
International Journal of Computer Applications (0975 – 8887)

Volume 5– No.9, August 2010

20

A New Technique for Database Fragmentation in
Distributed Systems

Shahidul Islam Khan Dr. A. S. M. Latiful Hoque
Department of Computer Science & Engineering Department of Computer Science & Engineering

Bangladesh University of Engineering & Technology Bangladesh University of Engineering & Technology

ABSTRACT

Improving the performance of a database system is one of the key

research issues now a day. Distributed processing is an effective

way to improve reliability and performance of a database system.

Distribution of data is a collection of fragmentation, allocation

and replication processes. Previous research works provided

fragmentation solution based on empirical data about the type and

frequency of the queries submitted to a centralized system. These

solutions are not suitable at the initial stage of a database design

for a distributed system. In this paper we have presented a

fragmentation technique that can be applied at the initial stage as

well as in later stages of a distributed database system for

partitioning the relations. Allocation of fragments is done

simultaneously in our algorithm. Result shows that proposed

technique can solve initial fragmentation problem of relational

databases for distributed systems properly.

General Terms
Database, Distributed database, Fragmentation

Keywords
Initial Fragmentation, Allocation, Attribute locality precedence.

1. INTRODUCTION
A distributed database is a collection of data that logically belongs

to the same system but is spread over the sites of a computer

network. A distributed database management system (DDBMS) is

defined as the software system that provides the management of

the distributed database system and makes the distribution

transparent to the users [1 - 2]. It is not necessary that database

system have to be geographically distributed. The sites of the

distributed database can have the same network address and may

be in the same room but the communication between them is done

over a network instead of shared memory. The communication

network is the only shared resource for DDBMS [1]. As

communication technology, hardware, software protocols

advances rapidly and prices of network equipments falls every

day, developing distributed database systems become more and

more feasible. Design of efficient distributed database is one of

the major research problems in database & information

technology areas.

Distributed processing on database management systems (DBMS)

is an efficient way of improving performance of applications that

manipulate large volumes of data. This may be accomplished by

removing irrelevant data accessed during the execution of queries

and by reducing the data exchange among sites, which are the two

main goals of the design of distributed databases [2]. Primary

concern of distributed database system design is to making

fragmentation of the relations in case of relational database or

classes in case of object oriented databases, allocation and

replication of the fragments in different sites of the distributed

system, and local optimization in each site [1-3].

Fragmentation is a design technique to divide a single relation or

class of a database into two or more partitions such that the

combination of the partitions provides the original database

without any loss of information [1]. This reduces the amount of

irrelevant data accessed by the applications of the database, thus

reducing the number of disk accesses. Fragmentation can be

horizontal, vertical or mixed/hybrid. Horizontal fragmentation

(HF) allows a relation or class to be partitioned into disjoint tuples

or instances. Vertical fragmentation (VF) allows a relation or class

to be partitioned into disjoint sets of columns or attributes except

the primary key. Combination of horizontal and vertical

fragmentations to mixed or hybrid fragmentations (MF) are also

proposed [3]. Allocation is the process of assigning the fragments

of a database on the sites of a distributed network. When data are

allocated, it may either be replicated or maintained as a single

copy. The replication of fragments improves reliability and

efficiency of read-only queries but increase update cost [1].

The main reasons of fragmentation of the relations are to:

increase locality of reference of the queries submitted to database,

improve reliability and availability of data and performance of the

system, balance storage capacities and minimize communication

costs among sites [1- 4].

Previous techniques of HF, VF or MF have the following

problems in common:

 They use frequency of queries, minterm predicates’

affinity or attribute affinity matrix (AAM) as a basis of

fragmentation. These require sufficient empirical data that are

not available in most cases at the initial stage.

 Most of them concentrate only fragmentation problem

and overlooked allocation problem to reduce complexity.

In this paper we have presented a new technique for horizontal

fragmentation of the relations of a distributed database. This

technique is capable of taking proper fragmentation decision at

the initial stage by using the knowledge gathered during

requirement analysis phase without the help of empirical data

about query execution. It can also allocate the fragments properly

among the sites of DDBMS.

