
International Journal of Computer Applications (0975 – 8887)
Volume 6– No.10, September 2010

25

Redundant Free Efficient Task Execution System

Sridhar N.S.

Computer science Engg.

Trivandrum

Akarsh Venugopal

Computer science Engg.
Chennai

ABSTRACT

In this paper, we will discuss about the key features to consider
while designing for a fault tolerant system. Different models are
being used in different applications such as space, air traffic
control, nuclear power plant etc.

A real time system must be reliable if a failure to meet its timing
requirements may endanger human life, damage equipment etc.
Fault tolerant system improves reliability by incorporating rating
redundancy into the system design. This system is called the
„existing system‟. Current space missions deal with such system.

We have introduced another system called as the proposed model
which deals with efficiency in terms of performance by removing
the duplicity and dividing the total number of tasks among the
different processors with a term called as „Load Balancing‟ .So
the actual mission can be completed before the time taken by the
existing system to complete a mission.

General Terms

A Fault Tolerant System basically deals with safe and efficient
execution of the different tasks used in On Board Computers used
in Space application.

Keywords

 FTS- Fault Tolerant Systems

 RFETES- Redundant Free Efficient Task Execution

system

 Processor Switching and Load Sharing

 Dual Redundant Processors.

1. INTRODUCTION
FAULT TOLERANCE

 Error Detection

It can be Ideal check, which is determined solely from the
specification, but check should be independent from system and
fails if system crashes

It can be acceptable check where rate of change of system is
reasonably monitored and powered up diagnostics done.

 Damage confinement

Any error occurring many propagate and spread. We should thus
identify boundaries for the same dynamically or by static means
like firewall.

 Error recovery

Can be backward recovery where the state is restored to a earlier
state by making checkpoints. This is most frequently used but
suffers from recovery overhead.

Can be forward recovery where we need accurate assessment of
damage. We try to make the state error-free. It is highly
application dependent.

 Fault treatment

If any transient fault occurs, the system is restarted to go to error-
free state else the system is repaired online without any manual
intervention and by dynamic system reconfiguration..

.

2. DESIGNING ISSUES
Before deciding what type of tasking should be done or what
scheduling to be approached , first thing to be done for any system
is:-

1. Define a computational model

a) Now our main focus is how to divide the tasking among the
two-processor systems say A and B among which the tasks are
divided.

b) One executive which handles the two processors and monitors
them as they perform their actions and decides what measures to
take if any fault occurs at any point during the execution of a task

in a processor and lead to normal functioning of the system. The
term used here is GRACEFUL DEGRADATION.

2. Identify the tasks and their reliability level

a) Set out which tasks to be assigned to which processor and
setting up deadline for their execution which is the most critical
part when it comes to fault tolerant computation.

b) Checking how reliable the system is with respect to efficiency
of executing tasks, weight (number of processors it uses) and
other aspects as well.

3. Task allocation and prioritization

 a) Number of tasks needed to be allocated to each processor
i.e. suppose we have 10 tasks in total, we can have 5->A and 5->B

 b) Prioritizing the tasks involves segregating the tasks into
critical and non-critical tasks where all critical tasks are given
greater priorities than the non-critical tasks and are grouped
together.

4. Carrying out the execution and finishing them before the

deadline

a) Carrying out the execution of tasks especially the critical ones
on which the system depends .If any fault occurs then the
executive must recover procedure without affecting the execution.

b) Most importantly the execution of the tasks must finish before
the deadline so that the system can have some safety margin.

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.10, September 2010

26

Greater the safety margin, greater is program efficiency so more
complexities can be added to the tasks.

Based on these, two algorithms are produced for two different
systems. The primary algorithm provides security and backup
management facilities but it reduces system performance by
duplicating the same algorithm for different processors, which is
been mastered, by the secondary algorithm but the only problem

that exists seems to be about reliability in case of failure since
none of the tasks are duplicated.

Now, numerous algorithms for scheduling real-time tasks exist.
Broadly speaking, however, they can be classified as follows:-

a) STATIC scheduling algorithms require the programmer to
define the entire schedule prior to execution. At run time , this

pre-determined schedule is then used to guide a simple task
dispatcher. Cyclic executives are one way to program static task
scheduling.

b) DYNAMIC scheduling algorithms make decisions about
which task to execute at run time, based on the priorities of the
task invocations in the ready queue.

