
International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

14

Search Key Identification in a Spoken Query using
Isolated Keyword Recognition

Utpal Bhattacharjee
Department of Computer Science and Engineering,

Rajiv Gandhi University, Rono Hills, Doimukh,
Arunachal Pradesh, India, Pin-791 112,

ABSTRACT
This article presents a novel technique for the recognition of

isolated keywords from spoken search queries. Recognition of the

isolated keywords from spoken search queries may be considered

as the first step towards the development of a speech-operated

keyword-based searching technique. A database of 300 spoken

search queries from Assamese language, a major Indian language

mostly spoken by the people of north east India, has been created.

The system developed during the study has been tested and

evaluated with the above mentioned database. In the present

study, Mel Frequency Cepstral Coefficient (MFCC) has been used

as the feature vector and Multilayer Perceptron (MLP) to identify

the phoneme boundaries as well as for recognition of the

phonemes. Viterbi search technique has been used to identify the

keywords from the sequence of phonemes generated by the

phoneme recognizer. A recognition accuracy of 74.67% has been

achieved in the present study.

Keywords

Query Identification, Phoneme Segmentation, Multilayer

Perceptron, Viterbi Search

1. INTRODUCTION

Speech-based search queries are made on the basis of some

specific keywords. Identification of the keywords in a search

query is helpful in identifying the search key. There are two

approaches for isolated word recognition – recognition of the

word as a whole and recognition of the phonemes associated with

the isolated word and then recognizes the word associated with

the sequence of phonemes. In Shino-Tibetan family of languages

where numbers of words are relatively less, the first approach is a

suitable one. However, for Indo-Aryan family of languages like

Assamese language, it is not feasible to use separate model for

each word due to the large number of possible words. Since the

number of phonemes is very less compared to the number of

words, the second approach is most suitable for such languages.

However, a major difficulty is such model is the identification of

the phoneme boundary. A variety of methods have been proposed

to accomplish this phoneme segmentation [8, 13, 15]. Most of the

methods rely heavily on a series of acoustic phonetic rules. Since

the rules are difficult to generalized, their performance degrades

in real world applications. In order to overcome these problems a

neural network based approach has been proposed in this paper.

The neural network based approach being a non-parametric

method, has advantage over rule based approaches and produces

robust performance under unexpected environmental condition.

Many neural network based attempts have been made for

phoneme segmentation and some encouraging results have been

reported [3, 6, 10]. In this paper a MLP-based segmentation

method has been utilized.

Mel-frequency cepstral coefficients (MFCC) are extensively used

and have proven to be successful for Automatic Speech and

Speaker Recognition system. In the present work MFCC has been

used as feature vector. To avoid excessive computational load for

feature extraction, the same feature set has been used for both

segmentation and recognition purpose.

The use of multi-layer perceptron as speech recognizer has been

encouraged by many workers [1, 9, 11, 12] during the last few

decades. The most obvious way to use multi-layer perceptron for

speech recognition is to present all acoustic vectors of a speech

unit (phoneme or word) at once at the input and detect the most

probable speech unit at the output by determining the output

neuron with highest activation. The problem associated with this

approach is that a huge number of input units have to be used,

which implies evenly larger number of parameters required to be

determined by learning and consequently the necessity to dispose

of a large database. To reduce the volume of input data Kohonen

self-organized map [7] (SOM) have been used in this study.

The paper is organized into the follow sections: Section 2 presents

the brief description of the suggested architecture for the

automatic keyword recognizer. Section 3 is devoted to the state of

the art and mathematical background of MFCC parameterization,

self-organized map, multilayer perceptron and Viterbi search

algorithm used in the present study. The experiment and

performance evaluation of the system is presented in Section 4.

Section 5 concludes and presents perspective of this study. The

last section lists the main references which have been used in this

work.

2. ARCHITECTURE OF ISOLATED

KEYWORD RECOGNIZER

Fig. 1 represents the main processing elements of the Isolated

Keyword Recognizer. The first step for automatic speech

recognition is to represent the speech signal in terms of feature

vector. A feature vector is usually computed from a window of

speech signal in every short time interval. An utterance is

represented as a sequence of these feature vectors. In the present

study, the speech signal is blocked into frames of 30 ms at an

interval of 10 ms from which Mel-frequency cepstral coefficient

has been calculated. The time derivatives of the MFCC are also

appended to capture the dynamics of speech. In the present study

MFCC coefficients along with its first order derivatives have been

considered as the feature vector.