The rest of this paper is organized as follows. In section II we

have presented literature reviews of HF, VF and MF techniques.

Section III describes the system model that we have proposed.

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.9, August 2010

21

Our results and discussion are presented in Section IV. Finally

Section V concludes the paper with further research directions.

2. LITERATURE REVIEW

HF using min-term predicate is first proposed by Ceri et al. (1982)

[5]. Navathe et al. (1984) used attribute usage matrix (AUM) and

Bond energy algorithm to produce vertical fragments [6]. Navathe

and Ra (1989) improved the previous work on VF by proposing

an algorithm using a graphical technique [7]. Shin and Irani

(1991) proposed knowledge based approach in which user

reference clusters are derived from the user queries to the database

and the knowledge about the data [8]. Ra (1993) presented a graph

based algorithm for HF in which predicates are clustered based on

the predicate affinities [9]. Chakravarthy et al. (1994) presented a

partition evaluator to measure the goodness of a VF [10]. Navathe

et al. (1995) proposed a MF technique. The input of the

procedure comprises a predicate affinity table and an attribute

affinity table [3]. Ozsu and Valduriez (1999) proposed an iterative

algorithm COMMIN to generate a complete and minimal set of

predicates from a given set of simple predicates [1]. Cheng et al.

(2002) presented a genetic algorithm based fragmentation

approach that treats horizontal fragmentation as a traveling

salesman problem [11]. Bai˜oo et al. (2004) inputted predicate

affinity matrix to build a predicate affinity graph thus define

horizontal class fragments [4]. Ma et al. (2006) used an attribute

uses frequency matrix (AUFM) and a cost model for VF [12].

Alfares et al. (2007) used AAM to generate groups based on

affinity values [13]. Marwa et al. (2008) uses the instance request

matrix to horizontally fragment object oriented database [14].

Abuelyaman (2008) proposed a static algorithm StatPart for VF

[15]. Mahboubi H. and Darmont J. (2009) used predicate affinity

for HF in data warehouse [16].

To the best of our knowledge, only Abuelyaman [15] provided a

solution for initial fragmentation of relations of a distribution

database. A randomly generated reflexivity matrix, a symmetry

matrix and a transitivity module has been used to produce vertical

fragments of the relations and no algorithm for horizontal

fragmentation. But he could not justify his hypothesis that why it

will produce good fragments.

3. PROPOSED MODEL
To solve the problem of taking proper fragmentation decision at

the initial stage of a distributed database, we have provided a new

technique of fragmentation. That is to fragment a relation

horizontally according to locality of precedence of its attributes.

Attribute locality precedence (ALP) can be defined as the value of

importance of an attribute with respect to sites of distributed

database. ALP table will be constructed by database designer for

each relation of a DDBMS at the time of designing the database

with the help of modified CRUD (Create, Read, Update, and

Delete) matrix and cost functions. A block diagram of our system

is depicted in Figure 1.

Figure 1. Block diagram of the system

A relation in a database contains different types of attributes those

describe properties of the relation. But the important thing is that

the attributes of a relation do not have same importance with

respect to data distribution in different sites. According to above

importance we can calculate locality precedence of each attribute

for each relation and construct ALP table for the relations.

A data-to-location CRUD matrix is a table of which rows indicate

attributes of the entities of a relation and columns indicate

different locations of the applications [18]. It is used by the

system analysts and designers in the requirement analysis phase of

system development life cycle for making decision of data

mapping to different locations [17], [18]. We have modified the

existing CRUD matrix according to our requirement of HF and

name it Modified Create, Read, Update, and Delete (MCRUD)

matrix. It is a table constructed by placing predicates of attributes

of a relation as the rows and applications of the sites of a DDBMS

as the columns. We have used MCRUD to generate ALP table for

each relation.

