
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.11, September 2010

31

Imperfect-Debugging SRGM with Software Module Testing
and Resource Allocation Dependent Release Policy

Shaik.Mohammmad rafi Shaheda Akthar
 Assoc. Professor Assoc. Professor

Dept. of Computer science and engineering Dept. of Computer science and engineering
 Affiliated to J.N.T University. Affiliated to J.N.T University
 Kakinada. INDIA. Kakinada. INDIA

ABSTRACT
Testing is one of the important phase in software development. Main
Purpose of testing is to identify the number of errors present in the
software. In the history of software development several testing
techniques and methods are used in finding out the errors. Module
testing is one of the sophisticated testing technique. Software release

problem is the one of oldest of problem in which managers could
find a time at which testing is be to stopped such that released
software should have more quality. During the testing many
resources are consumed; every manager’s intension is to find
efficient method of allocating resources during software module
testing such that it saves time and resource. In this paper we have
combined the software release problem with resource allocation with
software reliability growth model with imperfect-debugging

phenomenon. Experiments are conducted on datasets. The results
show our proposed model fits better than other.

General Terms
Software reliability, software testing, software release time, resource
allocation

Keywords
Non-homogeneous passion process, Software reliability growth
model, resource allocation, imperfect-debugging,

I. INTRODUCTION
Software development consists of four phases like Analysis, design,
coding and testing. Among these testing is considered as the most
important phase in which all bugs related to software are identified.
Many testing techniques are implemented these days. Unit testing,
integration testing, and module test. Testing intended in using to find
errors and improve the product reliability. Reliability of a software
product is defined as working conditions of the software before it

met with first error in a given environmental conditions. If the test is
more effective it could find more number of errors in short span of
time and the same time if a test is not feasible if it is unable to find
the errors. In the past few decades several papers are published in the
context of software reliability growth models [13,15]. Recently some
models proposed testing-effort dependent software reliability growth
models [5, 8,11,12].

Software reliability growth models differentiated based on
considering the time and number of faults [13]. The former one is
called time dependent models and later one is failure dependent. An
effort better described by number of persons involved in testing,

number of test cases and time allocated for testing. Module test is
one of the important test in which all modules related to software
product is considered for testing [5]. During module testing,
integration testing, and system testing many of the resources are

consumed; like number of persons, number of test cases and number
of hours spent [4,5].

 Several papers are proposed in area of software

development cost [2,3,8]. All proposed models derived their cost
based on the reliability. But in reality several factors can effect the
cost the software. The COCOMO [14] had considered the several
factors in that reliability is one factor. Some papers considered the
cost function is non linear function of failure rate [1,2,,3]. Similarly
some had proposed the software reliability growth models by
considering the cost and release time policy [2,3]. Kubat and Berman
proposed a cost allocation models based on satisfying budget and

development cost [1,16]. Yamada, Goel and Okumoto had proposed
cost model based on amount of testing effort send during the
software testing [1,2,3,8,11]. Generally complex software consists of
several modules. Resources allocation in such kind of software
products is a challenging issue. When complex software put under
test each module consumes about 30-40% of test resources [16]. So a
manager has to decide how he can allocate these testing resources
effectively. Recent many papers are presented in efficient resource
allocation [4,6,7,10,17]. It is great importance to use the optimal

release policies based on resource allocation. Such that the efficient
resource allocation can impact the software release time. Nishiwaki ,
Yamada and Ichimori [10] had proposed release policies on a
resource allocation with SRGM by considering that testing is perfect
in nature; but in reality by removing one fault can produces another
fault or there is a chance that fault removal process in not in perfect.
In this paper we use SRGM with imperfect debugging phenomenon.

In this paper we proposed an optimal release policy based on
resource allocation with imperfect-debugging SRGM. Section-II
describes NHPP software reliability growth model with imperfect-
debugging environment. Section-III describes optimal cost

estimation through resource allocation. Section-IV shows all the
experimental calculated values.

2. SOFTWARE RELIABILITY GROWTH

MODELING

2.1 NHPP software reliability growth model

with logistic-exponential TEF imperfect-

debugging environment.

An SRGM with a logistic-exponential TEF is formulated based on
the following assumptions [5,8,11,12]

1) The fault removal process follows the NHPP.
2) The software system is subjected to failure at random times

caused by faults in the system.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.11, September 2010

32

3) The mean number of faults detected in the time interval (t,t+Δt)
by the current testing effort is proportional to the mean number
of remaining faults in the system.

4) The consumption of testing effort is modeled by a logistic-
exponential TEF [8,9].

5) Each time a failure occurs, the fault that cause it is removed, it
is possible to introduce new errors.

)]()([)(
)(

1)(
tatntr

twdt

tdm (1)

)(tn is described as the sum of expected number of initial faults.