The feature vector extracted from the speech signal has been used

for two purposes – phoneme segmentation and phoneme

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

15

recognition. To use the feature vector for phoneme segmentation,

a new feature set has been derived from the original MFCC

feature set. This feature set is based on the difference between the

feature vectors extracted from two consecutive frames. In the

present study, we call it Differential MFCC (DMFCC).

Differential Feature Extractor block is responsible for generating

this set of feature vector. The DMFCC has been used as input to

the Phoneme Segmenter block. A multilayer perceptron with one

output unit has been used for this purpose. This block will return

the frame number of the frames which contain a phoneme

boundary.

Fig. 1: Block diagram of the Isolated Keyword Recognizer

The next block is responsible for blocking the frames that belongs

to a particular phoneme. The frames associated with each

phoneme are clustered into six clusters using self-organized map

(SOM). The output of the SOM is then considered as input to the

Phoneme Recognizer block. The block is responsible for

recognizing the phoneme. A multilayer perceptron has been used

for this purpose. The output of this block is a sequence of

phonemes associated with the uttered phrase. Viterbi search

technique has been used to recognize the keywords associated

with the sequence of phonemes.

3. MATHEMATICAL BACKGROUND

AND ALGORITHMS USED

3.1 Mel-Frequency Cepstral Coefficient

The speech signal is divided into frames where discrete Fourier

transform (DFT) has been computed for each frame. For the

discrete time signal x(n) with length N, the DFT is given by

∑
−

=

−=
1

0

)/2exp()()()(

N

n

NknjnxnwkX π (1)

for k = 0, 1, ….., N-1, where k corresponds to the

frequency Nkfkf k /)(= , kf is the sampling frequency in Hertz

and w(n) is a time-window. In the present study Hamming

windows defined by)/2cos(46.054.0)(Nnnw π−= has been

used because of its computational simplicity.

The magnitude spectrum)(kX is now scaled in both frequency

and magnitude. First the frequency is scaled logarithmically using

the Mel filter bank H(k,m) and then the logarithm is taken giving














=′ ∑

−

=

),(.)(ln)(

1

0

mkHkXmX

N

k

 (2)

for m = 1,2,……, M, where M is the number of filter banks and M

<< N. The Mel filter bank is a collection of triangular filters

defined by the center frequencies)(mfc , written as























+≥

+<≤

+−

+−

<≤−

−−

−−

−<

=

)1()(,0

)1()()(

,
)1()(

)1()(

)()()1(

,
)1()(

)1()(

)1()(,0

),(

mfkf

mfkfmf

mfmf

mfkf

mfkfmf

mfmf

mfkf

mfkf

mkH

c

cc

cc

c

cc

cc

c

c

 (3)

The center frequencies of the filter bank are computed by

approximating the Mel scale with









+= 1

700
log2595 10

f
φ (4)

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

16

which is a common approximation. That equation is non-linear for

all frequencies. Then a fixed frequency resolution in the Mel scale

is computed, corresponding to a logarithmic scaling of the

repetition frequency, using)1/()(minmax +−=∆ Mφφφ where

maxφ is the highest frequency of the filter bank on the Mel scale,

computed from maxf using equation (4), minφ is the lowest

frequency in Mel scale, having a corresponding minf and M is the

number of filter banks. The values considered for the parameters

in the present study are: maxf =11.025 KHz, minf =0 Hz and

M=30. The center frequencies on the Mel scale are given by

φφ ∆= .)(mmc for m = 1, 2, 3, ….., M. To obtain the center

frequencies in Hertz, inverse of the equation (4) is applied, which

is given by

()110700)(
2595/)(−= m

c
cmf

φ
 (5)

Equation (5) is inserted into equation (3) to give the Mel filter

bank. Finally, the MFCCs are obtained by computing the discrete

cosine transform of)(mX ′ using

∑
=

−′=
M

m

m
M

lmXlc

1

))
2

1
(cos()()(

π
 (6)

for l = 1, 2, 3, ….., M where c(l) is the lth MFCC.