They require a more complex run-time dispatcher or scheduler.

Also, Scheduling theory usually assumes tasks are of three types,
characterized by the arrival pattern of their individual invocations.

a) PERIODIC tasks consist of an infinite sequence of identical
invocations which arrive at fixed intervals .Their arrival pattern is
thus time driven.

b) APERIODIC tasks consist of a sequence of invocations, which
arrive randomly, usually in response to some external triggering
event .Their arrival pattern is thus event driven.

c) SPORADIC tasks are a special case of aperiodic ones where
there is a known worst-case arrival rate for the task, i.e., they have
a fixed minimum inter arrival.

Here, we are applying the „STATIC – PERIODIC‟ scheduling for

both the following models.

3. THE TWO MODELS

3.1 Existing Model
The system currently in use is the “Dual Redundant Fault Tolerant
System.” This system deals with having different processors

among which redundant tasks are distributed i.e. If suppose we
have 10 tasks to be executed in processor A at one stretch, we
introduce the method of redundancy by getting the same 10 tasks
into the processor B. So we have the same set of tasks getting
executed in both processors.

Fig 1

 In Fig 1 we have two processors A and B.Tasks T1,T2,T3,T4 are
the tasks which are distributed in both the processors but both the
processors have the same set of tasks which are also called
redundant tasks .

The 'EXECUTIVE' or The Scheduler(scheduler algorithm) is
another part of this real time system which orders assignment of
CPU and the resources to the tasks. The function of scheduling

algorithm is to determine, for a given task set, a sequence of task
step executions (a schedule).In particular, we are interested by
scheduling algorithms which give(if any) a schedule for executing
the tasks such that their timing, precedence and resource
constraints are satisfied.

In Fig1 we see that both the processors are given a deadline of
450ms and thetotal time is set as 500ms. So we get a safety
margin of 50ms.

Fig 2

In Fig 2 we do the analysis of the performance of present system.
Suppose we find a fault at execution of task T2 in processor A and
T2 is a critical task, No problem , the present system has an
advantage of task redundancy often known as software

redundancy which causes the same task T2 to get executed in
processor B. So what happens is the processor A which had
detected the fault is temporarily shut down and execution
continues in processor B which ultimately gives the final output.
This process of creating hardware and software redundancy
causes the safe execution of tasks through graceful degradation.

In this model we use Primary/backup copies (PB) and triple
modular redundancy (TMR), which are two basic methods that
allow multiple copies of a task to be scheduled on different
processors.

The scheduling algorithm that we use to implement this system is
(RM) Rate Monotonic Algorithm. because we are considering
static elements here where efficiency is directly proportional to
the frequency rate at which tasks get executed. So in such cases

RM is better than any other algorithms like FCFS, Round Robin
etc.

The basic idea here is to assign different and fixed priorities to

tasks with different execution rates, highest priority being
assigned to task with highest frequency (lowest execution time)
and lowest priority to lowest frequency task. (highest execution
time). RM algorithms can schedule a set of tasks to meet their

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.10, September 2010

27

deadlines if total resource utilisation is lower than the maximum
CPU utilisation.

Algorithm:-

function docalc()

{

1: arrival: Time;

……

2: arrival: = Clock; -- first arrival time

3: loop -- loop forever

4: delay until arrival; -- suspend task until arrival time

5: „action‟; -- code for task invocation

6: -- deadline: arrival + D (\\D is the

deadline)

7: arrival: = arrival + T; -- determine next arrival time (\\T is the

inter arrival time (or period))

8: end loop;

}

Task body SYSTEM is

Begin

 Loop

 Accept CLOCK_ENTRY;

 GETIN;

Docalc();

 PUTOUT;

 End loop;

End SYSTEM;

Safety margin = Si = Pi – di

In this model we give a specific safety margin for each task and
cumulative of this Si has to be less than the deadline i.e.:- for a set
of 4 tasks:-

Limitation:-

 The present model poses a Disadvantage of multiple
redundancies, which adds to high power consumption, incomplete
use of resources, loss of ½ of computing power & performance
degradation mainly due to low safety margin and increased bus
bandwidth. Due to fact that we are using multiple processors to
perform a particular set of tasks mainly in space programs where a

failure in machine could lead to catastrophic consequences with
huge monitory losses, there is a need to have about 5 to 6
processors, each having same set of tasks .This adds to weight of
the space craft. That is a big disadvantage.