We assume that

)()(tmatn (2)

Solving above two equations (1) and (2) at conditions m(0)=0 and
r(0)=r , we get the mean value function

)])(*)1(exp[1(
)1(

)(tWr
a

tm (3)

Now the number of remaining faults

)])(*)1((exp[)()()(tWratmtntmremaining

 (4)

2.2. Reliability evaluation
Generally a software reliability growth model provides the measure
the reliability during the testing of software. Reliability is defined as
“failure free software over a period of time in a given environmental
conditions. Reliability mathematically represented as [3,11,12]

)))()((exp()()(tmttmttRtR (5)

Another measure of software reliability at time t is defined as the
ratio of cumulative number of error detected to total of initial errors
in the software.[11]

a

tm
tR

)(
)(

 (6)

From above two equations (5) or (6) we can calculate the reliability
of the software at ant time t.

2.3. Parameter estimation
Estimating the model parameters from real datasets involves the
method of MLE. Now suppose the parameters a, r, and β are
determined for n observed data pairs.

Then likely hood parameters for a, r, and β in the NHPP model with
m(t) in equation (3) is given by

})(.......)(,)({
1111 mtmtmtP nnr

NNNL

n

k
kk

kk

kk

tt
mm

tt mm
mm

1
1

1

1))]()((exp[
)(

)}()({ (7)

Where m0=0 for t0=0 taking the natural logarithm of the likelihood
function in eq (7) we have

n

k

n

k
kkkk

n

k
kkkk

mmtt

ttmm

mm

mmL

1 1
11

1
11

].)!)ln[())()(((

)]()(ln[)(ln
 (8)

Now from (3)

)])}()1((exp[

)])()1({(exp[
)1(

)()(
11

t

ttt

k

kkk

Wr

Wr
a

mm (9)

n

k
nnkk tttt Wr

a
mmm

1
1

)])()1(exp[1(
)1(

)()]()([(10)

n

k

nk

kkk

tt

tmm

Wr
a

Wr

Wr
a

L
1

11

)]}()1(exp[1(
)1(

{)])}]()1((exp[

)])()1({(exp[
)1(

ln[)(

ln

 (11)

0)))()1(exp(1(
)1(

1
)(

ln 1
1

t
mm

n

n

k
kk

Wr
aa

L (12)

)))()1(exp(1(

)1(

t
m

n

n

Wr
a (13)

Same way calculate parameters r and β.

3 RESOURCE ALLOCATION PROBLEM

3.1. Problem description
Consider software consists of N number of modules which differ
from their size, complexity, the kind of function they perform. Each
module is tested individually for removing the errors. There fore
using a SRGM with logistic-exponential TEF with imperfect-
debugging environment is more suitable for the problem. Parameters
for the each module is either are estimated from LSE or MLE. Here

every manager should be capable to decide how to allocate the
software testing resources to each module to reduce the total cost and
achieves maximum reliability. And also to calculate the optimal
release of the software by allocating resources efficiently.

3.2. Modeling the mean Value function
Using the SRGM with testing effort is given by eq(3) to model the
number of faults removed by the time t, the mean value function of
fault removal process for the i th module is given by

)])()1(exp[1(
)1(

)(tt Wr
a

m iii

i

i

i

 i=1,2,…N (14)

Let qi be the testing effort spend on the i th module during the testing
time T; the mean value function is given by

Niqr
aqm iii

i

i

ii
...2,1])....)1(exp[1(

)1(
)(

 (15)

3.3. Modeling the cost functions
Cost is a one important factor in analyzing the release of the
software. Cost of testing before release and the costs of fixing the
errors before and after release are counted as software cost factors [
]. The total cost of testing effort expenditure is given by

)()]()([)()(
321

TWTmmTmTC CTCC LC
 (16)

Where C(T) is the total cost of the software and
C1 = cost of fixing an error during testing.
C2 = cost of fixing an error during operation where

 C2 >C1
C3 = cost of testing per unit time

TLC = software life cycle length
T = software release time; amount of testing time.
New software cost function for ith module is given by

qCqraC

qr
a

Cz

imiiiim

iii

i

i

mi

32

1

])1(exp[

]))1(exp[1(
)1(

 (17)

C1m = cost of correcting an error during module testing
C2m = cost of correcting an undetected errors during the module

testing

C3m = cost of module testing for unit testing effort expenditure
Total cost of the all modules

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.11, September 2010

33

N

i
im

N

i
iiiim

N

i
iii

i

i

m

i

qCqraC

qr
a

Cz
N

i
iTCZ

1
3

1
2

1
1

])1(exp[

]))1(exp[1(
)1(1

 (18)

 Now from the equation (11)