We treated cost as the effort of access and modification of a

particular attribute of a relation by an application from a particular

site. For calculating precedence of an attribute of a relation we

take the MCRUD matrix of the relation as an input and use the

following cost functions:

Ci, j, k, r = fCC + fRR + fUU + fDD

Si, j, k =

k j iA

1r

rk,j ,i,C

Si, j, m = Max (Si, j, k)

ALPi j = Si, j, m -
k j iA

mk

kj,i,S

ALPi =

l

j 1

ji,ALP

Here fC = frequency of create operation

fR = frequency of read operation

fU = frequency of update operation

fD = frequency of delete operation

C = weight of create operation

R = weight of read operation

U = weight of update operation

D = weight of delete operation

Ci, j, k, r = cost of predicate j of attribute i accessed by

application r at site k

Si, j, k = sum of all applications’ cost of predicate j of

attribute i at site k

Si, j, m = maximum cost among the sites for predicate j of

attribute i

ALPi j = actual cost for predicate j of attribute i

ALPi = total cost of attribute i (locality precedence)

For simplicity we have assumed that fC, fR, fU and fD=1 and C=2,

R=1, U=3 and D=2. The justification of the assumption is that at

the design time of a distributed database, the designer will not

know the actual frequencies of read, delete, create and update of a

particular attribute from different applications of a site and

generally update incurs more cost than create and delete, and

reading from database always incurs least cost.

(1)

(2)

(3)

(4)

(5)

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.9, August 2010

22

After construction of ALP table for a relation, predicate set P will

be generated for the attribute with highest precedence value in the

ALP table. Finally each relation will be fragmented horizontally

using the predicates of P as selection predicate. The procedures

can be clearly understood from the following algorithm and

pseudo code of Figure 2 and 3.

Figure 2. FragmentationAllocation algorithm

4. RESULT AND DISCUSSION
To justify our technique we have implemented a distributed

banking database system. One of the relations of the database is

Accounts shown in Table 1. Initially number of sites of the

distributed system is three as shown in Figure 4.

Table 1. Accounts relation

AccountNo Type CustId OpenDate Balance BrName

01 Ind 001 20/1/09 12500 Dhk

02 Cor 002 23/1/09 35000 Dhk

03 Cor 003 28/2/09 5200 Ctg

04 Ind 004 25/3/09 15000 Khl

05 Cor 005 17/4/09 50000 Dhk

Figure 4. Distributed banking database system

Figure 3. ALP-table-construction Pseudo-code

4.1 Construction of MCRUD Matrix
We have constructed the MCRUD matrix for the Accounts

relation in the requirement analysis phase. Part of MCRUD matrix

is shown in Figure 5.

Figure 5. MCRUD matrix of Accounts

Input: MCRUD of a relation that to be fragmented

Output: ALP table for that relation

for (i =1; i <= TotalAttributes; i++)

{

for (j =1; j <= TotalPredicates[i]; j++)

{

MAX[i][j] = 0;

for (k =1; k <= TotalSites; k++)

{

for (r =1; r <= TotalApplications[k]; r++) /* Calculating sum of

all applications’ cost of predicate j of attribute i at site k */

{

C[i][j][k][r] = fc*C + fr*R + fu*U + fd*D

S[i][j][k] + = C[i][j][k][r]

}

If S[i][j][k] > MAX[i][j] /*Find out at which site cost of

predicate j is maximum*/

{

MAX[i][j] = S[i][j][k]

POS[i][j] = k

}

SumOther = 0

for (r =1; r <= A[i][j][k][k]; r++)

{

If (r!=k)

SumOther + = S[i][j][r]

}

}

ALPsingle[i][j] = S[i][j][POS[i][j]] – SumOther /* actual

cost for predicate j of attribute i */

}

ALP[i] = 0

for (j =1; j <= TotalPredicates[i]; j++) /*calculating total

cost for attribute i (locality precedence)*/
{

ALP[i] + = ALPsingle[i][j]

}

}

Input: Total number of sites: S = {S1, S2,… ,Sn}

Relation to be fragmented: R

 Modified CRUD matrix: MCRUD[R]

Output: Fragments F = {F1, F2, F3,…, Fn}

Step 1: Construct ALP[R] from MCRUD[R] based on

 Cost functions

Step 2: For the highest valued attribute of ALP table

a. Generate predicate set P={ P1, P2, … ,Pm }

b. Rearrange P so that #P = #S

c. Fragment R using P as selection predicate

)(Rpp

d. Allocate F to S

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.9, August 2010

23

4.2. Calculation of ALP
We have calculated locality precedence of each attribute from

the MCRUD matrix of Accounts relation according to the cost

functions of equation (1)-(5). Calculating the locality precedence

of the attribute BrName is shown in Figure 6-8.