The time derivative is approximated by a linear

regression coefficient over a finite window, which is defined as

MlGmcklc

K

ktt ≤≤











=∆ ∑

=
− 1,.)()(

2

2

 (7)

where)(lct is the lth cepstral coefficient at time t and G is a

constant used to make the variances of the derivative terms equal

to those with the original cepstral coefficients.

3.2 Self Organized Map

Self Organized Map (SOM) were initially introduced with the

purpose of producing a special mapping from a high dimensional

input space to a very low dimensional output space while

conserving the topological information of the input space. SOM is

a neural network trained by following a non-supervised algorithm.

The neural network is made up of two layers of neurons. The

input (sensory) layer just distributes the inputs to the output layer.

The output layer has M p neurons, arranged on a p-dimensional

lattice or map. Neurons on the output layer are characterized by:

1. A map coordinate k=(k1, k2, k3, …, kp) with 1 ≤ k1, k2, k3, …,

kp ≤ M, that locates the neurons on the map

2. A synaptic weight vector wk = (wk
1, wk

2, …, wk
m), where m is

the neurons input dimension.

At a time n, an m-dimensional input vector X= [x1, x2, x3, …, xm]
T

is presented to the input of the network. The following sequence

of operations taken place:

3.2.1 Competitive Process

The synaptic weight vector of each neuron in the network has the

same dimension as the input space. The synaptic weight vector of

neuron j is denoted by:

.,l,,j.., w, w, ww w jmj,jjj …=…= 21 ,][
T

321 (8)

where l is the total number of neurons in the network. To find the

best match of the input vector X with the synaptic weight vectors

Wj, the inner product Wj
TX for j=1,2,3, …. , l have been computed

and neuron with highest inner product Wj
TX has been selected as

the best match. Maximization of the inner product is taken as

mathematically equivalent to the minimization of the Euclidean

distance between the vectors X and Wj. Thus, if the index i(x) is

used to identify the neuron that best matches the input vector X,

the following conditions is applied to identify i(x):

........l,,,jwxi(x) j
j

321minarg =−= (9)

which sums up the essence of the competition process among the

neurons. The particular neuron i, that satisfies this condition is

called the best match neuron for a typical input vector X.

3.2.2 Cooperative Process

The winning neuron locates the center of a topological

neighbourhood. The probability that a neuron, that is firing tends

to excite the neurons in its immediate neighbourhood is more than

those farther away from it. This observation leads to make the

topological neighbourhood around the winning neuron i decaying

smoothly with lateral distance. To be specific, let hj,i denote the

topological neighbourhood centered on winning neuron i, and

encompassing a set of excited (cooperative) neurons, a typical one

denoted by j. Then the topological neighbourhood hj,i is a

unimodel function of lateral distance dj,i such that it satisfies two

distinct requirements:

1. The topological neighbourhood hj,i is symmetric about the

maximum point defined by dj,i=0. In other words, it attains its

maximum value at the winning neuron i for which the distance

dj,i is zero.

2. The amplitude of the topological neighbourhood hj,i decreases

monotonically with increasing lateral distance dj,i, decaying

to zero for dj,i → ∞, which is a necessary condition for

convergence.

A typical choice of hj,i is a Gaussian Function as described by:














−=

2

2
,

)(,
2

exp
σ

ij
xij

d
h (10)

where parameter σ is the “effective width” of the topological

neighbourhood. It measures the degree to which excited neurons

in the vicinity of the winning neuron participates in the learning

process.

For cooperation among the neighbourhood neurons to be hold, it

is necessary that topological neighbourhood hj,i must be

dependent on lateral distance dj,i between winning neuron i and

excited neuron j in the output space rather than as on some

distance measure on the original input space. This has been

achieved through the Equation (10). In the case of one

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

17

dimensional lattice, dj,i is an integer equal to | j – i |. On the other

hand, in the case of two dimensional lattice, it is defined by

2
2
, ijij rrd −= (11)

where the discrete vector rj defines the position of the excited

neuron j and ri defines the discrete position of the winning neuron,

both measuring in discrete output space.

