
International Journal of Computer Applications (0975 – 8887)
Volume 6– No.11, September 2010

21

A New Approach of Complier Design in Context of Lexical
Analyzer and Parser Generation for NextGen Languages

Biswajit Bhowmik1

MIACSIT, MIAENG, MPASS,
MIAOE

 Abhishek Kumar2

Abhishek Kumar Jha2

Rajesh Kumar Agrawal2

ABSTRACT

A compiler translates and/or compiles a program written in a

suitable source language into an equivalent target language
through a number of stages. Starting with recognition of token
through target code generation provide a basis for communication
interface between a user and a processor in significant amount of
time. A new approach GLAP model for design and time
complexity analysis of lexical analyzer is proposed in this paper.
In the model different steps of tokenizer (generation of tokens)
through lexemes, and better input system implementation have

been introduced. Disk access and state machine driven Lex are
also reflected in the model towards its complete utility. The model
also introduces generation of parser. Implementation of symbol
table and its interface using stack is another innovation of the
model in acceptance with both theoretically and in
implementation widely.

General Terms

Compiler, Language Processor.

Keywords

Tokens, Lexeme, Lex, Tokenizer, PDA, Lookahead, Pushback.

1. INTRODUCTION
A compiler is system software that converts a high-level
programming language program into an equivalent low-level
(machine) language program. It validates the input program
conforming the source language specification and violation of the

same is stipulated as error message or warnings. Obviously it
attempts to mark and detail the mistakes done by the programmer
[1]. The idea is shown in Figure 1.

Figure 1: Working Methodology of a Compiler

Beginning with token recognition, it runs through generation of
context free grammar, parsing sequence, checking acceptability,
machine independence intermediate code generation to finally
target code generation state. These act as a basis for
communication interface between user and processor [1, 3].

The tool usually used to construct lexical analyzer is Lex. Syntax

directed translation is achieved through parser. A data structure,
symbol table interacts with different phases. For parser part the

codes are directed towards implementing attributed grammars in
PDA, top-down parsing [2].

2. PHASES OF GENERAL COMPILER
Writing a compiler is a nontrivial task. It will be a very nice
practice to structure its principles. Conceptually a compiler works
in phases. The key phases include and undergo through Lexical
Analysis, Syntax Analysis, Semantic Analysis, Intermediate Code
Generation, Code Optimization, and Target Code Generation [2].
These are shown in Figure 2.

Figure 2: Phases of a Typical Compiler

1

3. GLAP Model
Lexical analysis, parsing, and symbol tables are those
implementation techniques that support general design principles.
We also suppose that a modern compiler construction till now is

1 Sr. Lecturer, Department of Computer Science & Engineering,
Bengal College of Engineering & Technology, Durgapur,
713212, India.

2 UG Students, Department of Computer Science & Engineering,
Bengal College of Engineering & Technology, Durgapur,
713212, India.

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.11, September 2010

22

at an abstract level [8]. In a lexical analyzer, the scanning of a
whole symbol table for a finite input string incurs very high
computational cost. We present a lexical analyzer designed to
focus on a very limited sub-set of the whole dictionary in least
cost [5]. The model proposed describes the following:

i. Working Principle of Lexical analyzer.

ii. Input Systems.

iii. Optimization Issues

iv. Look-ahead and Pushback.

v. State Machine Implementation.

vi. Proposed Algorithms.

vii. Performance Analysis.

viii. Parser Generator.

3.1 Working Principle of Lexical Analyzer
A lexical analyzer (also known as lexer), a pattern recognition
engine takes a string of individual letters as its input and divides it
into tokens [1]. Additionally, it also filters out whatever (usually

white-space, newlines, comments, etc) separates the tokens. The
main purpose of this phase is to make the subsequent phase easier
[2].

Some key definitions [4, 5] related to this phase include:

 Lex: A set of buffered input routines and constructs. It

translates regular expression into lexical analyzer.

 Tokens: Basic indivisible lexical unit or language

elements. These are terminal symbols in a grammar,
Constants, Operators, Punctuation, Keywords, Classes
of sequences of characters with collective meaning,
arbitrary integer values, etc that represent the lexemes
[1].

 Lexeme: These are original string (character sequence)

comprised (matched) by an instance of the token. E.g.
“sqrt” [6].

Lexical Analyzer is basically a part of compiler which:

i. Translates lexemes into tokens (arranged in symbol
table for compilation references) with the help of Lex
[13].

ii. Communicates with parser for serving token requests.

iii. Discards comments and skips over white spaces.

iv. Keeps track of current line number so that parser can
detect errors [8].

Working methodology of lexical analyzer has been traced in some
interesting phases as stated below:

First, it acts as an interface for parser and symbol table with input
stream as reference as shown in Figure 3.