Figure 6. ALP cost for BrName=Dhk

According to the cost functions, value of the predicate

BrName=Dhk is (8+4+8) - (1+1) = 18, BrName=Ctg is (8+8+1) –

(1+1) = 15 and BrName=Khl is (8+3+6) – 0 = 17. So ALP of

BrName = 18+15+17 = 50.

Figure 7. ALP cost for BrName=Ctg

Figure 8. ALP cost for BrName=Khl

4.3 Construction of ALP Table
ALP values of all the attributes of the Accounts relation was

computed from its MCRUD matrix. The attribute with highest

precedence value will be treated as most important attribute for

fragmentation. Table II shows the ALP table for Accounts

relation.

Table 2. ALP table of Accounts relation

Attribute Name Precedence

AccountNo 6

Type 22

CustId 6

OpenDate 7

Balance 10

BrName 50

4.4 Generation of Predicate Set
Predicate set was generated for BrName, the attribute with

highest locality precedence of Accounts relation.

P= {p1: BrName=Dhk, p2: BrName=Ctg, p3: BrName= Khl}

4.5 Fragmentation of Relation
According to the predicate set P, Account relation was

fragmented and allocated to 3 sites shown in table III- V.

Table 3. Part of Accounts relation allocated to site 1

AccountNo Type CustId OpenDate Balance BrName

01 Ind 001 20/1/09 12500 Dhk

02 Cor 002 23/1/09 35000 Dhk

05 Cor 005 17/4/09 50000 Dhk

Table 4. Part of Accounts relation allocated to site 2

AccountNo Type CustId OpenDate Balance BrName

04 Ind 004 25/3/09 15000 Khl

Table 5. Part of Accounts relation allocated to site 3

AccountNo Type CustId OpenDate Balance BrName

03 Cor 003 28/2/09 5200 Ctg

4.6 Addition of a New Site to DDBMS
We have added another site in Dhk to the current DDBMS (see

Figure 9). In this case the fragment in site 1 re-fragmented

horizontally based on next higher precedence attribute of ALP

table.

Figure 9. DBDS after new site added in Dhk

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.9, August 2010

24

Here the attribute is Type. Predicates of Type are pi: Type=

Ind, pi+1: Type= Cor. These two predicates produced minterm

with the former predicate of site 1, p1: branch=Dkh. Now

P={p11,p12,p2,p3} where p11: branch=Dkh Λ Type= Ind , p12:

branch=Dhk Λ Type= Cor. Account relation was then fragmented

according to P and allocated to 4 sites as shown in Table VI- IX.

Table 6. Part of Accounts relation allocated to site 1.1

AccountNo Type CustId OpenDate Balance BrName

01 Ind 001 20/1/09 12500 Dhk

Table 7. Part of accounts relation allocated to site 1.2

AccountNo Type CustId OpenDate Balance BrName

02 Cor 002 23/1/09 35000 Dhk

05 Cor 005 17/4/09 50000 Dhk

Table 8. Part of accounts relation allocated to site 2

AccountNo Type CustId OpenDate Balance BrName

04 Ind 004 25/3/09 15000 Khl

Table 9. Part of accounts relation allocated to site 3

AccountNo Type CustId OpenDate Balance BrName

03 Cor 003 28/2/09 5200 Ctg

From the above result we can see that our technique has

successfully fragmented the Accounts relation and allocated the

fragments among the sites of the distributed system. As we have

only taken highest valued attribute from ALP table, no unwanted

fragments were created. Other relations of the distributed banking

database can be fragmented in the same way like Accounts. For

simplicity we have considered only four sites of the system for

allocation. It is worth mentioning that our fragmentation

technique will work in the same way for large number of sites of

any distributed system.

5. CONCLUSIONS
Making proper fragmentation of the relations and allocation of

the fragments is a major research area in distributed databases.