Another unique feature of the SOM algorithm is that the size of

the topological neighbourhood shrinks with time. This

requirement is satisfied by making the width σ of the topological

neighbourhood function hj,i decreases with time. A popular choice

for the dependence of σ on discrete time n is the exponential delay

described by equation given below:

,....2,1,0,exp)(
1

0 =







−= n
n

n
τ

σσ (12)

where σ0 is the value of σ at the initiation of the SOM algorithm,

and τ1 is the time constant. Correspondingly, the topological

neighbourhood assumes a time-varying form of its own, as shown

by equation given below:

,.......2,1,0,
)(2

exp)(
2

2
,

)(, =













−= n

n

d
nh

ij
xij

σ
 (13)

where σ(n) is defined by equation (12). Thus, as time n (i.e., the

number of iteration) increases, the width σ(n) decreases at an

exponential rate, and the topological neighbourhood shrinks in

corresponding manner. Hence, hj,i(x) is referred to as

neighbourhood function.

3.2.3 Adaptive Process

The last process in the self organized formation of a feature map

is a synaptic adaptation process. For the network to be self

organized, the synaptic weight vector wj of the neuron j in the

network is required to be modified in relation to the input vector

x. The Hebbian hypothesis [5] in its basic form is unsatisfactory

due to the fact that change in connection occurs in one direction

only, which finally drives all the synaptic weights into saturation.

The Hebbian hypothesis is modified with the inclusion of

forgetting term g(yi)wj, where wj is the synaptic weight vector of

neuron j and g(yj) is some positive scalar function of response yj

and

00)(== jj yforyg (14)

The change to the weight vector of neuron j in the lattice can be

expressed as:

jjjj wygxyw)(−=∆ η (15)

where η is the learning rate parameter of the algorithm. The first

term on the righ-hand side of equation (15) is the Hebbian term

and the second term is the forgetting term. To satisfy the

requirement of equation (14), linear function g(yj) has been

expressed as:

 jj yyg η=)((16)

equation (15) may be further simplified by setting

)(, xijj hy = (17)

using equation (16) and equation (17), equation (15) is expressed

as:

)()(, jxijj wxhw −=∆ η (18)

Finally, using discrete-time formalism and taking the synaptic

weight vector wj(n) of neuron j at time n, the updated weight

vector wj(n+1) at time (n+1) is defined by [7]

))()(()()()1()(, nwxnhnnwnw jxijjj −+∆=+∆ η (19)

which is applied to all the neurons in the lattice that lie inside the

topological neighbourhood of winning neuron i. Equation (19) has

the effect of maximizing the synaptic weight vector wi of winning

neuron i towards the input vector x. Upon repeated application of

training data, the synaptic weight vectors tend to follow the

distribution of input vectors due to the neighbourhood updation.

The algorithm therefore leads to the topological ordering of the

feature map in the input space in the sense that neurons adjacent

to the lattice will tend to have similar synaptic weight vectors.

3.3 Multilayer Perceptron

Multi-layer perceptron (MLPs) with error-back propagation

training have been successfully applied in a variety of pattern

recognition problems [2,4,14]. They have good discrimination

capability and can generate complex nonlinear decision

boundaries. All the properties are very useful for speech

recognition and phoneme segmentation. MLP may have any

number of hidden layers, although additional hidden layers tend to

make training slower, as the terrain in weight space becomes more

complicated. To train the MLP, a modified version of well known

Back Propagation Algorithm [5] has been used. To avoid the

oscillations at the local minima a momentum constant has been

introduced which provides optimization in the weight updating

process. The algorithm is detailed below:

3.3.1 Initialization

The weights of each layer have been initialized to random number

lies between -1 to +1.