Figure 3: Lex as a Tokenizer

Second, internal working procedure of Lexical Analyzer that
generates a stream of tokens. Suppose the pseudocode:

 if(x*y<10) {

 Z = x;

 }

Let’s consider the first statement of the above code. The
corresponding token stream of pairs <type, value> is shown in

Figure 4. Lex and input systems together constitute layers of
Lexical Analyzer.

(a)

(b)

Figure 4: Output Stage of Lexical Analyzer

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.11, September 2010

23

3.2 Input System
Input System is the lowest-level layer of the lexical analyzer

which consists of group of functions that actually read data from
the operating system. This is the reason that refers the lexical
analyzer as a distinct and independent module [4]. This
independency may derive several advantages such as:

 Change in the phase doesn’t affect compiler as a

whole.

 Enhanced portability in absence of inter and intra

dependability.

 Efficient speed to read large data. Thus, optimized

read time.

 Code recycling supported is same for every

compilation utility.

An input system must possess the following design criteria [6].

 Efficient disk access.

 Supported reasonable lexemes of finite length.

 Availability of both the current and previous
lexemes.

 Availability of pushback and lookahead of several
characters.

 Faster routines as possible, with little or no copying

of the input strings.

3.3 Optimization Issues
A Lexical analyzer consumes a good portion of compilers time
since the number, size, and complexity of software systems are
increasingly in nature. Moreover, programming languages, which
are likely to make the programming task easier, are still frequent
to error prawn. This is because of either the new languages’
features do not exclude all the causes of errors or C, C++, etc like

some old languages are in use [4, 7, 9].

E.g. standard C buffered input system is actually a poor choice as
it copies the input characters thrice. From Disk to two buffers and
then to the string that holds the lexeme [3, 6]. Consequently it is
worthwhile to optimize the input systems.

Figure 5: Multistage Copying Problem

3.4 Lookahead and Pushback

A Lexical Analyzer looks ahead several characters in input to

distinguish a token from other and then it must push extra
characters back to input. These functionalities can be described in
accordance to input system reference through a problem statement
and its solution flowchart [1, 9] as shown in Figures 6 and 7.

Available tokens:

Figure 6: Some available tokens

 Given Input: xxy

The problem statement: generate tokens for the above input string.

The solution flowchart for the generation of suitable tokens deals
with only steps towards solution or marked with circle otherwise.

Figure 7: Flowchart Showing Multi-character Lookahead and
Pushback

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.11, September 2010

24

Thus the solution steps can be traced with carry ahead and
pushbacks. As clear from the flowchart is that lookahead is not
any big issue for input system [1]. But the major problem is
pushback, more specifically multiple character pushback. It can be
fixed fix by adding a layer around (e.g getc() if implemented in C

language) that gives more pushbacks using a stack [5, 8].

3.5 Lexical analysis through FSM
The Efficiency of a Lexical Analyzer can be improved through:

a. A set of developed input routines which have been
applied in lexical analysis applications in two primary

approaches:

 Hard code the analyzer that identifies lexemes with
nested if/else statements, switches and so forth.

 A series of look up tables to recognize tokens if
lexemes are small enough.

b. Lex (uses approach of finite state machine) which takes
a set of regular expressions to describe tokens, and
create DFA or NFA [11] that recognizes the expressions

and finds the longest possible sequence of input
characters forming tokens. Thus, a Lexfile (a text file
for token description) consists of regular expression /
action pairs, where actions are represented by blocks of
C code. The same functionality can also be provided by
greedy algorithm [10].

3.6 Algorithm for Lexical Analyzer
Building a Lexical Analyzer needs a language that must describe
the tokens, token codes, and token classification. It also needs to
design a suitable algorithm to be implemented in program that can
translate the language into a working lexical analyzer. We have
used C language in particular, for implementation as powerful tool
enough to describe the metasymbols used in regular expressions,

as well as non-printable ASCII characters [9]. We have also
described a shorthand notation for the range of ASCII characters,
e.g. all lower-case letters [4]. The algorithm designed for the
proposed GLAP model for the generation of tokens is named as
Tokenizer and is written below.

Algorithm: Tokenizer(S)

Where S = Input string.

Output: A set of tokens

Step 1: Initialize S.

Step 2: Define symbol table.

Step 3: Repeat while scanning (left to right) S is not

 completed

i. If blank (empty space)

a. Neglect and eliminate it.

ii. If operator op // arithmetic, relational, etc.

a. Find its type.

b. Write op.

iii. If keyword key // if, while, for, etc.

a. Write key.

iv. If identifier id // a, b, c, etc

a. Write id.

v. If special character sc // (,), etc.

a. Write sc.

Step 4: Exit

Complexity Analysis: Initially, the input string is considered in an
array. The already built symbol table is used here. Thus, the
running time of the above algorithm will be the scanning of the
string from left to right i.e. linear in nature.