So to remove that disadvantage, we have introduced a new model
which could be used in near future. As if for now there is no such
fixed structure for this system but it could vary according to need
of the mission.

3.2 Proposed Model
We call this RFETES (redundant free efficient task execution

system) . Salient features:-

 Processor Switching

 Load sharing

 Efficient performance

Fig 3

In Fig 3, we have processor A which is assigned 4 tasks
T1,T3,T5,T8 and processor B with 4 tasks T2,T4,T6,T7 and both
are given the deadline of 450ms.

We task T1, T3, T6 as critical tasks and rest as non-critical tasks
.So our priority becomes the execution of the critical tasks at any
stage. This model deals with switching between the processors A,
B. After execution of T1 in A, B. After execution of T1 in A , the
execution goes to T4 in B as T4 is dependent on T1 and so on.
The execution continues in the same fashion. This switching
process increases the system performance and leads to maximum
resource utilization.

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.10, September 2010

28

Fig 4

Fig 5

Fig 6

If any fault occurs at any time, say before the execution of T3 then
we can shift or replace T4 with T3 in B since T4 is a non critical
task and T3 is critical and its execution is a must. This model

makes sure that all critical tasks get executed without any
interruption.

So at the end , processor A is having a large safety margin shown
in Fig 6 ; so it is quite obvious that we can add some more
complexity to the system or add another task T9 which is done in
the Fig 7.

Fig 7

3.3 The control flow

Fig 8

ALGORITHM-

1: arrival : Time;

...

2: arrival := Clock; -- first arrival time

3: loop -- loop forever

4: delay until arrival; -- suspend task until arrival time

5: „action‟; -- code for task invocation

6: -- deadline: arrival + D;

7: switch processors(); --switches between processors

8. if(error)

8.1: Check_processor(); --checks the fault occurred at which

processor

8.2: perform_operation(); --performs push and pop operation

9: Else

 Do_calc(); --does all the calculation

10: compute_time(); --shows time of computation

11:end

Now consider,

 Di= Execution time of a particular task

 Si=Relaxation time between two tasks

 Pi=Total time for execution of one task

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.10, September 2010

29

 di + ci < Pi

 Under worst case

 di + ci = Pi

 Safety margin = Si = Pi – di

For 4 tasks, condition is

Problems faced with proposed model:-

Our proposed model deals with communication overhead and
existing model deals with relaxation time, so there is no guarantee
that it becomes lesser than relaxation time. Hence it is completely
dependent upon the hardware Recovery procedure to be laid out
for intermediate output.

But inspite of this, in addition to the redundancy removed, we are
going to prove with the following case study the efficiency of
„RFETES‟ is better than the existing model.

Fig 9

Total execution time = =(6+5)+ (10+5)+

(12+5)+ (14+5)+ (15+5)+ (16+5)+ (18+5)+ (20+5)

=146=150(Approx)

Here, Di= Execution time of a particular task

 Si=Relaxation time between two tasks

The Condition here:-

Under worst case scenario we mentioned earlier the above
summation becomes equal to 1.

Proposed Model:-

Fig 10

To = (6+4)+(12+4)+(15+4)+(18) = 63

Te = (10+4)+(14+4)+(16+4)+(20) = 72

Without any error it gives O/P at times t=63 and t=72 which is
much lesser than the one we got for the existing model which

proves its efficiency without any error happening in the
background.