3.3.2 Forward computation

In the forward pass the synaptic weight remain unaltered

throughout the network and functional signal of the network is

computed neuron-by-neuron basis. The induced local field

)()(nv l

j for neuron j in layer l which is due to the functional

signal produced by neurons of layer (l-1) is given by [14]

∑
=

−=
0

0

1)()()()()(

m

i

l
i

l
ji

l
j nynwnv (20)

where m is the total number of inputs, excluding bias applied to

neuron j. The synaptic weight wj0, corresponds to fixed input

y0=+1, equals the bias bj applied to neuron j. Hence the functional

signal appearing at the output neuron j of layer l is expressed as

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

18

))(()(nvy jj
l
j ψ= (21)

If the neuron j is in the first hidden layer

)(
)0(

nxy jj = (22)

where xj(n) is the j
th element of the input vector. If on the other

hand, network j is in the output layer of the network, and L the

depth of the network, then

)(
)(

noy j
L
j = (23)

where oj(n) is the j
th element of the output vector. The output is

compared with the desired response dj(n), obtain the error signal

ej(n) for the j
th output neuron

)()()(nondne jjj −= (24)

3.3.3 Backward computation

The backward pass starts at the output layer by passing the error

signal leftward through the network, layer by layer, and

recursively computing the δ (i.e. the local gradient) for each

neuron as follows:

llayer hidden in jneuron for

,)()())((

Llayer output in jneuron for

)),(()()(

)1()1()(

)()()(

















′=

′=

∑ ++

k

l
kj

l
k

L
j

L
j

L
j

l
j

nwnnv

nvnen

δϕ

ϕδ

 (25)

where φj'(.) denotes differentiation with respect to the argument.

The weight updation is taking place in accordance with the

following rule:

)()()]1([)(

)1(

)1()()()(

)(

nynnwnw

nw

l
i

l
j

l
ji

l
ji

l
ji

−+−+

=+

ηδα
 (26)

where η is the learning rate and α is momentum constant

It has been observed that MLP based speech recognizer work

better if the input and output lies between 0 – 1. Therefore, the

input vector has been normalized with respect to their maximum

and minimum value.

A momentum constant α has been used to avoid oscillation at the

local minima. The learning rate parameter has been changed

gradually with each epoch number as expressed by equation given

below:








 −
=

100
exp)(0

repochNumbe
repochNumbe ηη (27)

where η0 is the initial learning rate parameter.

3.4 Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm for

finding the most likely sequence of states (normally hidden),

called the Viterbi path that results in a sequence of observed

events. The terms “Viterbi path” and “Viterbi algorithm” are also

applied to related dynamic programming algorithms that discover

the single most likely explanation for an observation.

The Viterbi algorithm was conceived by Andrew Viterbi in 1967

as an error-correction scheme for noisy digital communication

links. The Viterbi algorithm operates on a state machine

assumption. At any time the system being modeled is in some

state. There are a finite number of states, however large. Multiple

sequences of states (paths) can lead to a given state, but one is the

most likely path to that state, called the “survivor path”. This is a

fundamental assumption of the algorithm because the algorithm

will examine all possible paths leading to a state and only keep

the one most likely. This way the algorithm does not have to keep

track of all possible paths, only one per state.

Another key assumption is that a transition from a previous state

to a new state is marked by an incremental metric, usually a

number. This transition is computed from the event.

Another key assumption is that the events are cumulative over a

path in some sense, usually additive. So the crux of the algorithm

is to keep a number for each state. When an event occurs, the

algorithm examines moving forward to a new set of states by

combining the metric of a possible previous state with the

incremental metric of the transition due to the event and chooses

the best. The incremental metric associated with an event depends

on the transition possibility from the old state to the new state.

Additionally, in many cases the state transition graph is not fully

connected. It must enter the stop state. After computing the

combinations of incremental metric and state metric, only the best

survives is kept and all other paths are discarded. There are

modifications to the basic algorithm which allow for a forward

search in addition to the backwards one described here.

3.4.1 Viterbi Algorithm for Isolated word Recognition

To find the best matching word by comparing input utterance with

speech models in memory is very important and major task in

speech recognition system. The Viterbi algorithm is an efficient

technique to perform this task. Viterbi scorer computes the

probability of generating the test word with each word model, and

chooses one word model that gives the highest probability as the

recognized word. Given an observation symbol sequence {O1, O2,

O3, … , Ot}, the following logarithm-integer version of the

original Viterbi algorithm is performed for each word model λv

(1≤v≤V, V: number of reference words) [3,6].