Many techniques have been proposed by the researchers using

empirical knowledge of data access and query frequencies. But

proper fragmentation and allocation at the initial stage of a

distributed database has not yet been addressed. In this paper we

have presented a fragmentation technique to partition relations of

a distributed database properly at the initial stage when no data

access statistics and query execution frequencies are available.

Using our technique no additional complexity is added for

allocating the fragments to the sites of a distributed database as

fragmentation is synchronized with allocation. So performance of

a DDBMS can be improved significantly by avoiding frequent

remote access and high data transfer among the sites. This

research can be extended to support fragmentation in distributed

object oriented databases as well.

6. REFERENCES

[1] M. T. Ozsu and P. Valduriez, Principles of Distributed

Database Systems, 2nd ed., New Jersey: Prentice-Hall,

1999.

[2] S. Ceri and G. Pelagatti, Distributed Databases Principles

and System, 1st ed., New York: McGraw-Hill, 1984.

[3] S. Navathe, K. Karlapalem, and M. Ra, “A mixed

fragmentation methodology for initial distributed database

design,” Journal of Computer and Software Engineering

Vol. 3, No. 4 pp 395–426, 1995.

[4] F. Bai˜ao, M. Mattoso, and G. Zaverucha, “A distribution

design methodology for object DBMS,” Distributed and

Parallel Databases, Springer, Vol. 16, No. 1, pp. 45–90,

2004.

[5] S. Ceri, M. Negri, and G. Pelagatti, “Horizontal data

partitioning in database design,” in Proc. ACM SIGMOD,

1982, pp. 128–136.

[6] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dour,

“Vertical partitioning algorithms for database design,”

ACM Transactions on Database Systems (TODS), Vol. 9,

No. 4, pp. 680–710, 1984.

[7] S. B. Navathe, and M. Ra, “Vertical partitioning for

database design: A graphical Algorithm,” ACM SIGMOD

Record, Vol. 14, No. 4, pp. 440-450, 1989.

[8] D. G. Shin, and K. B. Irani, “Fragmenting relations

horizontally using a knowledge based approach,” IEEE

Transactions on Software Engineering (TSE), Vol. 17, No.

9, pp. 872–883, 1991.

[9] M. Ra, “Horizontal partitioning for distributed database

design,” In Advances in Database Research, World

Scientific Publishing, pp. 101–120, 1993.

[10] S. Chakravarthy, J. Muthuraj, R. Varadarajan, and S. B.

Navathe, “An objective function for vertically partitioning

relations in distributed databases and its analysis,”

Distributed and Parallel Databases, Springer, Vol. 2, No. 2,

pp. 183–207, 1994.

[11] C. H. Cheng, W. K. Lee, and K. F. Wong, “A genetic

algorithm-based clustering approach for database

partitioning,” IEEE Transactions on Systems, Man, and

Cybernetics, Vol. 32, No. 3, pp. 215–230, 2002.

[12] H. Ma, K. D. Schewe, and M. Kirchberg, “A heuristic

approach to vertical fragmentation incorporating query

information,” in Proc. 7th International Baltic Conference

on Databases and Information Systems (DB&IS), 2006, pp.

69–76.

[13] M. AlFares et al, “Vertical Partitioning for Database

Design: A Grouping Algorithm”, in Proc. International

Conference on Software Engineering and Data Engineering

(SEDE), 2007, pp. 218-223.

[14] F. F. Marwa, I. E. Ali, A. A. Hesham, “A heuristic approach

for horizontal fragmentation and alllocation in DOODB,” in

Proc. INFOS2008, 2008, pp. 9-16.

[15] E. S. Abuelyaman, “An optimized scheme for vertical

partitioning of a distributed database,” Int. Journal of

Computer Science & Network Security, Vol. 8, No. 1, 2008.

[16] H. Mahboubi and J. Darmont, “Enhancing XML Data

Warehouse Query Performance by Fragmentation,” in Proc.

ACM SAC09, 2009, pp.1555-1562.

[17] J. Whitten, L. Bentley, and K. Dittman, Systems Analysis

and Design Methods, 6th Ed, McGraw-Hill, 2004.

[18] P. Surmsuk, “The integrated strategic information system

planning Methodology,” IEEE Computer Society Press, pp.

467-475, 2007.