3.7 Parser Generator
Parsing (also called syntax analysis) is another most important
phase of a compiler. The parser (syntax analyzer) works hand-in-
hand with pervious lexical analysis phase [1]. The lexical analyzer
determines the tokens occurring next in the input stream and

returns the same to the parser when asked for. The parser
considers the sequence of tokens for possible valid constructs of
the programming language [4, 9]. Role of a typical parser is two-
fold:

a. Identify the language constructs from a given input. A
parser outputs and represents valid input in the form of a
parse tree [3].

b. For grammatically incorrect input string, the parser

declares the detection of syntax error. No parse tree [7]
in this case is generated.

Figure 8: Working Principle of parser

As an alternative to parsing, based on the repetitive application of
regular expressions using a shortest-match strategy, we may apply
an iterative lexical technique. The approach in general recognizes

syntactic elements using iterative sophistication, where constructs
those are unambiguous are identified to provide related reminder
for the identification of more ambiguous constructs [1, 6].

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.11, September 2010

25

3.8 Performance Analysis
The efficiency measurement of a compiler is basically a tradeoff

between complexity and time. Here, performance of the GLAP
model is viewed w.r.t. to lexical analyzer.

Instead of using three levels of copying mutual data transfer a
fragmented FILE buffer to serve this utility is used to some extent.
The work becomes a bit easier as here the bulky symbol table has
not been used. Thus, data chunks are lighter and access frequency
is smaller and faster one.

With consideration of the design issues, the input system becomes

efficient in speed factor and pushback as well as lookahead parts.
The routines have been optimized to make them fast. However,
the independent checking cannot be performed.

4. EXPERIMENTAL RESULTS
The above Tokenizer() algorithm has been implemented in Turbo

C++ Version 3.0 and the input is simulated using both valid and
invalid strings.

Observation 1:

Valid input: for(x1=0; x1<=10; x1++);

Output Analysis:

for : Keyword

(: Special character

x1 : Identifier

= : Assignment operator

0 : Constant

; : Special character

x1 : Identifier

<= : Relational operator

10 : Constant

; : Special character

x1 : Identifier

+ : Operator

+ : Operator

) : Special character

; : Special character

Tokens generated.

Observation 2:

Invalid input: for(x1=0; x1<=19x; x++);

Output Analysis:

for : Keyword

(: Special character

x1 : Identifier

= : Assignment operator

0 : Constant

; : Special character

x1 : Identifier

<= : Relational operator

Token cannot be generated.

5. CONCLUSION
The novelty of this model not only provides the variation of the
existing lexical analyzer but also reduces the computational cost
to a large extent. Furthermore, the nature of the string whether
eligible for generating tokens could be analyzed by proposed
algorithm with satisfactory results. In spite of the scope of data

storage is limited and symbols used are a few, the main aim has
been just cleared conception and application of efficient look up
table approach in finite states generation for lexical analysis. The
next phase of compilation is just introduced to represent its utility,
for the sake of completion and better understanding. Further study
on extending this model with parser generation to generate
language constructs as well as error recovery in lexical analysis is
in progress.

6. ACKNOWLEDGMENTS
Our special thanks to Mr. Parag Kumar Guha Thakurta, Asst.
Prof., NIT Durgapur, Dr. Subrata Trivedi, Asst. Prof. and Mr.
Jishnu Mondal, Asst. Librarian, BCET Durgapur for their
valuable suggestions and co operations towards development of

the paper.

7. REFERENCES
[1] Alfred V.Aho, Ravi Sethi, Jeffery D. Ullman, Addison-

Wesley, 2007. Compilers- Principles, Techniques, and Tools.

[2] Torben Ægidius Mogensen, May 28, 2009. Basics of
Compiler Design”, lulu, Extended Edition.

[3] David Galles, 2005. Modern Compiler Design, Addison-
Wesley.

[4] William A. Barrett, 2005. Compiler Design, CmpE 152,
FALL Version, San Jose State University.

[5] G.M6nier, G.Lorette, 1997. Lexical Analyzer based on a
Self-Organizing Feature Map, IEEE Xplore, 0-8186-7898-4.

[6] Anthony Cox, Charles Clarke, 2003. Syntactic
Approximation Using Iterative Lexical Analysis, IWPC’03,
IEEE Xplore,1092-813A8

[7] Davide Pozza, Riccardo Sisto, Luca Durante, Adriano
Valenzano, 2006. Comparing Lexical Analysis Tools for
Buffer Overflow Detection in Network Software, IEEE
Xplore, 0-7803-9575-1.

[8] William M. Waite, Assad Jarrahian, Michele H. Jackson,
Amer Diwan, 2006. Design and Implementation of a Modern
Compiler Course, ACM 1595930558/06/0006.

[9] Allen I. Holub, 2009. Compiler Design in C, Phi Learning.

[10] Santanu Chattophadhyay, 2005. Compiler Design, PH I.

[11] K.L.P. Mishra, N.Chandrasekharan, 2007. Theory of
Computer Science, PHI, Third Edition.

[12] Lex table look up: www.gradsoft.kiev.ua

[13] Symbol table management: www.faculty.washington.edu