Initialization:

NiiSObS j ≤≤−∞== 2,)(),()1(111 (28)

Recursion:

{ }
NjTtNi

ObaiSMaxjS tijijtt

≤≤≤≤≤≤

++= −

1,2,1

,)()()(1
 (29)

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

19

Termination:

 NSP Tv = (30)

where N denotes the number of states in the model, and {aij} and

{bij(Ot)} are obtained from the state transition and the output

probabilities respectively by taking logarithmic transformation

followed by normalization. After computing Pv for all reference

words, one word with the highest Pv is selected as the recognized

word. Since multiplications in the original Viterbi scoring

procedure are time consuming operations, they are converted to

additions by taking logarithms of the probabilities, and underflow

can be avoided efficiently.

()ijij ua αlog.= (31)

())(log.)(tijtij OuOb β= (32)

where () ∆+=).(loglog. 10 xCxu (33)

In the equation (33), the exact values of C and ∆ must be

determined so as to maximize the dynamic range of the transition

metrics and the output metrics.

3.4.2 Viterbi Training

The MLP output gives the probability estimation for each

phoneme. The Viterbi decoding algorithm will be used to find the

likelihood of the best path (state sequences) for each model.

Further, since the most probable transition was used at each step,

backtracking can be made which gives the corresponding state

sequence. Conceptually, segmentation of training data with a

known model transcription is the same as recognition, except in

the former case there is no alternate model sequences to consider.

Since emission probability is obtained for each frame and state

category, each of these is used in a process that is often called

Viterbi alignment. In this process, dynamic programming has

been done, essentially using the one-pass method, in which the

local distances are)|log(lqy j− , and where there are transition

costs)|log(kqq
l

− for hypothesizing transitions from states k to

l . Unlike the recognition scenario, the only model sequences that

are considered are the ones associated with the known word

sequence. All the word models together can be considered as a

single model for the entire utterance in this case, and there is only

one to be evaluated. Backtracking can be done since the best

previous state can be preserved for each frame, and so the best

state sequence can be found. Additionally, since only one model

sequence need to be evaluated, often it is not necessary to use

elaborate data structure for this process – the distance and

backtracking information can be held in complete matrices, since

the storage is not prohibitive as it would be in the recognition

case.

The state sequence that is found through the backtracking

procedure is considered to be an alignment of the states with the

feature vectors. In the next step, transition and emission

probabilities are removed assuming that the state sequence is

correct.

Finally, the solution must be accessed. This can be done by

looking at the changes in the global likelihood and setting some

threshold on the improvement. Another approach is to test for

convergence of the segmentation by counting the number of

phonemes for which the state label has been changed.

4. EXPERIMENT AND PERFORMANCE

EVALUATION

All experiments were conducted using a data set of 300 search

queries from 15 male and 15 female speakers. The search queries

are made on the basis of availability and price on 10 items of a

typical supermarket. Each speaker participates in only one

recording session. Each speaker uttered 10 search queries out of

which 6 has been used for training the system and remaining 4 has

been used for testing. The sound from the speaker has been

directly digitized in WAV PCM format and sampling at 16 KHz

frequency with 16 bit mono quantization. The digitized speech

signal is blocked into frame of 30ms with a frame rate of 10ms.

32 Mel Frequency Cepstral Coefficients has been obtained from

each frame. Their first order derivatives are also obtained. In

order to reduce the computational cost, some of the less useful

cepstral coefficients can be discarded. In the present study

cepstral coefficient from 6-25 and its first order derivative has

been considered. Thus, the feature set for each frame consists of

36 components.

For the phoneme segmentation block, a new feature set has been

derived from the original MFCC based feature set. Inter-frame

differences between two consecutive frames have been calculated

and it is normalized between -1 to +1. We call it differential

MFCC (DMFCC). Inter-frame differences obtained from 5

consecutive frames have been considered as a single input feature

block for the phoneme segmenter. Each block consists of 144

DMFCC parameters. An MLP-based phoneme segmenter with

144 input nodes, 22 hidden nodes and one output node has been

used for the segmentation of the phoneme. The output node will

return 1 if the 3rd frame of the original feature vector is a phoneme

boundary, in all other cases it will return 0. In each pass the

feature vector will slide by one frame.