Ci = Communication overhead

Di= Execution time of task i

This is the basic formula that any case under the proposed model
has to follow to get the desired result to be obtained

3.4 Dependent tasks
Consider system where all the tasks are dependent upon the tasks
that are preceding them so their O/P has bearing over the result of
the execution of other task.

a) Consider the situation where all the tasks are critical &
have equal priority. So under this condition , omission
of a task could prove to be catastrophic so it is given
that all the tasks need to be executed. So here is how the
situation handled

Fig 11

To = (6+4)+(12+4)+(15+4)+(18+4) = 67

Te = (10+4)+(13+4)+(16+4)+(20+4)+14 = 89

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.10, September 2010

30

Here if a particular task say T4 catches an error then it performs a
push & pop operation where T4 is pushed onto B in place of T6
which is popped & pushed in place of T8 & finally pushed onto B
extending the time limit & consuming some safety margin which
is quite large in this case since we are taking the same time limit
as we did for existing system.

So we get final result at time t = 89ms.

b) Consider an error occurring at both the processors considering
the same constraints as we had before since all tasks are critical so
, all needs to be executed at any cost. Here fault occurs at both T4
and T3 so we are doing the same push and pop operation

Fig 12

To = (6+4)+(11+4)+(15+4)+(18+4)+(18) = 78

Te = (10+4)+(13+4)+(14+4)+(16+4)+20 = 89

So, final O/P is received at time t = 89ms.

3.5 Independent tasks
Consider a situation where all the tasks are independent of each
other so there may be a situation where a particular task may or
may not be critical. So let us see what happens then.

a) Here we consider that all the tasks are arranged
according to increasing order of their priority. Here is a
situation that shows this case:-

Fig 13

To = (6+4)+(11+4)+(12+4)+15 = 66

Te = (10+4)+(13+4)+(14+4)+16 = 65

Here we have fault at both T4 and T3 in A and B respectively. So
we perform the same push and pop operation .So finally we reach
that T8 and T7 are lowest in their priority list which are rejected
since their removal won‟t affect the outcome of the system.

So we get the final O/P at time t=66ms.

b) Here we consider that all the tasks are scattered which is shown
below

Here we store the list of tasks as critical or non critical where we
consider the execution of all the critical tasks to be mandatory.

We have a fault at task T4 so it looks into the list whether T4 is
critical or not. If it is critical then it performs the same push & pop
operation until a task from non critical list comes which is
rejected. If it is not then T4 is rejected. If all tasks are critical then
we get condition 3.5 (a).

So any way we get the result early.

4. CONCLUSION
Finally if we apply the above formula for the above cases then we
will come to know that these cases do follow the formula. So this
system is highly efficient i.e. :- If we put n = 8, then the proposed
formula would give us the result

RHS = 8/2(2^ (2/8)-1) = 4(2^(1/4)-1) = 4(1.414^(1/2)-1) = 4(1.2 –

1) = 0.8 approx

As compared to worst case scenario for the existing system which

takes RHS =1, it takes only 0.8 .

So if total time taken for the worst case by the existing system =

150ms, the proposed system takes 150 *0.8 =120ms.

Thus, with „RFETES‟ , feel the difference!!!

5. ACKNOWLEDGMENTS
Our sincere thanks to Mrs. Radhamani Pillai, Professor of Amrita
University, Coimbatore, India who had inspired us to work for
this idea based on fault tolerant computation. We would like to
thank our college, Amrita school of Engineering, Amritapuri
campus for giving us such an opportunity to have a deeper insight
into the field of embedded systems related to computer
applications.

6. REFERENCES
[1] D.G. Feitelson and L. Rudolph. Parallel job scheduling

Issues and approaches. In D.G. Feitelson and L. Rudolph,
editors, IPPS'95 Workshop: Job Scheduling Strategies for
Parallel Processing, pages 1{18. Springer{{Verlag, Lecture
Notes in computer science LNCS 949,1995

[2] Audsley, N. C., Burns, A., Richardson, M. F., and Wellings,
Ltd. A.J. 1992, Deadline monotonic scheduling theory. In

proceedings 18th IFAC/IFIP Workshop on real-time
programming (WRTP‟92) (June 1992).

[3] Bate, I. and Burns, A. 1999. A framework for scheduling and

schedulability analysis for safety-critical embedded control
systems. Draft, Department of Computer Science, The
University of York.