Minimize

N

i
im

N

i
iiiim

N

i
iii

i

i

m

qCqraC

qr
a

C

1
3

1
2

1
1

])1(exp[

]))1(exp[1(
)1((19)

Subjected to
N

i
ii

qq W
1

0, (20)

Use solve equation (12) and (13) we use the Lagrange multiplier
method can be applied. Non linear kuhn-Tucker is the most

important result of optimization. Associating the multiplier λ with
Eq. (12) and E.q (13) we get the following equation

)(])1(exp[

]))1(exp[1(
)1(

),......,,(

11
3

1
2

1
1321

W

L

N

i
i

N

i
im

N

i
iiiim

N

i
iii

i

i

mN

qqCqraC

qr
a

Cqqqq (21)

Now differentiating the above equation with respect to
q

i

We get

N

i

iii

N

i
iiimiiiii

i

i

m

i Cqr

raCqrr
a

C
q
L

1

3

1
2

1

0])1(exp[

))1((])1(exp[)1((
)1(

 (22)

Simplifying the above equation we get

)1(

)}(ln))1((ln{
1

312

ii

N

i
iii

i r

CCCra
q (23)

Let])1[(
12 CCraA iiii

 (24)

Now

)1(

)}(ln{ln
3

ii

i

i r

CAq
 (25)

0)(
1

N

i
i

W
L

q (26)

Now
0

)1(

)}(lnln{
3

1 W

ii

N

i
i

r

CA
 (27)

N

i
ii

N

i
i

ii

r

A
r

C

W

1

1

3

)1(

1

ln
)1(

1

)(ln
 (28)

N

i
ii

N

i
i

ii

r

A
r

C

Q

1

1

3

)1(

1

ln
)1(

1

exp
 (29)

If suppose λ=0 then Ak > C3 ≥ Ak+1 then

)1(

)}(ln{ln
,0max 3

ii

i

i r
CAq

 (30)

From the Lagrange multipliers

 }........,,,0{
321

*

N
 (31)

Then optimal value of

Ni
i

ii

i

r
CAq ,...3,2,1

)1(

)}(ln{ln
,0max 3

*
* (32)

4. NUMERICAL EXAMPLES
It is assumed that parameters ai , ri , and βi are already been
calculated. Total effort send during the project 1000 person/hours,
C1=2, C2=10 and C3=0.5. Optimal value of λ*=0.5337.

TABLE-1
SUMMERY OF VALUES OF ALL PARAMETERS AND ALLOCATED

TESTING RESOURCE EXPENDITURE qi
*

S.No ai
 r i

i

 q
i
 z i

1 68 0.00567 0.1 317.59 384.65

2 14 0.02361 0.23 69.37 84.45

3 6 0.04736 0.14 30.85 38.56

4 55 0.004652 0.45 202.25 382.85

5 15 0.01536 0.12 79.66 105.13

6 41 0.005151 0.4 148.56 308.87

7 21 0.008844 0.1 111.84 160.39

8 9 0.01614 0.38 13.36 82.71

9 22 0.004551 0.27 26.52 220.53

10 11 0.004754 0.25 0 135.97

(W=1000, C1=2, C2=10 and C3=0.5)

The total cost of the software testing

N

i
izZ

1 =1904.1. As

We can see that if we use the perfect debugging the cost is around
1854.8. This increase in the cost due to the imperfect debugging
some of faults are not completely removed which increases the
expenditure and leads to increase in the total cost.

TABLE-2
SUMMERY OF VALUES OF ALL PARAMETERS AND ALLOCATED

TESTING RESOURCE EXPENDITURE qi
*

S.No ai
 r i

i

 q
i
 z i

1 68 0.00567 0.1 368.43 387.56

2 14 0.02361 0.23 83.65 85.36

3 6 0.04736 0.14 37.22 38.84

4 55 0.004652 0.45 303.65 368.97

5 15 0.01536 0.12 98.86 105.71

6 41 0.005151 0.4 232.51 297.27

7 21 0.008844 0.1 144.44 161.05

8 9 0.01614 0.38 39.28 75.83

9 22 0.004551 0.27 76.34 206.51

10 11 0.004754 0.25 100.63 113.67

(W=1500, C1=2, C2=10 and C3=0.5)
From the Table-2 total cost of the software testing

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.11, September 2010

34

N

i
izZ

1

=1840.77.