After identifying the phoneme boundaries, the next step is to

phoneme-wise blocking the frames. The frames which belong to

a particular phoneme are grouped into a single block. The feature

vectors that belong to a particular phoneme are then normalized

between -1 to +1. The normalized feature vectors are then

clustered into five clusters using self-organized map (SOM). The

output of the SOM is the cluster center of the five clusters each

having 36 components. It has been observed the phoneme

segmenter gives a 91.24% accuracy for 10 ms duration.

An MLP based speech recognizer with 180 input nodes, 32 output

nodes and varying number of hidden nodes and layers has been

constructed. Initially one hidden layer is used and the number of

hidden nodes has been kept at 20 to provide 3600 connections

between the nodes of input and hidden layer and 640 connections

between the nodes of hidden and the output layer. The Enhance

Back Propagation algorithm has been used to train the recognizer.

Gradually, the number of hidden nodes and layers has been

increased. With the increasing number of hidden nodes and layers,

better performance in terms of recognition accuracy has been

obtained. But, with the increasing number of hidden layers and

nodes, the time required for convergence is also increased.

Considering all parameters, it has been noticed that MLP with 3

layers (two hidden and one output) give the optimal performance

for the recognition of 32 Assamese phonemes. In the present

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

20

study, a recognizer with 40 and 20 nodes in the first and second

hidden layer respectively has been used. The performance of the

recognizer is evaluated for each phoneme and result is

summarized in the Table – (1).

Table (1): Recognition accuracy of MLP-based speech recognizer

for Assamese phonemes

Categ

ory

Sub

Categor

y

Recognit io

n

Accuracy

(in %)

Average

Recognit io

n

Accuracy

(in %)

Vowel V o w e l 9 2 . 2 1 9 2 . 2 1

Conson

ant

N a s a l 8 4 . 2 3 8 5 . 7 2

Voiced

Fricative

9 1 . 6 9

Unvoiced

Fricative

8 4 . 9 0

Voiced

Stop

8 9 . 2 1

Unvoiced

Stop

7 9 . 8 2

R o l l 8 5 . 8 8

G l i d e 8 4 . 3 2

Overal l Recognit ion

Accuracy

8 8 . 9 7

The output of the MLP-based recognizer is a sequence of

phonemes. Viterbi search technique has been applied to find the

keyword associated with the sequence of these phonemes. The

database consists of search queries made on the basis of 10 items

of a typical supermarket. For each item there are two types of

search queries – availability and price. In the present study item

name along with availability and price are considered as keyword.

Thus, the queries consist of 12 keywords. Each search query is

associated with two keywords. Viterbi alignment has been done

for these 12 known keywords. To train the Viterbi search

network, also known as Viterbi alignment, the keywords are

manually isolated from the search query. The isolated keywords

are now taken as input. The phoneme segmenter segments the

phoneme and the MLP based phoneme recognizer recognizes the

phonemes associated with each keyword. Viterbi alignment has

been done with these known keywords. After training the network

with these known keywords and phoneme sequences, the network

is used for finding the keyword associated with the sequence of

phoneme generated by the MLP based phoneme recognizer from

the input search query. The Viterbi search tries to find the

keyword that matches with the highest number of phonemes in the

sequence. If an unmatched condition reached, the algorithm

automatically slide one phoneme left in the sequence and restart

the process.

It has been observed that the recognition accuracy of the system

depends on the position of the keyword in the search query. If the

keyword appears in the beginning of the search query, the

recognition accuracy is higher than that if it appears in the middle.

Further, it has been observed that performance of the Viterbi

based keywords recognizer depends highly on the performance of

the phoneme segmenter and phoneme recognizer. Therefore, in

the present study, to evaluate the performance of the Viterbi based

keyword recognition, only those cases have been considered

where the phoneme recognizer generate the correct sequence of

phonemes for a known input. The performance of the keyword

recognizer is summarized in the Table – (2).

Table – (2): Recognition accuracy of the keyword recognizer

Further, the performance of the system is evaluated in a blind

mode. It has been observed that the system can recognize the

keywords associated with a spoken search query with an accuracy

of 74.67%.

