diao, Y., Gandhi, N., Hellerstein, J. L., Parekh, S. and

Tilbury, D. M., “Using MIMO feedback control to enforce

policies for interrelated metrics with application to the

Apache web server,” Proceedings of the IEEE/IFIP Network

Operations and Management, April 2002.

[13] Gandhi, N., Tilbury, D. M., Diao, Y., Hellerstein, J. L. and

Parekh, S., “MIMO control of an Apache web server :

Modeling and controller design,” Proceedings of the

American Control Conference, May 2002.

[14] Sha, L., Liu, X., Lu, Y. and Abdelzaher, T. F., “Queuing

model based network server performance control,”

Proceedings of the IEEE Real-Time Systems Symposium,

2002.

[15] Lu, Y., Abdelzaher, T. F., Lu, C., Sha, L. and Liu, X.,

“Feedback control with queuing-theoretic prediction for

relative delay guarantees in web servers,” Proceedings of the

9th IEEE Real-Time and Embedded Technology and

Applications Symposium, 2003.

[16] Wei, J. and Xu, C. “Feedback control approaches for Quality

of Service guarantees in web servers,” Fuzzy Information

Processing Society, 2005.

[17] Wei, Y., Lin, C., Voigt, T. and Ren, F., “Fuzzy control for

guaranteeing absolute delays in web servers,” Proceedings of

the 2nd International Conference on Quality of Service in

Heterogeneous Wired/Wireless Networks, August 2005.

[18] Qin, W. and Wang Q., “Feedback performance control for

computer systems: an LPV approach,” Proceedings of the

American Control Conference, June 2005.

[19] Qin, W., Wang, Q., Chen, Y. and Gautham, N., “A first-

principles based LPV modeling and design for performance

management of Internet web servers,” Proceedings of the

American Control Conference, June 2006.

[20] Qin, W. and Wang, Q., “Modeling and control design for

performance management of web servers via an LPV

approach,” IEEE Transactions on Control Systems

Technology, Vol. 15, No. 2, March 2007.

[21] Diao, Y., Hellerstein, J. L. and Parekh, S., “A business-

oriented approach to the design of feedback loops for

performance management,” Proceedings of the 12th IEEE

International Workshop on Distributed Systems : Operations

and Management, October 2001.

[22] Diao, Y., Hellerstein, J. L. and Parekh, S., “Using fuzzy

control to maximize profits in service level management,”

IBM Systems Journal, Vol. 41, No. 3, 2002.

[23] Diao, Y., Hellerstein, J. L. and Parekh, S., “Optimizing

Quality of Service using fuzzy control,” Proceedings of

Distributed Systems Operations and Management, 2002 –

Springer

[24] Apache Software Foundation. http://www.apache.org.