TABLE-3
SUMMERY OF VALUES OF ALL PARAMETERS AND ALLOCATED

TESTING RESOURCE EXPENDITURE qi
*

S.No ai
 r i

i

 q
i
 z i

1 68 0.00567 0.1 430.04 398.51

2 14 0.02361 0.23 100.94 88.80

3 6 0.04736 0.14 44.94 40.18

4 55 0.004652 0.45 426.52 383.75

5 15 0.01536 0.12 122.11 109.44

6 41 0.005151 0.4 334.22 307.75

7 21 0.008844 0.1 183.93 166.99

8 9 0.01614 0.38 70.70 76.35

9 22 0.004551 0.27 170.97 210.31

10 11 0.004754 0.25 0 109.13

(W=2000, C1=2, C2=10 and C3=0.5)

From the Table-3 total cost of the software testing

N

i
izZ

1

=1891.21.

5. CONCLUSIONS
In this paper we have investigated how an imperfect-debugging can
influence the resource allocation and its release policy. By allocating
the testing effort efficiently to each module we can optimize the cost
of testing. In this we used a imperfect debugging SRGM based on
non homogeneous Poisson process. The model describes the time
dependent fault detection and testing resource expenditure spent
during the testing. It was observed that total cost (Imperfect-

debugging) 1904.1 has been higher than (perfect-debugging cost)
1854.8.

7. ACKNOWLEDGMENT
Authors like to thanks to all authors mentioned in the references.

8. REFERENCES
[1] Koch , H.S and Kubat, P. : “Optimal Release Time for Computer
Software “, IEEE Trans. Software Eng. Pp.323-327, Vol SE-9, No.
3, (May 1983).

[2] Okumato, K and Goel, A.L:”Optimal Release Time for
Software System Based on Reliability and Cost Criteria “,J.Systems
and Software pp .315-318. Vol. 1 (1980).

[3] Yamada, S and Osaki, S: “Cost-reliability Optimal Release
Policies for Software Systems” IEEE Trans. , Reliability , pp.422-
424, Vol. R-34. No.5 (Dec 1985)

[4] Ohtera , H and Yamada , S: “Optimal Allocation and Control
Problem for Software Testing-resources” IEEE Trans., Reliability,
pp.171-176 , Vol. R-39 No-2 (Jun.1990).

[5] Yamada S. and Ohtera, H and Narihisa , H :” software
Reliability Growth model with Testing –effort” IEEE Trans.
Reliability , pp. 19-23 ,Vol. ,R-35, No.1 (Apr.1986).

[6] Lyu, M.R., S. Rangarajan, and A. P. A. van Moorsel. Optimal
Allocation of Test Resources for Software Reliability Growth
Modeling in Software Development, IEEE Trans. on Reliability
2002; 51(2):183-192.

[7] Huang, C.Y., J. H. Lo., S. Y. Kuo and M. R. Optimal Allocation
of Testing-Resource considering Cost, Reliability, and Testing-
Effort, Dependable Computing, 2004. Proceedings. 10th IEEE
Pacific Rim International Symposium on 3-5 March 2004:103-112.

[8] Rafi, S.K., K.Nageshwara Rao, and Shaheda Akthar. Software

reliability growth model with logistic-exponential TEF and Analysis
of software release policy, International Journal on Computer
Science and Engineering 2010;2(2): 387-399.

[9] Lan, Y. and L. Leemis. The Logistic-Exponential Survival
Distribution, Naval Research Logistics (NRL) 2005; 55(3): 252-264.

[10] Nishiwaki, M., S. Yamada, and T. Ichimori. Testing-resource

Allocation Policies based on an Optimal Software Release Problem,
Mathematica Japonica 1996; 43(1):91-97

[11] Huang, C.Y. and Kuo, S.Y. (2002), “Analysis of incorporating

logistic testing-effort function into software reliability modeling”,
IEEE Transactions on Reliability, Vol. 51 No. 3, pp. 261-70.

[12] Yamada, S, Hishitani, J and S. Osaki, "Software Reliability
Growth Model with Weibull Testing Effort: A Model and
Application," IEEE Trans. on Reliability, Vol. R-42, pp.100-105.
1993.

[13] Goel, A. L., and Okumoto, K., Time-Dependent Error-Detection
Rate Model for Software Reliability and Other Performance
Measures, IEEE Trans. Reli. 20,206-2110979).

[14] Czuchra W. Optimizing budget spending for software
implementation and testing. Comput Oper Res 1999;26:731–47.

[15] Yamada S and S. Osaki, “Software Reliability Growth
Modeling: Models and Applications,” IEEE Trans. Software Eng.,
vol. 11, pp. 1,431-1,437, 1985.

[16] Berman, O. and N. Ashrafi. Optimization Models for Reliability
of Modular Software Systems, IEEE Trans. on Software Engineering
1993; 19(11):1119-1123.

[17] Yamada, S., T. Ichimori, and M. Nishiwaki. Optimal Allocation
Policies for Testing Resource Based on a Software Reliability
Growth Model,International Journal of Mathematical and Computer
Modelling 1995; 22: 295-301.