5. CONCLUSION

In this article, a new approach has been proposed and evaluated

for the identification of search key associated with a spoken

search query. The performance of the system has been evaluated

on the basis of a database of a typical supermarket. The proposed

system has three major components – phoneme segmenter,

phoneme recognizer and keyword recognizer. It has been

observed that the overall performance of the system depends on

the performance of these three independent components. In the

present study MLP has been used as phoneme segmenter with a

feature set based on the difference of two consecutive frames. It

has been observed that the phoneme segmenter give an accuracy

of 91.24% for 10 ms duration. For a correctly segmented

phoneme-wise feature set, the phoneme recognizer gives a

recognition accuracy of 88.97%. The third of the components that

is the Viterbi based keyword recognizer can recognize the

keyword with an accuracy of 92.76% for correctly recognized

phoneme sequence. The system has a blind mode recognition

accuracy of 74.67%, which justify the fact that error occurred in

each component has a cumulative effect on the overall accuracy

of the system. In the present study, it has been observed that by

component-wise improving the performance, especially in the

first two components, i.e., phoneme segmenter and phoneme

recognizer, the overall performance can be improved.

6. REFERENCES

[1] Ahad, A., Fayyaz, A. and Mehmood, T. 2002. Speech

recognition using multi-layer perceptron, Proceedings of

IEEE Students Conference (ISCON-02), Vol. 1, 103 – 109.

[2] Box, G.E.P, Jenkins, G.M. and Reinsel, G.C. 1994. Time

Series Analysis – Forecasting and Control, 3rd Edition,

Englewood Cliffs, NJ, Prentice-Hall.

Position of the keyword

in the Query Phrase

Recognition

accuracy (in %)

Beginning 95.82

Middle 88.67

End 90.78

Average recognition accuracy 89.76

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

21

[3] Buniet, L and Fohr, D. 1995. Continuous Speech

Segmentation with the Gamma Memory Model, Proc. of

EUROSPEECH’95, 1685-1688.

[4] Carpenter, C.A. and Grossberg, S. (Eds.). 1992. Neural

Network for Vision and Image Processing, MIT Press.

[5] Gelenb, E. (Eds.). 1991. Neural Network: Advances and

Applications, North-Holland, New York.

[6] Grayden, D.B. and Scordilis, M.S. 1994. Phoneme

segmentation of Fluent Speech, Proc ICASSP, 73-76.

[7] Kohonen, T. 1995. Self-Organized Maps, Springer-Verlag.

[8] Schwatz, R. and Makhoul, J. 1975. Where the Phoneme Are:

Dealing with Ambiguity in Accoustic-Phonetic Recognition,

IEEE Trans. ASSP, Vol. 23, 50-53.

[9] Sodani, M., Nitsuwat, S. and Haruechaiyasak, C. 2010. Thai

Word Recognition Using Hybrid MLP-HMM, International

Journal of Computer Science and Network Security, VOL.10

No.3, 103-110.

[10] Suh, Y. and Lee, Y. 1996. Phoneme Segmentation of

Continuous Speech using Multilayer Perceptron, ICSLP 96,

1297-1300.

[11] Talukdar, P.H., Bhattacharjee, U., Goswami, C. and Barman,

J. 2005. A Robust Recogniser for Assamese and Bodo

Vowels using Artificial Neural Network, Proc. Int. Sym.

Frontiers of Research on Speech and Music-2005, 148-152.

[12] Ting, H.N., Jasmy, Y., Sheikh Hussain, S.S. and Cheah, E.L.

2001. Malay syllable recognition based on multilayer

perceptron and dynamic time warping, Proceedings of the

Sixth International Symposium on Signal Processing and its

Applications, vol. 2, 743 – 744.

[13] Weinsterin, C.J., McCandless, S.S., Mondehin, L.F. and Zue

V.W. 1975. A System for Acoustic Phonetic Analysis of

Continuous Speech, IEEE Trans. ASSP, Vol. 23, 54-67.

[14] Zeidenberg, M. 1990. Neural Network Models in Artificial

Intelligence, E.Horwood, London.

[15] Zue V.W. 1985. The Use of Speech Knowledge in

Automatic Speech Recognition, Proceedings of the IEEE,

Vol. 73, 1602-1615.

